

ME GY-6933 Advance Mechatronics

TERM PROJECT PRESENTATION

Team Members:

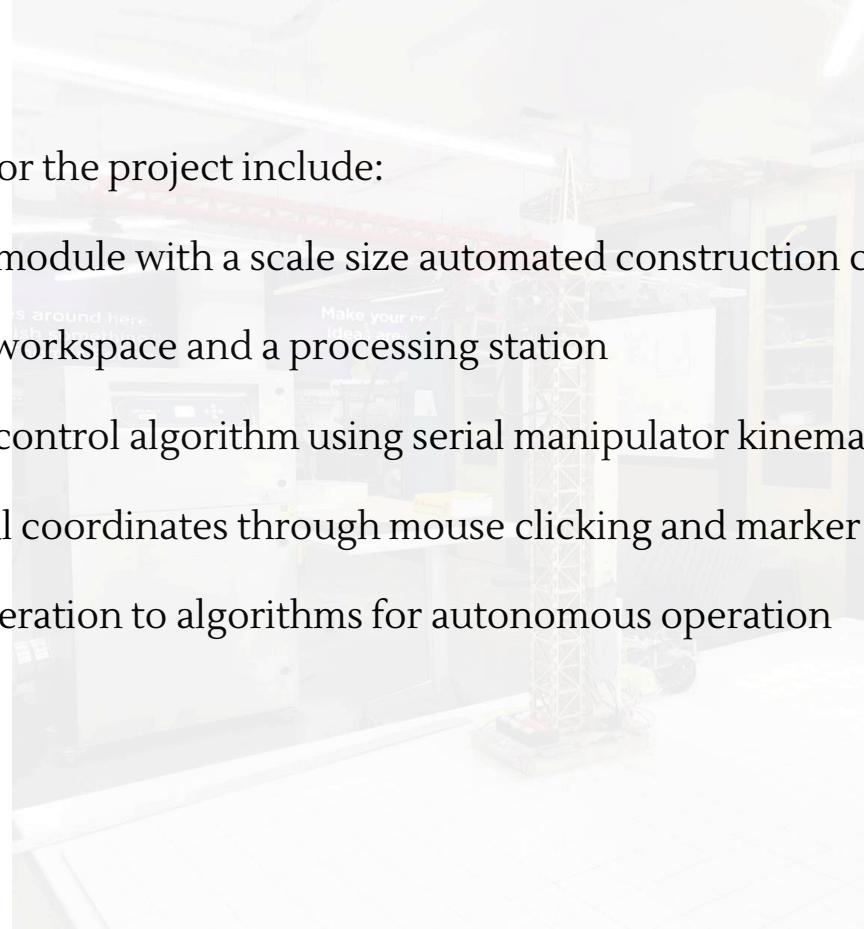
Akshay Kumar (avk322)
Christian Lourido (cl4906)
Jordan Birnbaum (jbb498)

Instructor:

Prof Vikram Kapila

Date:

05/16/2019



Goal Of the Project

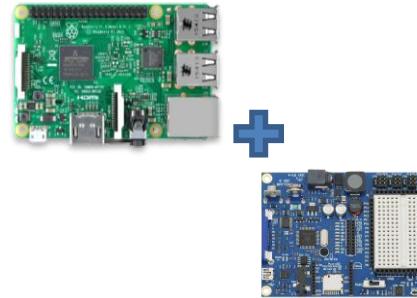
- To build a miniature scale size automated construction crane
- Opensource platform for engineers willing to test and verify simulations and algorithms
- Implement a global vision system to assist user in defining goal coordinates

Objective of the Project

- The objectives for the project include:
 - To build a module with a scale size automated construction crane with its actuators
 - A defined workspace and a processing station
 - Develop a control algorithm using serial manipulator kinematics
 - Obtain goal coordinates through mouse clicking and marker placement
 - Manual operation to algorithms for autonomous operation

Design Iterations

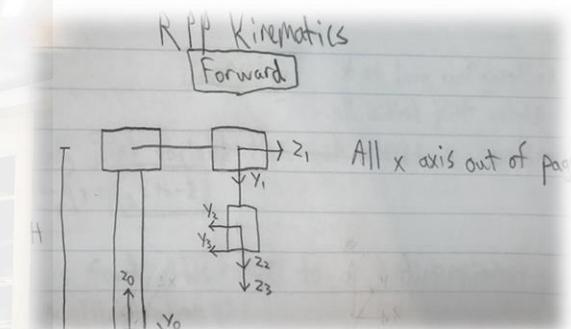
Arduino Uno


- Designing and fabricating the structure
- Controlling the cranes actuators manually using pots and buttons
- No feedback of any sort
- No user interface for controlling the crane

Propeller BoE

- Feedback for two of the actuators
- Forward kinematics code implemented
- A simple user interface for controlling
- More stable and rigid design parts added

Raspberry pi 3 +
Propeller BoE


- Use of camera to obtain the user input location for the crane to move
- Communication between Raspberry pi and Propeller
- Final and most robust mechanical design

- Replacement and more robust design of mechanical weakness: the crane neck
- Replacement of carriage motor
- Redefined home pose
- Built camera stand

Forward Kinematics

- Assigned frames using standard DH method
- Defined home configuration and obtained DH parameters
- Created DH matrices from DH parameters
- Obtained descriptor matrix from end effector to global frame

Joint #	Theta(i)	d(i)	a(i)	alpha(i)	q(i)
1	theta1=-90+q1	H	0	-90	q1
2	0	d2=15+q2	0	-90	q2
3	0	d3=9+q3	0	0	q3

Acquiring Coordinates

- User can obtain goal coordinates via three ways:
 - Manual input
 - Selecting the desired coordinates on the image provided by the pi cam
 - Placing a marker at the desired location – pi cam determines coordinates via a contour/ centroidal algorithm

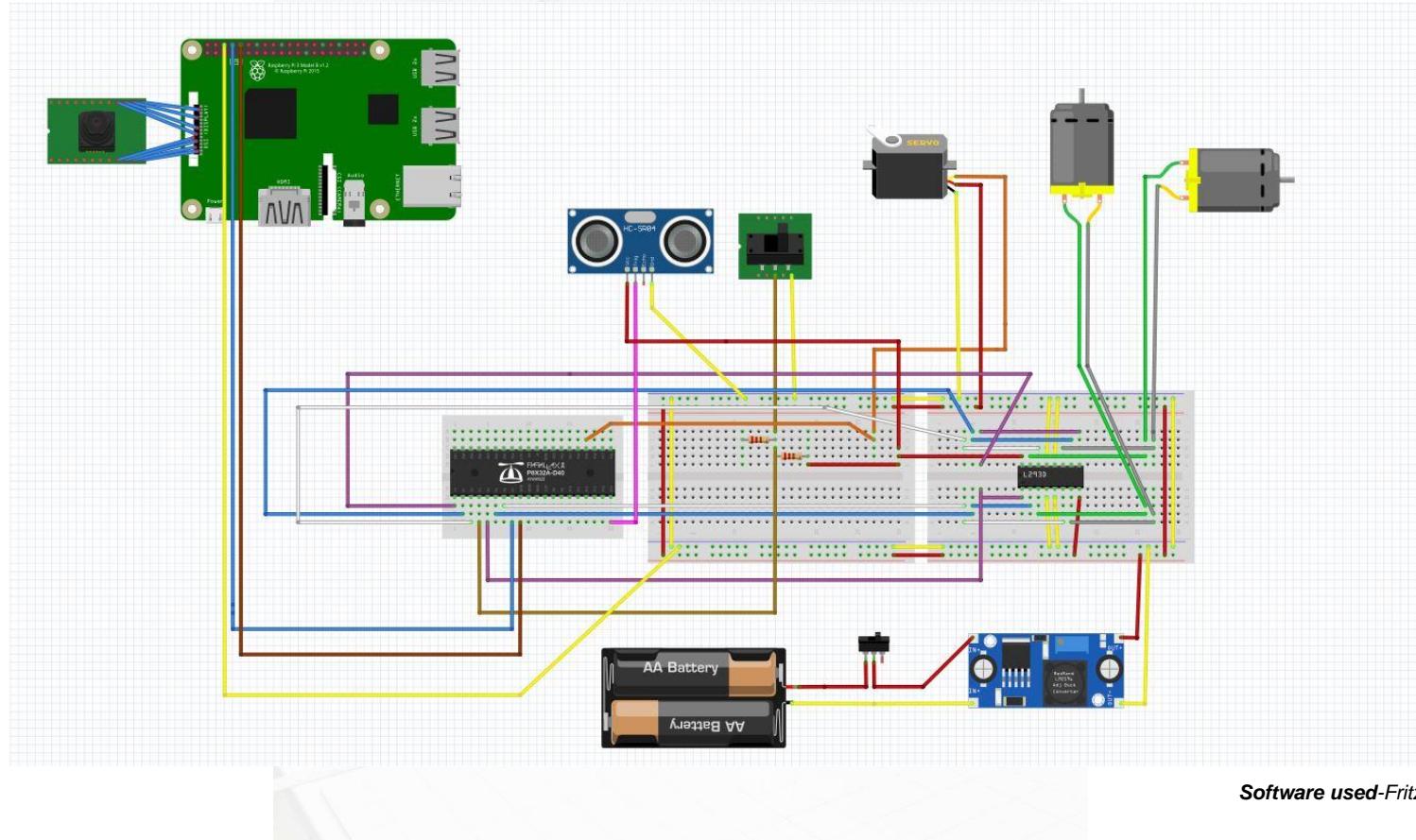
Inverse Kinematics

Q3 is only joint variable that can affect z coordinate

$$\begin{aligned} Z &= H - q_3 \\ q_3 &= H - z \end{aligned}$$

Once z is found, this reduces to a Z dimensional problem (location of carriage)

q2 is only joint variables that can effect R distance ,


$|R| = q_2$, solve for R

$$q_2 = \sqrt{x^2 + y^2}$$

q1 is determined by taking the inverse tangent of the x and y values, the atan2 function is used to determine the precise q1 value.

$$\begin{aligned} \tan Q_1 &= y/x \\ q_1 &= \text{atan2}(y, x) \end{aligned}$$

Note: At home configuration all initial joint values are zero

Software used-Fritzing

SimpleIDE D:\OneDrive\Documentos\SimpleIDE\FinalProject\Experiment_Servo_Carriage_IK.side

File Project Edit Tools Program Help

Project Manager

Experiment_Servo_Carriage_IKside

Experiment_Servo_Carriage_IK.c HeaderFile.h ServoMove.c dcMove.c dcMoveTimed.c

```

1 /*  Crane2.c
2
3  ME GY-6933 Advanced Mechatronics
4  Project-Propeller Based
5  Instructor: Professor Vikram Kapila
6  Date:04/18/2019
7  Group Members: Christian Lourido(c14906),Akshay Kumar Kutty(avk322), Jordan Birnbaum(jbb498)
8 */
9
10 /* Libraries */
11
12 #include "simpletools.h"
13 #include "ping.h"
14 #include "servo.h"
15 #include "HeaderFile.h"
16 #include <math.h>
17
18 /*Main Program*/
19
20 int main()
21 {
22     int iuAngle; //Initial user angle (guess for q1) (user input)
23     int q1new;
24     int q2new;
25     int q3new;
26     int q1;
27     int d2;
28     int d3;
29     int timeq3;
30     char ui, ui2;
31     double xnew,ynew,znew;
32     int xu,yu,zu;
33
34     cogstart(&pingfromcog, NULL, stack1, sizeof(stack1)); //Start ping sensor in Cog 1
35     pause(500);

```

Build Status

Project Options Compiler Linker

Math Lib Pthread Lib

Tiny Lib Create Project Library


Other Linker Options

proploader.exe -r -I C:/Program Files (x86)/SimpleIDE/bin/..propeller-gcc/propeller-load/ -b activityboard -p COM5 cmm/Experiment_Servo_Carriage_IK.elf

Opening file 'cmm/Experiment_Servo_Carriage_IK.elf' Downloading file to port COM5
30176 bytes sent

Verifying RAM
Download successful

Propeller Functions

Experiment_Servo_Carriage_IK.c ServoMove.c Experiment_Servo_Carriage_IK.c dcMove.c

```

1 void ServoMove(int pin, int iangle, int fangle,int delay){
2     int fangleCorr= 5+fangle*(180.0/225.0);
3     int iangleCorr= 5+iangle*(180.0/225.0);
4
5     if (iangleCorr>fangleCorr){
6         for(int n=iangleCorr; n>=fangleCorr;n--) {
7             servo_angle(pin,n*10);
8             pause(delay);
9         }
10    }else if(iangleCorr<fangleCorr){  
        for(int n=iangleCorr; n<=fangleCorr;n++) {  
            servo_angle(pin,n*10);
11            pause(delay);
12        }
13    }else{  
    }
14 }
15
16
17
18

```

Experiment_Servo_Carriage_IK.c dcMoveTimed.c

```

1 void dcMove(int enPin, int dir1Pin, int dir2Pin, int direction, int onOff){
2
3     if(onOff==0){
4         low(dir1Pin); low(dir2Pin); low(enPin);
5     }
6     else{
7         if(direction == 1){
8             low(dir1Pin); high(dir2Pin); high(enPin);
9         }else{
10             high(dir1Pin); low(dir2Pin); high(enPin);
11         }
12     }
13 }
14
15
16
17
18

```

```

1 void dcMoveTimed(int enPin, int dir1Pin, int dir2Pin, int direction, int time){
2
3     if(direction == 1){
4         low(dir1Pin); high(dir2Pin); high(enPin);
5         pause(time);
6         low(dir1Pin); low(dir2Pin); low(enPin);
7     }else if(direction == 0){
8         high(dir1Pin); low(dir2Pin); high(enPin);
9         pause(time);
10        low(dir1Pin); low(dir2Pin); low(enPin);
11    }
12
13
14
15
16
17
18

```

```
//Open serial communication
rpi = fdserial_open(9, 8, 0, 115200);
print("Run the executable file in the RPI. \nWaiting for RPI to send data...\n");
dprint(rpi, "\nHi from propeller!"); //To verify in RPI terminal

//Receive array of [20]
for(int i=0; i<20; i++){
    data_received[i]=fdserial_rxChar(rpi);
}
pause(1000);

//Data processing

/*Count digits until special character ":" is found. 1st value = X, 2nd value = Y */
int n=0, digitsx=0,digitsy=0;

while(data_received[n]!=':'){
    digitsx++;
    n++;
}
digitsx=n;
n++;

while(data_received[n]!=':'){
    digitsy++;
    n++;
}

/*Create arrays for X and Y based on the number of digits each has. Then, put data from buffer to new X and Y arrays*/
char x[digitsx-1],y[digitsy-1];
int m=0, o=0;

while(m<=digitsx-1) {
    x[m]=data_received[m];
    m++;
}
m++;
```

Experimentation and Results

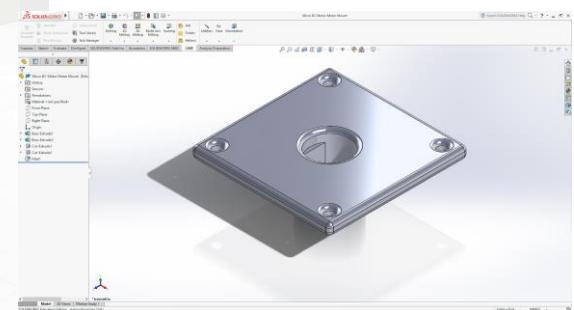
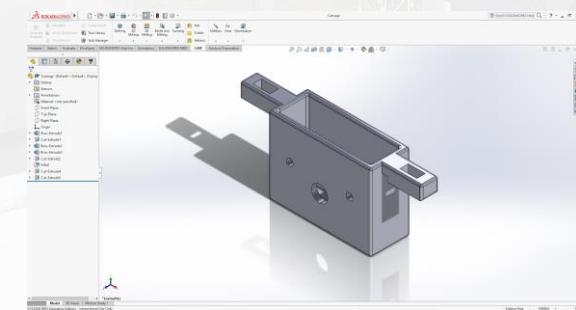
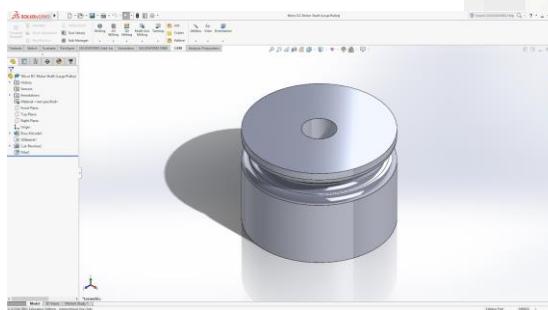
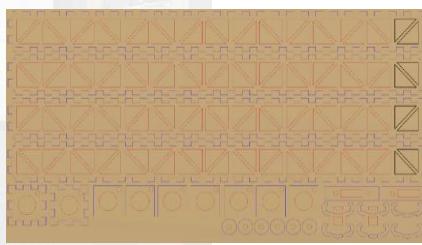
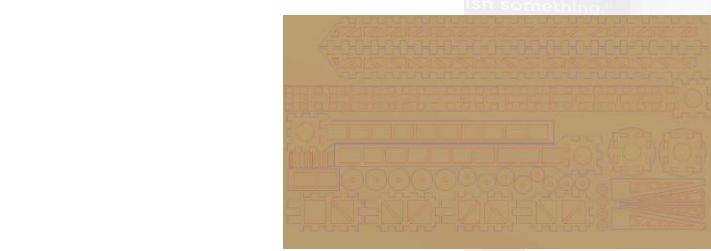
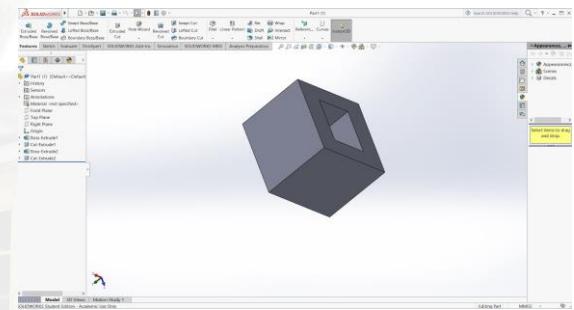
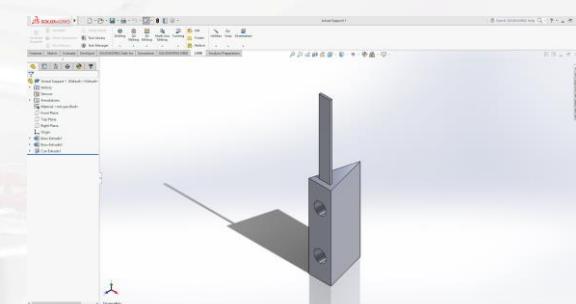
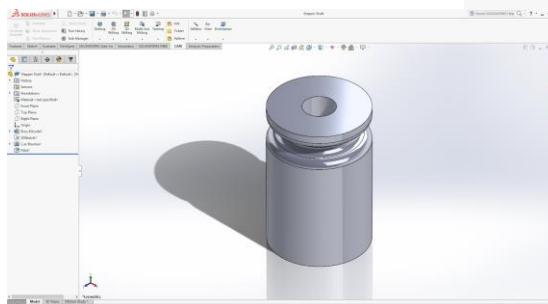
Inputs	I-click	II-click	III-click	Avg Diff.
Clicked	(25,30)	(25,30)	(25,30)	-
Comp.	(25,32)	(25,32)	(25,32)	0.2
Placed	(20,27.5)	(20,27.5)	(23,26)	(4,3)
Z-comp	5cm	5cm	5cm	-
Z-physical	7.5cm	7cm	7cm	2.167

I-click	II-click	III-click	Avg Diff.
(-20,15)	(-20,15)	(-20,15)	-
(-21,16)	(-21,16)	(-21,16)	1.1
(-17.5,15)	(-17.5,15)	(-17.5,15)	(3,1.16)
5cm	5cm	5cm	-
5cm	10cm	5.5cm	1.83

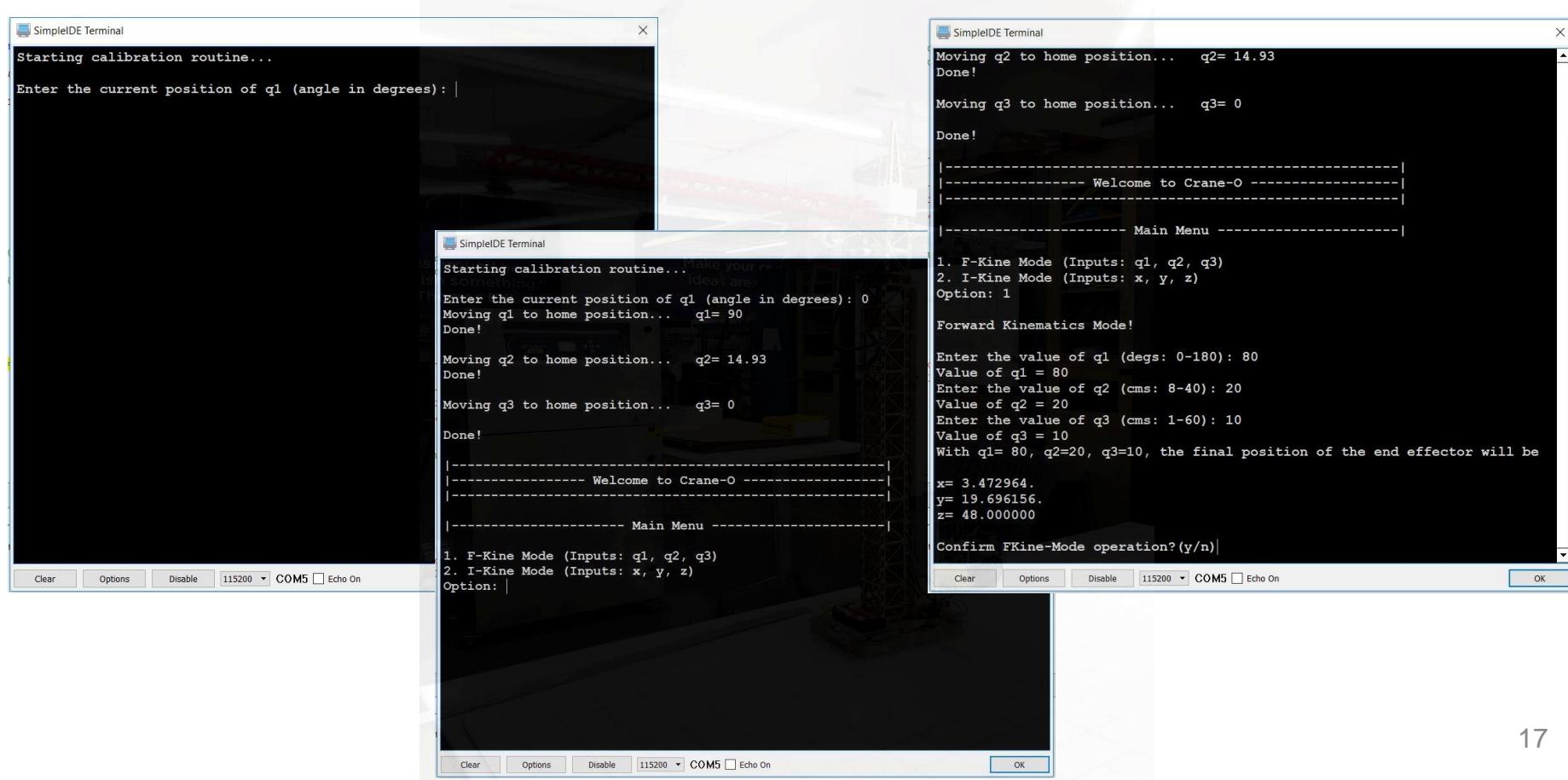
Experimentation and Results(Contd...)

Inputs	I-click	II-click	III-click	Avg Diff.
Clicked	(0,40)	(0,40)	(0,40)	-
Comp.	(0,42)	(0,42)	(0,42)	0.2
Placed	(0,36)	(0,36)	(0,35)	(0,4.3)
Z-comp	5cm	5cm	5cm	-
Z-physical	5cm	5cm	4cm	0.33

Avg. computational difference (x,y): (0.33,1,67) -1









Avg. physical difference (x,y): (2.33,2.83) -2.58

Avg. total Z difference : 1.44


Avg. spatial difference: 2.2

Appendix: Mechanical Solidworks Design

Appendix: User Terminal

Appendix: Experimentation and Results

$q_1=135$ deg, $q_2= 30$, $q_3=55$

$q_1=30$ deg, $q_2= 35$, $q_3=30$

$q_1=0$ deg, $q_2= 25$, $q_3=40$

Inputs	X Dist	Y Dist	Z Dist	Avg Diff.
Comp Result	-21	21	-2	-
Physical Result	-18	23	5	2.67
	-18.5	22.2	6	1.57
	-18.5	22.5	3.5	3.83

X Dist	Y Dist	Z Dist	Avg Diff.
30.3	17.5	28	-
23.5	18	30	4.13
29	20	31	1.5
26	19	31	2.67

X Dist	Y Dist	Z Dist	Avg Diff.
25	0	18	-
22	2	22	1.83
26	3	22	2.67
26.5	3	21	3.67

Average Difference for all the trials:- X:2.88, y:1.91, z:3.39

Appendix: Cost Structure of the project

Bills Of Materials(Prototype)			
Qty	Components	Price	Total
1	Raspberry Pi 3 B+	\$ 30	\$ 30
1	Raspberry Pi Cam V2.1	\$18	\$18
1	Servo Motor	\$12	\$12
1	Dc Motor for the carriage	\$20	\$20
1	Dc Motor for the gripper	\$18	\$18
1	Limit Switch	\$4	\$4
1	Voltage Regulator	\$9	\$9
2	Acrylic Sheet (24*12)	\$15	\$30
1	Motor Driver-L293D	\$ 5	\$ 5
4	Birch Wood (24*12)	\$15	\$60
1	Gorilla glue	\$10	\$10
1	Wood beams	\$9	\$9
1	Corner and L-clamps	\$14	\$14
1	Ping Sensor	\$30	\$30
1	Battery 7.2V	\$17	\$17
1	Breadboard	\$6	\$6
1	Wires	Free	Free
1	Fishing Ropes and Tension Wire	\$11	\$11
1	Miscellaneous	\$ 30	\$ 30
TOTAL AMOUNT		\$273	\$343

This is the overall cost to build and fabricate the tower crane. The cost of building can be reduced if mass produced for educational purposes.