lsh somethmg
homas Edison

ME-GY 6933 ADVANCED MECHATRONICS

Term Project Report

Team Members:

Akshay Kumar V Kutty (avk322)
Christian Lourido (cl4906)
Jordan Birnbaum (jbb498)

Instructor:

Prof Vikram Kapila

Project Details-

STUDENT NAME:

STUDENT NUMBER:

COURSE NAME:
DEPARTMENT:

COURSE CODE:

SUPERVISOR:

DATE OF SUBMISSION:

1. Akshay Kumar V Kutty
2. Christian Lourido

3. Jordan Birnbaum

1. N18887011

2. N13153509

3. N10067813

Advance Mechatronics

Department of Mechanical and Aerospace Engineering

ME-GY 6933

Vikram Kapila

05-16-2019

TABLE OF CONTENTS

SL NO. CONTENT PAGE NO.
1. OVERVIEW 4
11 GOAL 4
1.2 OBJECTIVE OF THE PROJECT 4
1.3 MEASUREMENT 4
2. INTRODUCTION 3)
2.1 BACKGROUND AND SIGNIFICANCE 5
3. DEVELOPMENT 3)
3.1 METHODOLOGY 5
3.2 MECHANICAL DESIGN AND FABRICATION 5
3.3 ELECTRONIC CIRCUIT DESIGN 8
3.4 SELECTION OF COMPONENTS 9
3.5 SOFTWARE 10
4, BUDGET 11
S. CONCLUSION AND RESULTS 12
6. APPLICATIONS 13
7. FUTURE WORK 13
8. REFERENCES 13
0. APPENDIX 14
9.1 APPENDIX -1 : EXPERIMENTS AND CALCULATION 14
9.2 APPENDIX -1 : CODE 17
9.3 APPENDIX -1l : MODULES 31

1. OVERVIEW
1.1 GOAL
The goal of the project includes:
= To build a small scale size of an automated construction crane
= Opensource platform for engineers willing to test and verify simulations and
algorithms

= Having a friendly user-interface.

1.2 OBJECTIVE OF THE PROJECT
The objectives for the project includes:
= To build a small scaled module of a tower crane
= Able to move the crane using actuators
= A defined workspace and a processing station
= Develop a control algorithm using serial manipulator kinematics
= Having a friendly user interface
= Manual operation to algorithms for autonomous operation

= Allows the users to point out the desired location visually

the following parameters will be met in establishing and implementing the processes:
= Making the hardware and building it in makerspace
= Developing a control algorithm using serial manipulator kinematics
= Having feedback system for all the actuators

= Pointing out the coordinates using OpenCV

1.3 MEASUREMENT
The success in meeting the objectives would be measured by factors which include:
= Moving all the actuations of the crane manually
= Performing both Forward and inverse kinematics
= Pointing out the exact location using OpenCV camera and moving the crane to that

exact position

2. INTRODUCTION
2.1 BACKGROUND AND SIGNIFICANCE

Despite their key role in determining the efficiency of many operations at construction sites,
tower cranes have not substantially developed for quite a while. It appears that most users
enjoy the essential conveying convenience offered by cranes, and do not bother with "minor”
improvements of their performance. Nevertheless, today's technologies in the fields of
Robotics and Automation permit far reaching improvements in tower cranes as well. Within
this project we have built a small scaled tower crane for educational platform which can be

controlled both manually and controlled using and interface by the means of OpenCV.

3. DEVELOPMENT
3.1 METHODOLOGY

The plan is to divide the project in 3 stages:

Phase A (Arduino Based)
= Build the tower crane structure
= Control the actuators manually
Phase B (Propeller Based)
= Automation of sequential tasks
= Establish a workspace
= Programming of functions to allow picking and leaving objects in specific points in
the workspace.
= Performing both forward and inverse kinematics
Phase C (Raspberry Pi + Propeller Based)
= Point locations with the means of cameras
= Programming of functions to allow the crane to go to that particular position

pinpointed by the camera

3.2 MECHANICAL DESIGN AND FABRICATION

The design of whole structure was laser cut and assembled at makerspace after various

iterations in the designs of the mount for the three actuators.

3.2.1 LASER CUT SETTINGS

e MACHINE-Epilog Mini 1l

e WORKSPACE-24" x 12" (610 x 305 mm)
e Acrylic sheet 1/8” [Speed- 20, Power- 100]
e Birch wood 1/8” [Speed- 40, Power- 100]

Fig a, b: Tower crane Structure

3.2.2 VARIOUS CHALLENGES FACED IN THE DESIGNS AND FABRICATIONS

e Structure of tower crane- Multiple design iterations

e Carriage mechanism- Tension driven transmission of carriage

e Carriage motor failed after designing entire mount and transmission

e The Servo motor was not stable and would make the crane unstable-Secured servo mount
to neck of the crane

e The feedback for the carriage was fixed by designing and 3D printed custom mount for
ultrasonic sensor

e Feedback for the gripper motor-Implemented a limit switch

e The neck of the crane-Improved structural integrity

¢ Defining home pose of crane-Initial Position of the crane when powering up

These are the Solidworks designs of various mounts and parts that had to be 3D printed.

1] 1-prae s DHeES: Py I SR A Y e
s T 2

PEAMEE-§-r- P

FHAMAE U+ 0BT

ISR T

........... e S

R soonans | 3@

T 2 L T x

FEERGW B v PR T

Seueunes -

FPEamE® W v ST

Cm— >
B ot i ST

Fig a, b, ¢, d, e, f: Solidworks Design of various parts

3.2.3 Forward Kinematics

Fig: Assigning the Frames FBD

o Defined home configuration and obtained DH parameters
e Created DH matrices from DH parameters

e Obtained descriptor matrix from end effector to global frame

Joint # Thetal(i) d(i) a(i) alpha(i) ali)
1 thetal=-90+q1 H 0 -90 ql
2 0 d2=15+q2 0 -90 q2
3 0 d3=9+q3 0 0 g3

3.2.4 Inverse Kinematics

Note-At home configuration all initial joint values are zero
Q3 is only joint variable that can affect z coordinate
Z=H-q
q3 =H —z

Once z is found, this reduces to a Z dimensional problem (location of carriage)

Schematically,

0 X

Fig: C= Carriage Location
g2 is only joint variables that can effect R distance ,

|R|=g2, solve for R

q2 = V(x* +y?)

gl is determined by taking the inverse tangent of the x and y values, the atan2 function is

used to determine the precise gl value.

tanQ1 =X
X

ql = atan2(y, x)
3.3 ELECTRONICS CIRCUIT DESIGN

The electronic circuit was divided into three circuits:

= Propeller Control Circuit

= Raspberry Pi Control Circuit
= Actuator Circuit

All these circuits are separated and have a common ground. There is one switch which power
ups the actuators.

Fig: Electrical Circuit Fritzing

3.4 SELECTION OF COMPONENTS

Raspberry Pi 3 Single Board Computer

Raspberry Pi 3 was selected to handle image processing and send the coordinates once the
user clicks the desired location. Since Raspberry Pi 3 is a single board computer with 1 GB of
RAM, it will have enough capacity to handle image processing, which demands many

processing powers.

Pi Camera
This component was selected because of the friendly compatibility with Raspberry Pi 3 and

low cost.

Propeller BoE (Microcontroller)

Since all the controlling are done using the Propeller as it is multicore and cane perform
tasks simultaneously. The propeller receives the coordinates from the raspberry pi and

performs the inverse kinematics algorithm to move to the desired location.

Ultrasonic Sensors- Ping (One)

Ultrasonic sensors were used to measure distance of the carriage from the initial home
position. These were used to act a feedback for the second motor. They were selected

because their low cost.

Servo Motor

Used to move the crane (acts as a revolute joint).

9

DC Motor (12v, 21Rpm)
Used to control the carriage and gripper movement of the crane.

Batteries (3.7V) — 3000 mAh (Power supply for the entire circuit)

Because of the current needed, 2 batteries connected in series (7.4 V total) and 3000mAh is

enough to supply power to the actuator circuit.

DC-DC Step Down 5V = 2.5 A
Needed to conditionate voltage from the batteries (7.4 V) to 5 V, that is the supply power

needed by the servo motor to operate and the voltage needed to activate the relay

ON/OFF switch
Opens the circuit that supply power to the actuator circuit

User chooses I}fthe USfilr
the options chooses the
from the second option
then the

propeller user 1 :
input terminal propetier waits
for the rpi

3.5 SOFTWARE

Once the crane

moves to final User marks the

position it goes position by the
back to the means of
main user camera
terminal

Runs the code RPI corelates

by taking those the pixels
values as inputs % > values and
and the crane @ convert them to
moves to that the particular
location location
Propeller gets RPI then sends

the value and thexandy
performs the coordinates to
ikine algorithm propeller

10

4. BUDGET

This is the overall cost to build and fabricate the tower crane. The cost of building can be
reduced if mass produced for educational purposes.

Qty Components Price Total
1 Raspberry Pi 3 B+ $30 $30
T Raspberry Pi Cam V2.1 518 $18
1 Servo Motor $12 S12
1 Dc Motor for the carriage $20 $20
1 Dc Motor for the gripper $18 $18
i) Limit Switch S4 sS4
1 Voltage Regulator S9 S9
2 Acrylic Sheet (24*12) $15 $30
al Motor Driver-L293D S5 S5
4 Birch Wood (24*12) $15 $60
x Gorilla glue $10 $10
1 Wood beams S9 S9
1 Corner and L-clamps $14 $14
1 Ping Sensor $30 $30
3; Battery 7.2V $17 $17
1h Breadboard S6 S6
ak Wires Free Free
1 Fishing Ropes and Tension Wire $11 $11
al Miscelleneous $30 $30

T roraamount [sis [sses |
Fig: Cost Analysis

11

5. CONCLUSIONS AND RESULTS

After successfully designing and manufacturing our crane, naturally, the challenge of how to
control the structure autonomously came next. Originally we decided upon controlling the
structure with Arduino, since at this stage of the project, functionality and effectiveness of the
motors were the most sought after result. Once we had validated that our choice of motors
and applied loads was achievable, we moved on to developing a more sophisticated control
algorithm. The first step was to choose a more advanced microcontroller. We decided upon
propeller since the multicore functionality of it served as a reliable choice for controlling the
various motors in our system. After modifying our electrical hardware and making
improvements in the mechanical realm, we developed a forward kinematics code to control
the crane in a method that was more intuitive and user friendly. The final step of our project
was to go beyond the envelope of current crane technology and implement a global vision
system that had the ability to communicate desired coordinates to the established system. We
executed this by creating a tripod in which we mounted a raspberry pi and pi cam to. The
raspberry pi processed the image taken by the pi cam. Once the picture was displayed on the
terminal, the user was able to click the desired location of where the crane should lower its
end effector to. We wrote a program to convert the pixel values obtained by the click to
physical world distance. Since we knew the area of our workspace, the conversion code was a
simple ratio. Once the click coordinates were converted to physical world distances, we sent
the values over to the propeller via a connection we made between the rx and tx pins. We
appended some code to decode the incoming data to the propeller. At this point, the propeller
solved for the inverse kinematics and moved the motors in order to achieve the desired
position. Our final tests with the crane yielded an impressive accuracy rating of within two
and a fifth centimetres of the desired location. Given that our predefined margin for error was

five centimetres, we consider the final version of our project a huge success.

Fig: Experimental Setup

12

6.APPLICATIONS

1. This can be used for various research simulations and can act as an educational
platform for the users
2. This can be used in real life scenarios like construction to reduce the manpower and

have less cycling time

7. FUTURE WORK

Improve the design and the stability of the tower crane
Trying to reduce the error by significant value
Have a proper workspace and experimental work

Use stereo camera to have better image processing

o~ W N

Use of April tags to find the coordinates of a particular location

8. REFERENCES

Propeller Advance Mechatronics Class Notes
Raspberry pi Advance Mechatronics Class Notes

https://www.teachmemicro.com/raspberry-pi-serial-uart-tutorial/

https://learn.parallax.com/tutorials/language/propeller-c/propeller-c-set-simpleide

A A

http://opencvexamples.blogspot.com/2014/01/detect-mouse-clicks-and-moves-on-

image.html
6. https://docs.opencv.org/2.4/modules/highgui/doc/user interface.html?highlight=setmouse

callback

13

https://www.teachmemicro.com/raspberry-pi-serial-uart-tutorial/
https://learn.parallax.com/tutorials/language/propeller-c/propeller-c-set-simpleide
http://opencvexamples.blogspot.com/2014/01/detect-mouse-clicks-and-moves-on-image.html
http://opencvexamples.blogspot.com/2014/01/detect-mouse-clicks-and-moves-on-image.html
https://docs.opencv.org/2.4/modules/highgui/doc/user_interface.html?highlight=setmousecallback
https://docs.opencv.org/2.4/modules/highgui/doc/user_interface.html?highlight=setmousecallback

APPENDIX-I: EXPERIMENTATIONS AND CALCULATIONS

FORWARD KINEMATICS-ERROR DIFFERENCE

Inputs

Comp Result

Physical
Result

Inputs

Comp Result

Physical
Result

Inputs

Comp Result

Physical
Result

Average Difference for all the trials:- X:2.88, ¥:1.91, 2:3.39

ql1=135 deg, q2= 30, q3=55

X Dist. Y Dist. Z Dist.
-21 21 -2
-18 23 5

-18.5 22.2 6
-18.5 22.5 3.5

q1=30 deg, q2= 35, q3=30

X Dist. Y Dist. Z Dist.
30.3 17.5 28
23.5 18 30

29 20 31
26 19 31

q1=0 deg, q2= 25, q3=40

X Dist. Y Dist. Z Dist.
25 0] 18
22 2 22
26 3 22

26.5 3 21

14

Avg Diff.

2.67
1.57

3.83

Avg Diff.

4.13
1.5

2.67

Avg Diff.

1.83

2.67

3.67

WITHOUT CALIBRATION ALGORITHM-ERROR DIFFERENCE

TRIAL-I
Inputs I-click ll-click ll-click Avg Diff.
Clicked (-20,15) (-20,15) (-20,15) -
Computed (-21,16) (-21,16) (-21,16) 1.1
Placed (-17.5,15) (-17.5,15) (-17.5,15) (3,1.16)
Z-comp 5cm 5cm 5cm -
Z-physical 5cm 10cm 5.5cm 1.83
TRIAL-II
Inputs I-click ll-click lHi-click Avg Diff.
Clicked (25,30) (25,30) (25,30) -
Computed (25,32) (25,32) (25,32) 0.2
Placed (20,27.5) (20,27.5) (23,26) (4,3)
Z-comp 5cm 5cm 5cm -
Z-physical 7.5cm 7cm 7cm 2.167
TRIAL-III
Inputs I-click ll-click lHi-click Avg Diff.
Clicked (0,40) (0,40) (0,40) -
Computed (0,42) (0,42) (0,42) 0.2
Placed (0,36) (0,36) (0,35) (0,4.3)

15

Z-comp 5cm 5cm 5cm

Z-physical 5cm 5cm 4cm

Average computational difference:- (0.33,1,67) 1
Average physical difference:- (2.33,2.83) ~2.58
Average total difference:- (1.33,2.25) ~1.79
Average total Z difference :- 1.44

Average spatial difference:- 2.2

16

0.33

APPENDIX- ll: CODE

#include "HeaderFile.h"

int main()

{

intiuAngle,qinew,q2new,q3new, q1,d2,d3,timeq3,xu,yu,zu;
char ui;

double xnew,ynew,znew;

cogstart(&pingfromcog, NULL, stackl, sizeof(stackl)); //Start ping sensorin Cog 1
pause(500);

print("Calibration..\n\nEnter current position of q1 (degs): ");

scanf(" %d", &iuAngle);
home(iuAngle);

qlold=iPosql;
q3old=iPosq3;

while(1){

print("Welcome to Crane-0\n\nMain Menu:\n1.1-Kine Mode (Inputs: x, y, z)\n2. Camera
Mode(Select Point in plane)\n3. Return to Home Configuration\n\nOption: ");

scanf(" %c",&ui);

pause(500);

switch (ui){

case'l"

print("\nl-Kine Mode\n\nEnter the value of x(cms): ");
scanf(" %d",&xu);

print("\nEnter the value of y (cms): ");

17

scanf(" %d",&yu);

print("\nEnter the value of z (cms): ");
scanf(" %d",&zu);

ikine(xu,yu,zu);

break;

case 2"
print("Continue to data pulling? (y/n)");
scanf(" %c",&ui);

if(ui=="y"){
unsigned char data_received[20]={};

rpi = fdserial_open(9, 8, 0,115200);
print("Run the executable file in the RPI.\nWating for RPI to send data..\n");
dprint(rpi, "\nHi from propeller!");

for(int i=0;i<20; i++){
data_received|i]=fdserial_rxChar(rpi);

}
pause(1000);

int n=0, digitsx=0,digitsy=0;
while(data_received[n]!=""){
digitsx++;

n++:

}

digitsx=n;

n++;
while(data_received[n]!=""){
digitsy++;

n++;

}

char x[digitsx-1],y[digitsy-1];
int m=0, 0=0;
while(m<=digitsx-1){

18

x[m]=data_received[m];

m++:

}

m++:
while((o+m)<=(digitsx+digitsy)){
ylo]=data_received[m+o];

o++;

}

int xint=atoi(x);

int yint=atoi(y);
pause(500);
ikine(xint,yint,53);
fdserial_close(rpi);
}

else{}

break;

case'3"

print("Return to Home Position\n");
home(qlold);

print("OK\n\n");

break;

case 10:
break;

default:
break;

} 1}

void pingfromcog(void *par1) {
long tEcho;

while(1)

{

tEcho=ping(15);

cmDist =tEcho/58.0;
pause(20);

}

}

void fkine(int q1f, int q1fold, int q2f, int q3f, int g3fold){

print("\nMoving g1...");
ServoMove(smPin,qlfold,q1f,smSpeed);
print("Final value of q1: %d\tDone\n", qif);

print("\nMoving q2...");
if((totalOffset+cmDist)>q2f){
while((totalOffset+cmDist)>q2f){
dcMove(en2,in21,in22, inside, on);

}

dcMove(en2,in21,in22, outside, off);
}

else if((totalOffset+cmDist)<q2f){
while((totalOffset+cmDist)<q2f){
dcMove(en2,in21,in22, outside, on);
}

dcMove(en2,in21,in22, outside, off);

}

print("Final value of q2: %.2f \t Done/\n", cmDist+totalOffset);

print("\nMoving g3...");

int time;
time=(q3f*10000/speedConstant);

if (q3f>q3fold){
dcMoveTimed(en3,in31,in32,down,time);
}

elseif (q3f<gq3fold){
dcMoveTimed(en3,in31,in32,up,time);

}

print("Final value of q3: %d \t Done\n", q3f);
print("\nDone\n\n");

}

void home(int initialAngle){

print("Moving g1..\t");
ServoMove(smPin,initialAngle,iPosql,smSpeed);

print("ql= %d\n",iPosql);

20

print("Done\n\nMoving q2..\t");
if(cmDist>iPosq2){
while(cmDist>iPosq2){
dcMove(en2,in21,in22, inside, on);

}
dcMove(en2,in21,in22, inside, off);

}

else if(cmDist<iPosq2){
while(cmDist<=iPosq2){
dcMove(en2,in21,in22, outside, on);
}

dcMove(en2,in21,in22, inside, off);

}
print("q2=%.2f\n", cmDist+totalOffset);

print("Donel\n\nMoving g3..\t");
while(input(limitSwitchPin) !=1){
dcMove(en3,in31,in32, up, on);

}

dcMove(en3,in31,in32, up, off);;

print("g3=0\n");
print("\nDone\n\n");
}

void ikine(int xi, int yi, int zi){

float qInewi,g2newi,q3newi;

float veryf=sqrt(pow(xi,2)+pow(yi,2));

charuiz;

if(veryf>15.0 && veryf<45.0 && yi>=0 && zi>=1 && zi<=57){

print("\nThe coordinate (%d,%d,%d) is reachable/\nveryf= %f\n" xi,yi,zi,veryf);

glnewi= atan2(yi,xi)*180.0/PI;

q2newi= sqrt(pow(xi,2)+pow(yi,2));

q3newi=H-zi;

print("Calculated dof movements: q1= %.2f, q2= %.2f, q3=
%.2f\n\nConfirm?(y/n)",qInewi, g2newi, q3newi);
scanf(" %c",&ui2);

21

if(ui2=="y){
fkine(qlnewi,qlold,qg2newi,qg3newi,q3old);
qlold=qlnewi;

q3old=g3newi;

}

else {

print("\nOperation cancelled...\n\n");
pause(2000);

}}

else{

print("\nThe coordinate (%d,%d,%d) is NOT reachable\nveryf= %f\n",xi,yi,zi,veryf);

})

HEADERFILES

#include "simpletools.h"
#include "ping.h"
#include "servo.h"
#include "math.h"
#include "fdserial.h"

void pingfromcog(void *par1);
void ServoMove(int pin, intiangle, int fangle,int delay);
void dcMove(int enPin, int dir1Pin, int dir2Pin, int direction, int onOff);

void fkine(int q1f.int q1fold, int q2f, int q3f,int g3fold);
void home(int initialAngle);
void ikine(int xi, int yi, int zi);

int qlold,q3old;

unsigned int stack1[40 +15]; // Stack vars for cog1 (PIN Sengor)
static volatile float cmDist;

22

/*Initial position constants*/

constintiPosql=0; //Initial value for gl (degrees)
constintiPosq2=5; //Initial value for g2 (cms)(UltraSonic Distance)
constintiPosq3=0; //Initial value for g3 (cms)

/* Forward and Inverse Kinematics */

constint totalOffset =10; //neckdist=55 + stringoffset=4.5
constint H=58; //Starting height (cms)

/*Neck servo motor constants*/

const int smPin=19; //Servo motor pin
const int smSpeed=50; //Servo motor speed (how fast the angle change will be)

/*Constants for DC Motors*/

constint on=1;
const int off=0;

/*Carriage motor (motor 2) constants*/

const int en2=0; //Enable pin for DC Motorin L293D
constintin21=1; //Input pin 1for DC Motorin L293D (H-Bridge)
constintin22=2; //Input pin 2 for DC Motorin L293D (H-Bridge)
const int inside=1; //direction (towards the neck)

constint outside=0; //direction (away from neck)

/*Carriage motor (motor 3) constants*/

const int en3=4; //Enable pin for DC Motorin L293D
constintin31=5; //Input pin1for DC Motorin L293D (H-Bridge)
constintin32=6; //Input pin 2 for DC Motorin L293D (H-Bridge)
constint up=1; //direction

constint down=0; //direction

constint speedConstant=10;//[cm/s]

const int limitSwitchPin = 3;

fdserial *rpi;
SERVOMOVE

#include "servo.h"
#include "simpletools.h"
void ServoMove(int pin, intiangle, int fangle,int delay){

23

int fangleCorr=5+fangle*(180.0/225.0);
intiangleCorr=5+iangle*(180.0/225.0);

if (iangleCorr>fangleCorr){

for(int n=iangleCorr; n>=fangleCorr; n--){
servo_angle(pin,n*10);

pause(delay);

}

}elseif(iangleCorr<fangleCorr){

for(int n=iangleCorr; n<=fangleCorr;n++){
servo_angle(pin,n*10);

pause(delay);

}

}else{}

}

DCMOVE

#include "simpletools.h"

void dcMove(int enPin, int dir1Pin, int dir2Pin, int direction, int onOff){
if(onOff==0){

low(dir1Pin); low(dir2Pin); low(enPin);

}

else{

if(direction ==1){

low(dir1Pin); high(dir2Pin); high(enPin);
}else{

high(dir1Pin); low(dir2Pin); high(enPin);
1}

DCTIMEDMOVE

#include "simpletools.h"

void dcMoveTimed(int enPin, int dir1Pin, int dir2Pin, int direction, int time){
if(direction ==1){

low(dir1Pin); high(dir2Pin); high(enPin);
pause(time);

low(dir1Pin); low(dir2Pin); low(enPin);
}else if(direction == 0){

high(dir1Pin); low(dir2Pin); high(enPin);
pause(time);

low(dir1Pin); low(dir2Pin); low(enPin);
1}

24

IMAGE LOCATION -CLICK (RPI)

#include <ctime>

#include <iostream>

#tinclude <raspicam/raspicam_cv.h>
#tinclude "opencv2/highgui/highgui.hpp"
#include "opencv2/imgproc/imgproc.hpp"
#tinclude "opencv2/core/core.hpp"
#include <stdio.h>

#include <unistd.h>

#include <fcntl.h>

#include <termios.h>

using namespace std;

using namespace cv;

Matimage;

int TMx=660;

int TMy=28;

int XPR=9.4;

int YPR=9.4;

int Yoffset=5;

int Cx;

int Cy;

int xval;

intyval;

static void on_mouse(int e, int x, inty, int d, void *ptr)

{
if (e == EVENT_LBUTTONDOWN) {
int x1=x;

int yl=y;
Cx=x1;

Cy=yT;

cout << "Pixel Position:x(" << Cx <<")" << endl;
cout << "Pixel Position:y(" << Cy <<")" << endl;
sleep(1);

destroyAllWindows();

}}

int main()

{

int uartO_filestream=-1;

25

uart0_filestream = open("/dev/ttyS0", O_RDWR | O_NOCTTY | O_NDELAY);
//0Openin non-blocking read/write mode

if (uart0_filestream ==-1)

{

printf("Error - Unable to open UART. Ensureitis not in use by another
application\n");

}

struct termios options;
tcgetattr(uart0_filestream, &options);
options.c_cflag = B115200| CS8 | CLOCAL | CREAD;
options.c_iflag = IGNPAR;

options.c_oflag=0;

options.c_Lflag=0;

tcflush(uart0_filestream, TCIFLUSH);
tcsetattr(uart0_filestream, TCSANOW, &options);

Point p;
Mat image = imread("raspicam_cv_imageRevML1.jpg");

cvSetMouseCallback("window",on_mouse, &p);

raspicam::RaspiCam_Cv Camera;
if {Camera.open()){
cerr<<"Error opening the camera"<<endl;return -1;

}
sleep(1);

Camera.grab();
Camera.retrieve (image);

imwrite("raspicam_cv_imageRevM1.jpg".image);
Camera.release();

namedWindow("Original");

26

moveWindow("Orginal",0,0);
resizeWindow("Orginal“,200,200);
cviimshow("Original", image);

cout<<"Click a point on the desired location"<<endl;

cvSetMouseCallback("Original”, on_mouse, (void*) (&p));
waitKey(15000);

char response;
xval=((TMx-Cx)/XPR);
yval=((Cy-TMy)/YPR)-Yoffset;
cout <<"The equivalent real world coordinates are:" <<endl;
sleep(1);
cout <<"In x-axis(" << xval<<")" << endl;
cout <<"Iny-axis(" <<yval<<")" <<endl;
sleep(1);
cout <<"Do you want to proceed with these coordinates(y/n)?" <<endL;
cin>>response;

if (response =="y"){
cout <<"Sending the coordinates to Propeller” <<endl

char tx_buffer[20];
sprintf(tx_buffer, "%d:%d:",xval,yval);

if (uart0_filestream = -1)

{

int count = write(uart0_filestream, &tx_buffer[0], 20);
//Filestream, bytes to write, number of bytes to write
if (count <0)

{
} o}

}else if (response =="n"){
cout << "No valid input, rerun program” << endl;
sleep(3);
return 0;

}

printf("UART TX error\n");

27

OBJECT DETECTION (RPI)

#USAGE
python ball_tracking.py --video ball_tracking_example.mp4
python ball_tracking.py

import the necessary packages

from collections import deque

from imutils.video import VideoStream
import numpy as np

import argparse

import cv2

import imutils

import time

construct the argument parse and parse the arguments
ap = argparse.ArgumentParser()
ap.add_argument("-v", "--video",
help="path to the (optional) video file")
ap.add_argument("-b", "--buffer", type=int, default=64,
help="max buffer size")

args = vars(ap.parse_args())

define the lower and upper boundaries of the "green"
ballin the HSV color space, then initialize the

list of tracked points

greenLower = (29, 86, 6)

greenUpper = (64, 255, 255)

pts = deque(maxlen=args["buffer"])

#if a video path was not supplied, grab the reference
to the webcam
if not args.get("video", False):

vs = VideoStream(src=0).start()

otherwise, grab areference to the video file
else:
vs = cv2.VideoCapture(args["video"])

allow the camera or video file to warm up
time.sleep(2.0)

keep looping
while True:

28

grab the current frame
frame =vs.read()

handle the frame from VideoCapture or VideoStream
frame = frame[1] if args.get("video", False) else frame

#if we are viewing avideo and we did not grab a frame,
#then we have reached the end of the video
if frameis None:

break

resize the frame, blurit, and convertitto the HSV
color space

frame = imutils.resize(frame, width=600)

blurred = cv2.GaussianBlur(frame, (11,11), 0)

hsv = cv2.cvtColor(blurred, cv2.COLOR_BGR2HSV)

construct a mask for the color "green”, then perform
a series of dilations and erosions to remove any small
blobs left in the mask

mask = cv2.inRange(hsv, greenLower, greenUpper)
mask = cv2.erode(mask, None, iterations=2)

mask = cv2.dilate(mask, None, iterations=2)

find contours in the mask and initialize the current

(x, y) center of the ball

cnts = cv2.findContours(mask.copy(), cv2.RETR_EXTERNAL,
cv2.CHAIN_APPROX_SIMPLE)

cnts =imutils.grab_contours(cnts)

center =None

only proceed if at least one contour was found
if len(cnts) > 0:
find the largest contour in the mask, then use
it to compute the minimum enclosing circle and
centroid
c =max(cnts, key=cv2.contourArea)
((x,y), radius) = cv2.minEnclosingCircle(c)
M =cv2.moments(c)
center = (int(M["m10"] /M["m00"]), int(M["m01"] /M["m00"]))

only proceed if the radius meets a minimum size
if radius > 10:

29

draw the circle and centroid on the frame,

then update the list of tracked points

cv2.circle(frame, (int(x), int(y)), int(radius),
(0, 255, 255), 2)

cv2.circle(frame, center, 5, (0, 0, 255), -1)

update the points queue
pts.appendleft(center)

loop over the set of tracked points
foriinrange(l, len(pts)):
#if either of the tracked points are None, ignore
them
if pts[i- 1] is None or pts|i] is None:
continue

otherwise, compute the thickness of the line and

draw the connecting lines

thickness = int(np.sqrt(args["buffer"] / float(i + 1)) * 2.5)
cv2.line(frame, ptsli - 1], ptslil. (0, 0, 255), thickness)

show the frame to our screen
cv2.imshow("Frame", frame)
key = cv2.waitKey(1) & OxFF

#ifthe'q keyis pressed, stop the loop
if key == ord("q"):
break

#if we are not using a video file, stop the camera video stream
if not args.get("video", False):
vs.stop()

otherwise, release the camera
else:

vs.release()

close all windows
cv2.destroyAllWindows()

30

APPENDIX-IIl: MODULES
RASPBERRY PI 3 B+

Fig: Raspberry pi 3 B+ model

The Raspberry Pi 3 Model B+ is the latest product in the Raspberry Pi 3 range.

e Broadcom BCM2837B0, Cortex-A53 (ARMv8) 64-bit SoC @ 1.4GHz
e 1GB LPDDR2 SDRAM

e 2.4GHz and 5GHz IEEE 802.11.b/g/n/ac wireless LAN, Bluetooth 4.2, BLE
e Gigabit Ethernet over USB 2.0 (maximum throughput 300 Mbps)

e Extended 40-pin GPIO header

e Full-size HDMI

e 4 USB 2.0 ports

e CSIl camera port for connecting a Raspberry Pi camera

e DSl display port for connecting a Raspberry Pi touchscreen display

e 4-pole stereo output and composite video port

e Micro SD port for loading your operating system and storing data

e 5V/2.5A DC power input

e Power-over-Ethernet (PoE) support (requires separate PoE HAT)

Source: https://www.raspberrypi.org/products /raspberry-pi-3-model-b-plus/

PARALLAX PROPELLER BOE

Fig: Propeller Parallax Board of Education

e System clock speed: DC to 80 MHz
o Global (shared) RAM/ROM: 64 K bytes; 32 K RAM/32 K ROM
o The HUB manages mutually exclusive resources

e Terminology: HUB --Propeller --Spinner
o Cog RAM: 512 x 32 bits each, i.e., 512 Longs (or 2KB)

31

https://www.raspberrypi.org/products/raspberry-pi-3-model-b-plus/

e Last 16 registers (16 longs) are special purpose, dedicated to System Counter, |/O
pins, and local cog peripherals

e Power requirements: 4 - 16 VDC

e Communication: USB for programming

e Dimensions: 4.375 x 3.05 x 0.625in (11.11 x 7.75 x 1.59 cm)
e Operating temp range: +32 to +158 °F (0 to +70 °C)

Source: https://www.parallax.com/sites /default/files /downloads /32900 -Propeller-BOE-Documentation-v1.1 _0.pdf

PI CAMERA
1 [B
= Raspberry Pi
L-MA AOE ": @ _J)
L
L
I-MA AOE O L

Ll
-
|t
-

Q)

-l

1-MA AOE 24 STH-S
™ 94Vv-0

Camera V2.1 "o

1-MA AOE

Fig: Raspberry pi Camera V2.1
The Raspberry Pi Camera Board v2 is a high quality 8-megapixel Sony IMX219 image sensor
custom designed add-on board for Raspberry Pi, featuring a fixed focus lens. lt's capable of

3280 x 2464-pixel static images, and also supports 1080p30, 720p60, and 640x480p?0
video.

It attaches to the Pi by way of one of the small sockets on the board's upper surface and uses
the dedicated CSi interface, designed especially for interfacing to cameras.

e 8 megapixel camera capable of taking photographs of 3280 x 2464 pixels
e Capture video at 1080p30, 720p60 and 640x480p?0 resolutions
e All software is supported within the latest version of Raspbian Operating System

e Applications: CCTV security camera, motion detection, time lapse photography

Source: https://www.raspberrypi.org/products /camera-module-v2/

SERVO MOTOR

Fig: Standard Servo motor (Mg995r)

32

https://www.parallax.com/sites/default/files/downloads/32900-Propeller-BOE-Documentation-v1.1_0.pdf
https://www.raspberrypi.org/products/camera-module-v2/

e Weight: 55 g

e Dimension: 40.7X19.7X42.9mm

e Operating voltage range: 4.8 Vio 7.2 V

e Stall torque: 9.4kg/cm (4.8v); 11kg/cm (6v)
e Operating speed: 0.2 5/60° (4.8 V), 0.16 5/60° (6 V)
e Rotational degree: 180°

e Dead band width: 5 ps

e Operating temperature range: 0°C to +55°C
e Current draw at idle: TOmA

e No load operating current draw: 170mA

e Current at maximum load: 1200mA

Source: https: //servodatabase.com/servo /towerpro/mg995

DC MOTOR

Fig: Dc Motor(12V, 21 RPM)

This is a special Low Speed DC Motor that will spin at a speed of 21 RPM max. It works by
having a tiny metal gearbox built-in for durability and speed reduction
e Operating Voltage: 6V - 12V

e Free-runspeed at 12 V: 21 RPM

e Free-run current at 12 V: 80 mA

e Stall current at 12 V: 0.85 A

e Stall torque at 12 V: 32 kg.cm

e Gear ratio: 1:378

e Shaft Type: D Shaft

e Reductor size(L): 27 mm

e Weight: 70 g

Source: https:/ /tinkersphere.com/motors-wheels /1037 -low-speed-dc-motor-12v-21-rpm.html

d .

DC MOTOR

Fig: Dc Motor(12V, 21 RPM)

33

https://servodatabase.com/servo/towerpro/mg995
https://tinkersphere.com/motors-wheels/1037-low-speed-dc-motor-12v-21-rpm.html

Apply 12V DC across the 2 metal connectors at the back of this DC motor to have it spin.
This is a special Low Speed DC Motor that will spin at a speed of 21 RPM max. It works by
having a tiny metal gearbox built-in for durability and speed reduction.

e Operating Voltage: 12 V

e Free-run speed at 12 V: 21 RPM

e Load speed at 12V: 16 RPM

e Free-run current at 12 V: 60 mA

e Stall forque at 12 V: 0.8 kg.cm 11.1 ozin

e Shaft Size: 5mm

e Total Size(not include shaft): 33*24mm(D*H);

e Material: Plastic

e Weight: 32¢g

Source: https: //tinkersphere.com /motors-wheels /1151 -low-speed-dc-motor-12v-21-rpm-with-plastic-mount.html

PING SENSOR

Fig: PING Ultrasonic Sensor

Provides precise, non-contact distance measurements within a 3 cm to 3 m range
Narrow acceptance angle

Range: approximately 1 inch to 10 feet (3 cm to 3 m)

3-pin male header with 0.1" spacing

Power requirements: +5 VDC; 35 mA active

Communication: positive TTL pulse

Dimensions: 0.81 x 1.8 x 0.6 in (22 x 46 x 16 mm)

Operating temperature range: +32 to +158 °F (0 to +70 °C)

Source: https: //www.parallax.com /product/28015

MOTOR DRIVER L293D

——
PWM Inpu1[>—|1 Enable1 VSS EJ

ArduimnﬂMicromn(mHerD—[Input1 Input4 E——q Arduino/Microcontroller

Output 1 Output 4|14

N

GND GND [13]

i
| [B] [eo

GND GND [12

6 [Output 2 Output 3|11
% Arduino/Microcontroller le Input2 Input 3 E—q Arduino/Microcontroller
[8]vce Enable 2] 9 ———<] Pum input

Fig: L293d Motor Driver Chip

34

https://tinkersphere.com/motors-wheels/1151-low-speed-dc-motor-12v-21-rpm-with-plastic-mount.html
https://www.parallax.com/product/28015

The L293 and L293D devices are quadruple high-current half-H drivers. The L293 is designed
to provide bidirectional drive currents of up to 1 A at voltages from 4.5 V to 36 V. These
devices are designed to drive inductive loads such as relays, solenoids, DC and bipolar
stepping motors, as well as other high-current/high-voltage loads in positive-supply
applications.

Wide Supply-Voltage Range: 4.5V to 36 V

Output Current 1T A Per Channel (600 mA for L293D)

Peak Output Current 2 A Per Channel (1.2 A for L293D)

Output Clamp Diodes for Inductive Transient Suppression (L293D)

Source: http: //www.ti.com/lit/ds/symlink /129 3.pdf

VOLTAGE REGULATOR

Fig: Voltage Regulator

The LM2596 regulator is monolithic integrated circuit ideally suited for easy and convenient
design of a step—down switching regulator (buck converter). It is capable of driving a 3.0 A
load with excellent line and load regulation

e Adjustable Output Voltage Range 1.23 V - 37 V
e Guaranteed 3.0 A Output Load Current

e Wide Input Voltage Range up to 40 V

e 150 kHz Fixed Frequency Internal Oscillator

e TTL Shutdown Capability

e Low Power Standby Mode, 80 A

e Thermal Shutdown and Current Limit Protection

e Internal Loop Compensation

Source: https://www.amazon.com/LM2596-Buck-Converter-Adjustable-Module Voltage /dp /B0 1 MS4D2FO

LIMIT SWITCH

Fig: Limit Switch

The limit switch then regulates the electrical circuit that controls the machine and its moving
parts. These switches can be used as pilot devices for magnetic starter control circuits, allowing
them to start, stop, slow down, or accelerate the functions of an electric motor.

35

http://www.ti.com/lit/ds/symlink/l293.pdf
https://www.amazon.com/LM2596-Buck-Converter-Adjustable-ModuleVoltage/dp/B01MS4D2FO

e Max Current: 6A

® Max Voltage: 250VAC

e Mounting Style: 4mm Thread
e Switch Style: Limit Switch

e Throw Persistence: Momentary

Source: https://www.zoro.com/zoro-select-mini-snap-swch- 1 0a-spdt-roller-lever-6x293/i/G057 6922/

36

https://www.zoro.com/zoro-select-mini-snap-swch-10a-spdt-roller-lever-6x293/i/G0576922/

