
E

ME-GY 6933 ADVANCED MECHATRONICS

Term Project Report

Team Members:

Akshay Kumar V Kutty (avk322)

Christian Lourido (cl4906)

Jordan Birnbaum (jbb498)

Instructor:

Prof Vikram Kapila

2

Project Details -

STUDENT NAME: 1. Akshay Kumar V Kutty

 2. Christian Lourido

 3. Jordan Birnbaum

STUDENT NUMBER: 1. N18887011

 2. N13153509

 3. N10067813

COURSE NAME: Advance Mechatronics

DEPARTMENT: Department of Mechanical and Aerospace Engineering

COURSE CODE: ME-GY 6933

SUPERVISOR: Vikram Kapila

DATE OF SUBMISSION: 05-16-2019

3

TABLE OF CONTENTS

SL NO. CONTENT PAGE NO.

1. OVERVIEW 4

1.1 GOAL 4

1.2 OBJECTIVE OF THE PROJECT 4

1.3 MEASUREMENT 4

2. INTRODUCTION 5

2.1 BACKGROUND AND SIGNIFICANCE 5

3. DEVELOPMENT 5

3.1 METHODOLOGY 5

3.2 MECHANICAL DESIGN AND FABRICATION 5

3.3 ELECTRONIC CIRCUIT DESIGN 8

3.4 SELECTION OF COMPONENTS 9

3.5 SOFTWARE 10

4. BUDGET 11

5. CONCLUSION AND RESULTS 12

6. APPLICATIONS 13

7. FUTURE WORK 13

8. REFERENCES 13

9. APPENDIX 14

9.1 APPENDIX -I : EXPERIMENTS AND CALCULATION 14

9.2 APPENDIX -II : CODE 17

9.3 APPENDIX -III : MODULES 31

4

1. OVERVIEW

1.1 GOAL

The goal of the project includes:

 To build a small scale size of an automated construction crane

 Opensource platform for engineers willing to test and verify simulations and

algorithms

 Having a friendly user-interface.

1.2 OBJECTIVE OF THE PROJECT

The objectives for the project includes:

 To build a small scaled module of a tower crane

 Able to move the crane using actuators

 A defined workspace and a processing station

 Develop a control algorithm using serial manipulator kinematics

 Having a friendly user interface

 Manual operation to algorithms for autonomous operation

 Allows the users to point out the desired location visually

the following parameters will be met in establishing and implementing the processes:

 Making the hardware and building it in makerspace

 Developing a control algorithm using serial manipulator kinematics

 Having feedback system for all the actuators

 Pointing out the coordinates using OpenCV

1.3 MEASUREMENT

The success in meeting the objectives would be measured by factors which include:

 Moving all the actuations of the crane manually

 Performing both Forward and inverse kinematics

 Pointing out the exact location using OpenCV camera and moving the crane to that

exact position

5

2. INTRODUCTION

2.1 BACKGROUND AND SIGNIFICANCE

Despite their key role in determining the efficiency of many operations at construction sites,

tower cranes have not substantially developed for quite a while. It appears that most users

enjoy the essential conveying convenience offered by cranes, and do not bother with "minor"

improvements of their performance. Nevertheless, today's technologies in the fields of

Robotics and Automation permit far reaching improvements in tower cranes as well. Within

this project we have built a small scaled tower crane for educational platform which can be

controlled both manually and controlled using and interface by the means of OpenCV.

3. DEVELOPMENT

3.1 METHODOLOGY

The plan is to divide the project in 3 stages:

Phase A (Arduino Based)

 Build the tower crane structure

 Control the actuators manually

Phase B (Propeller Based)

 Automation of sequential tasks

 Establish a workspace

 Programming of functions to allow picking and leaving objects in specific points in

the workspace.

 Performing both forward and inverse kinematics

Phase C (Raspberry Pi + Propeller Based)

 Point locations with the means of cameras

 Programming of functions to allow the crane to go to that particular position

pinpointed by the camera

3.2 MECHANICAL DESIGN AND FABRICATION

The design of whole structure was laser cut and assembled at makerspace after various

iterations in the designs of the mount for the three actuators.

3.2.1 LASER CUT SETTINGS

6

¶ MACHINE-Epilog Mini II

¶ WORKSPACE-24" x 12" (610 x 305 mm)

¶ Acrylic sheet 1/8ò [Speed- 20, Power- 100]

¶ Birch wood 1/8ò [Speed- 40, Power- 100]

Fig a, b: Tower crane Structure

3.2.2 VARIOUS CHALLENGES FACED IN THE DESIGNS AND FABRICATIONS

¶ Structure of tower crane- Multiple design iterations

¶ Carriage mechanism- Tension driven transmission of carriage

¶ Carriage motor failed after designing entire mount and transmission

¶ The Servo motor was not stable and would make the crane unstable-Secured servo mount

to neck of the crane

¶ The feedback for the carriage was fixed by designing and 3D printed custom mount for

ultrasonic sensor

¶ Feedback for the gripper motor-Implemented a limit switch

¶ The neck of the crane-Improved structural integrity

¶ Defining home pose of crane-Initial Position of the crane when powering up

These are the Solidworks designs of various mounts and parts that had to be 3D printed.

7

Fig a, b, c, d, e, f: Solidworks Design of various parts

3.2.3 Forward Kinematics

Fig: Assigning the Frames FBD

¶ Defined home configuration and obtained DH parameters

¶ Created DH matrices from DH parameters

¶ Obtained descriptor matrix from end effector to global frame

8

3.2.4 Inverse Kinematics

Note-At home configuration all initial joint values are zero

Q3 is only joint variable that can affect z coordinate

ὤ Ὄ ή

▲ Ὄ ᾀ

Once z is found, this reduces to a Z dimensional problem (location of carriage)

Schematically,

 C

 R Y

 o X

Fig: C= Carriage Location

q2 is only joint variables that can effect R distance ,

|R|=q2, solve for R

▲ Ѝὼ ώ

q1 is determined by taking the inverse tangent of the x and y values, the atan2 function is

used to determine the precise q1 value.

ÔÁÎὗρ
ώ

ὼ

▲ ὥὸὥὲςώȟὼ

3.3 ELECTRONICS CIRCUIT DESIGN

The electronic circuit was divided into three circuits:

 Propeller Control Circuit

 Raspberry Pi Control Circuit

 Actuator Circuit

9

All these circuits are separated and have a common ground. There is one switch which power

ups the actuators.

Fig: Electrical Circuit Fritzing

3.4 SELECTION OF COMPONENTS

Raspberry Pi 3 Single Board Computer

Raspberry Pi 3 was selected to handle image processing and send the coordinates once the

user clicks the desired location. Since Raspberry Pi 3 is a single board computer with 1 GB of

RAM, it will have enough capacity to handle image processing, which demands many

processing powers.

Pi Camera

This component was selected because of the friendly compatibility with Raspberry Pi 3 and

low cost.

Propeller BoE (Microcontroller)

Since all the controlling are done using the Propeller as it is multicore and cane perform

tasks simultaneously. The propeller receives the coordinates from the raspberry pi and

performs the inverse kinematics algorithm to move to the desired location.

Ultrasonic Sensors- Ping (One)

Ultrasonic sensors were used to measure distance of the carriage from the initial home

position. These were used to act a feedback for the second motor. They were selected

because their low cost.

Servo Motor

Used to move the crane (acts as a revolute joint).

10

DC Motor (12v, 21Rpm)

Used to control the carriage and gripper movement of the crane.

Batteries (3.7V) ð 3000 mAh (Power supply for the entire circuit)

Because of the current needed, 2 batteries connected in series (7.4 V total) and 3000mAh is

enough to supply power to the actuator circuit.

DC-DC Step Down 5V ð 2.5 A

Needed to conditionate voltage from the batteries (7.4 V) to 5 V, that is the supply power

needed by the servo motor to operate and the voltage needed to activate the relay

ON/OFF switch

Opens the circuit that supply power to the actuator circuit

3.5 SOFTWARE

If the user
chooses the

second option
then the

propeller waits
for the rpi

User marks the
position by the

means of
camera

RPI corelates
the pixels
values and

convert them to
the particular

location

RPI then sends
the x and y

coordinates to
propeller

Propeller gets
the value and
performs the

ikine algorithm

Runs the code
by taking those
values as inputs
and the crane
moves to that

location

Once the crane
moves to final
position it goes

back to the
main user
terminal

User chooses
the options

from the
propeller user
input terminal

11

4. BUDGET

This is the overall cost to build and fabricate the tower crane. The cost of building can be

reduced if mass produced for educational purposes.

Fig: Cost Analysis

12

5. CONCLUSIONS AND RESULTS

After successfully designing and manufacturing our crane, naturally, the challenge of how to

control the structure autonomously came next. Originally we decided upon controlling the

structure with Arduino, since at this stage of the project, functionality and effectiveness of the

motors were the most sought after result. Once we had validated that our choice of motors

and applied loads was achievable, we moved on to developing a more sophisticated control

algorithm. The first step was to choose a more advanced microcontroller. We decided upon

propeller since the multicore functionality of it served as a reliable choice for controlling the

various motors in our system. After modifying our electrical hardware and making

improvements in the mechanical realm, we developed a forward kinematics code to control

the crane in a method that was more intuitive and user friendly. The final step of our project

was to go beyond the envelope of current crane technology and implement a global vision

system that had the ability to communicate desired coordinates to the established system. We

executed this by creating a tripod in which we mounted a raspberry pi and pi cam to. The

raspberry pi processed the image taken by the pi cam. Once the picture was displayed on the

terminal, the user was able to click the desired location of where the crane should lower its

end effector to. We wrote a program to convert the pixel values obtained by the click to

physical world distance. Since we knew the area of our workspace, the conversion code was a

simple ratio. Once the click coordinates were converted to physical world distances, we sent

the values over to the propeller via a connection we made between the rx and tx pins. We

appended some code to decode the incoming data to the propeller. At this point, the propeller

solved for the inverse kinematics and moved the motors in order to achieve the desired

position. Our final tests with the crane yielded an impressive accuracy rating of within two

and a fifth centimetres of the desired location. Given that our predefined margin for error was

five centimetres, we consider the final version of our project a huge success.

Fig: Experimental Setup

13

6.APPLICATIONS

1. This can be used for various research simulations and can act as an educational

platform for the users

2. This can be used in real life scenarios like construction to reduce the manpower and

have less cycling time

7. FUTURE WORK

1. Improve the design and the stability of the tower crane

2. Trying to reduce the error by significant value

3. Have a proper workspace and experimental work

4. Use stereo camera to have better image processing

5. Use of April tags to find the coordinates of a particular location

8. REFERENCES

1. Propeller Advance Mechatronics Class Notes

2. Raspberry pi Advance Mechatronics Class Notes

3. https://www.teachmemicro.com/raspberry-pi-serial-uart-tutorial/

4. https://learn.parallax.com/tutorials/language/propeller-c/propeller-c-set-simpleide

5. http://opencvexamples.blogspot.com/2014/01/detect-mouse-clicks-and-moves-on-

image.html

6. https://docs.opencv.org/2.4/modules/highgui/doc/user_interface.html?highlight=setmouse

callback

https://www.teachmemicro.com/raspberry-pi-serial-uart-tutorial/
https://learn.parallax.com/tutorials/language/propeller-c/propeller-c-set-simpleide
http://opencvexamples.blogspot.com/2014/01/detect-mouse-clicks-and-moves-on-image.html
http://opencvexamples.blogspot.com/2014/01/detect-mouse-clicks-and-moves-on-image.html
https://docs.opencv.org/2.4/modules/highgui/doc/user_interface.html?highlight=setmousecallback
https://docs.opencv.org/2.4/modules/highgui/doc/user_interface.html?highlight=setmousecallback

14

APPENDIX-I: EXPERIMENTATIONS AND CALCULATIONS

FORWARD KINEMATICS-ERROR DIFFERENCE

q1=135 deg, q2= 30, q3=55

Inputs
X Dist. Y Dist. Z Dist. Avg Diff.

Comp Result -21 21 -2 -

Physical
Result

-18 23 5 2.67

-18.5 22.2 6 1.57

-18.5 22.5 3.5 3.83

q1=30 deg, q2= 35, q3=30

Inputs X Dist. Y Dist. Z Dist. Avg Diff.

Comp Result 30.3 17.5 28 -

Physical
Result

23.5 18 30 4.13

29 20 31 1.5

26 19 31 2.67

q1=0 deg, q2= 25, q3=40

Inputs X Dist. Y Dist. Z Dist. Avg Diff.

Comp Result 25 0 18 -

Physical
Result

22 2 22 1.83

 26 3 22 2.67

 26.5 3 21 3.67

Average Difference for all the trials:- x:2.88, y:1.91, z:3.39

15

WITHOUT CALIBRATION ALGORITHM-ERROR DIFFERENCE

TRIAL-I

Inputs
I-click II-click III-click Avg Diff.

Clicked (-20,15) (-20,15) (-20,15) -

Computed (-21,16) (-21,16) (-21,16) 1.1

Placed (-17.5,15) (-17.5,15) (-17.5,15) (3,1.16)

Z-comp 5cm 5cm 5cm -

Z-physical 5cm 10cm 5.5cm 1.83

TRIAL-II

Inputs
I-click II-click III-click Avg Diff.

Clicked (25,30) (25,30) (25,30) -

Computed (25,32) (25,32) (25,32) 0.2

Placed (20,27.5) (20,27.5) (23,26) (4,3)

Z-comp 5cm 5cm 5cm -

Z-physical 7.5cm 7cm 7cm 2.167

TRIAL-III

Inputs
I-click II-click III-click Avg Diff.

Clicked (0,40) (0,40) (0,40) -

Computed (0,42) (0,42) (0,42) 0.2

Placed (0,36) (0,36) (0,35) (0,4.3)

16

Z-comp 5cm 5cm 5cm -

Z-physical 5cm 5cm 4cm 0.33

Average computational difference:- (0.33,1,67) ė1

Average physical difference:- (2.33,2.83) ė2.58

Average total difference:- (1.33,2.25) ė1.79

Average total Z difference :- 1.44

Average spatial difference:- 2.2

17

APPENDIX- II: CODE

/*

MainProgram.c

ME GY- 6933 Advanced Mechatronics

Autonomous Crane for Education

Instructor: Professor Vikram Kapila

Date:05/16/2019

Group Members: Christian Lourido(cl4906), Akshay Kumar Kutty(avk322), Jordan

Birnbaum(jbb498)

*/

#include "HeaderFile.h"

int main()

{

int iuAngle,q1new,q2new,q3new, q1,d2,d3,timeq3,xu,yu,zu;

char ui;

double xnew,ynew,znew;

// ------ Start COG for PING sensor------- //

cogstart(&pingfromcog, NULL, stack1, sizeof(stack1)); //Start ping sensor in Cog 1

pause(500);

// ------ Calibration------- //

print ("Calibration...\n\nEnter current position of q1 (degs): "); //Since there is no

feedback, ui is needed as initial reference

scanf(" %d", &iuAngle);

home(iuAngle); //argument is the current angle of q1 before going home

//Initialization of DOFs (values after calibration):

q1old= iPosq1;

q3old= iPosq3;

while (1){

print ("Welcome to Crane- O\n\nMain Menu:\n1. I- Kine Mode (Inputs: x, y, z)\n2. Camera

Mode(Select Point in plane)\n3. Return to Home Configuration\n\nOption: ");

scanf(" %c",&ui);

pause(500);

switch (ui){

case '1':

print ("\nI- Kine Mode!\n\nEnter the value of x(cms): ");

scanf(" %d",&xu);

print("\nEnter the value of y (cms): ");

18

scanf(" %d",&yu);

print("\nEnter the value of z (cms): ");

scanf(" %d",&zu);

ikine(xu,yu,zu);

break;

case '2':

print("Continue to data pulling? (y/n)");

scanf(" %c",&ui);

if(ui=='y'){

unsigned char data_received[20]={};

//Open serial communication

rpi = fdserial_open(9, 8, 0, 115200);

print ("Run the executable file in the RPI. \nWating for RPI to send data...\n");

dprint(rpi, "\nHi from propeller!"); //To verify in RPI terminal

//Receive array of [20]

for (int i=0; i<20; i++){

data_received[i]=fdserial_rxChar(rpi);

}

pause(1000);

//Data processing

/*Count digits until special character ":" is found. 1st value = X, 2nd value = Y */

int n=0, digitsx=0,digitsy=0;

while (data_received[n]!=':'){

digitsx++;

n++;

}

digitsx=n;

n++;

while (data_received[n]!=':'){

digitsy++;

n++;

}

/*Create arrays for X and Y based on the number of digits each has. Then, put data from

buffer to new X and Y arrays*/

char x[digitsx - 1],y[digitsy- 1];

int m=0, o=0;

while (m<=digitsx- 1){

19

x[m]=data_received[m];

m++;

}

m++;

while ((o+m)<=(digitsx+digitsy)){

y[o]=data_received[m+o];

o++;

}

/*Finally, convert strings to integers */

int xint=atoi(x);

int yint=atoi(y);

pause(500);

ikine(xint,yint,53);//change z eventually

fdserial_close(rpi);

}

else{}

break;

case '3':

print("Return to Home Position\n");

home(q1old);

print(" OK\n\n");

break;

case 10:

break;

default:

break;

 } } }

//Defined Functions

void pingfromcog(void *par1) {

long tEcho;

while (1)

{

tEcho=ping(15);

cmDist = tEcho/58.0; // Get cm distance from Ping)))

pause(20); // Wait 1/5 second

}

}

20

void fkine(int q1f, int q1fold, int q2f, int q3f, int q3fold){

/*Move servo 1 to desired position*/

print ("\nMoving q1...");

ServoMove(smPin,q1fold,q1f,smSpeed);

print ("Final value of q1: %d\tDone!\n", q1f);

/*Move DC Motor 2 to desired position*/

print ("\nMoving q2...");

if((totalOffset+cmDist)>q2f){

while ((totalOffset+cmDist)>q2f){

dcMove(en2, in21, in22, inside, on);

}

dcMove(en2, in21, in22, outside, off);

}

else if((totalOffset+cmDist)<q2f){

while ((totalOffset+cmDist)<q2f){

dcMove(en2, in21, in22, outside, on);

}

dcMove(en2, in21, in22, outside, off);

}

print ("Final value of q2: %.2f \ t Done!\n", cmDist+totalOffset);

/*Move DC Motor 2 to desired position*/

print ("\nMoving q3...");

int time;

time=(q3f*10000/speedConstant);

if (q3f>q3fold){

dcMoveTimed(en3, in31, in32,down,time);

}

else if (q3f<q3fold){

dcMoveTimed(en3, in31, in32,up,time);

}

print ("Final value of q3: %d \ t Done!\n", q3f);

print("\nDone!\n\n");

}

void home(int initialAngle){

//Servomotor 1: Take servo to initial position

print("Moving q1...\ t");

ServoMove(smPin,initialAngle,iPosq1,smSpeed);//Move q1 from UserInput Angle to

iPosq1

print("q1= %d\n",iPosq1);

//DC Motor 2: Take Carriage to home position

21

print ("Done!\n\nMoving q2...\ t");

if(cmDist>iPosq2){

while (cmDist>iPosq2){

dcMove(en2, in21, in22, inside, on); //Turn on motor until carriage reaches initial

position

}

dcMove(en2, in21, in22, inside, off); // STOP MOTOR

}

else if(cmDist<iPosq2){

while (cmDist<=iPosq2){

dcMove(en2, in21, in22, outside, on);

}

dcMove(en2, in21, in22, inside, off); // STOP MOTOR

}

print ("q2= %.2f\n", cmDist+totalOffset);

//DC Motor 3: Take DC motor to home position (Until the limit switch changes its state)

print ("Done!\n\nMoving q3...\ t");

while (input(limitSwitchPin) != 1){

dcMove(en3, in31, in32, up, on); //direction: 1 (up), 0 (down) dcMove(int enPin, int

dir1Pin, int dir2Pin, int direction, int onOff)

}

dcMove(en3, in31, in32, up, off);; //STOP MOTOR dcMove(int enPin, int dir1Pin, int

dir2Pin, int direction, int onOff)

print("q3= 0\n");

print ("\nDone!\n\n");

}

void ikine(int xi, int yi, int zi){

float q1newi,q2newi,q3newi;

float veryf=sqrt(pow(xi,2)+pow(yi,2));

char ui2;

if(veryf>15.0 && veryf<45.0 && yi>=0 && zi>=1 && zi<=57){

print ("\nThe coordinate (%d,%d,%d) is reachable!\nveryf= %f\n",xi,yi,zi,veryf);

// Inverse Kinematics

q1newi= atan2(yi,xi)*180.0/PI;

q2newi= sqrt(pow(xi,2)+pow(yi,2));

q3newi= H- zi;

print ("Calculated dof movements: q1= %.2f, q2= %.2f, q3=

%.2f\n\nConfirm?(y/n)",q1newi, q2newi, q3newi);

scanf(" %c",&ui2);

22

if(ui2== 'y'){

fkine(q1newi,q1old,q2newi,q3newi,q3old);

q1old=q1newi;

q3old=q3newi;

}

else {

print ("\nOperation cancelled... \n\n");

pause(2000);

} }

else{

print ("\nThe coordinate (%d,%d,%d) is NOT reachable!\nveryf= %f\n",xi,yi,zi,veryf);

} }

HEADERFILES

/* Forward Declarations */

#include "simpletools.h"

#include "ping.h"

#include "servo.h"

#include "math.h"

#include "fdserial.h"

/* Forward Declarations */

void pingfromcog(void *par1); //PING Sensor

void ServoMove(int pin, int iangle, int fangle,int delay); //Servo motor function

void dcMove(int enPin, int dir1Pin, int dir2Pin, int direction, int onOff); //DC motor

control - ON/OFF

void fkine(int q1f,int q1fold, int q2f, int q3f,int q3fold);

void home(int initialAngle);

void ikine(int xi, int yi, int zi);

/*Global variables*/

int q1old,q3old;

/* Variables for cogs */

unsigned int stack1[40 + 15]; // Stack vars for cog1 (PIN Sengor)

static volatile float cmDist;

/* Constants */

23

/*Initial position constants*/

const int iPosq1=0; //Initial value for q1 (degrees)

const int iPosq2=5; //Initial value for q2 (cms)(UltraSonic Distance)

const int iPosq3 = 0; //Initial value for q3 (cms)

/* Forward and Inverse Kinematics */

const int totalOffset =10; //neckdist=5.5 + stringoffset=4.5

const int H=58; //Starting height (cms)

/*Neck servo motor constants*/

const int smPin=19; //Servo motor pin

const int smSpeed=50; //Servo motor speed (how fast the angle change will be)

/*Constants for DC Motors*/

const int on=1;

const int off=0;

/*Carriage motor (motor 2) constants*/

const int en2=0; //Enable pin for DC Motor in L293D

const int in21=1; //Input pin 1 for DC Motor in L293D (H- Bridge)

const int in22=2; //Input pin 2 for DC Motor in L293D (H- Bridge)

const int inside=1; //direction (towards the neck)

const int outside=0; //direction (away from neck)

/*Carriage motor (motor 3) constants*/

const int en3=4; //Enable pin for DC Motor in L293D

const int in31=5; //Input pin 1 for DC Motor in L293D (H- Bridge)

const int in32=6; //Input pin 2 for DC Motor in L293D (H- Bridge)

const int up=1; //direction

const int down=0; //direction

const int speedConstant = 10 ; // [cm/s]

const int limitSwitchPin = 3;

fdserial *rpi;

SERVOMOVE

#include "servo.h"

#include "simpletools.h"

void ServoMove(int pin, int iangle, int fangle,int delay){

24

int fangleCorr= 5+fangle*(180.0/225.0);

int iangleCorr= 5+iangle*(180.0/225.0);

if (iangleCorr>fangleCorr){

for(int n=iangleCorr; n>=fangleCorr; n--){

servo_angle(pin,n*10);

pause(delay);

}

}else if(iangleCorr<fangleCorr){

for(int n=iangleCorr; n<=fangleCorr;n++){

servo_angle(pin,n*10);

pause(delay);

}

}else{}

}

DCMOVE

#include "simpletools.h"

void dcMove(int enPin, int dir1Pin, int dir2Pin, int direction, int onOff){

if(onOff==0){

low(dir1Pin); low(dir2Pin); low(enPin);

}

else{

if(direction == 1){

low(dir1Pin); high(dir2Pin); high(enPin);

}else{

high(dir1Pin); low(dir2Pin); high(enPin);

} } }

DCTIMEDMOVE

#include "simpletools.h"

void dcMoveTimed(int enPin, int dir1Pin, int dir2Pin, int direction, int time){

if(direction == 1){

low(dir1Pin); high(dir2Pin); high(enPin);

pause(time);

low(dir1Pin); low(dir2Pin); low(enPin);

}else if(direction == 0){

high(dir1Pin); low(dir2Pin); high(enPin);

pause(time);

low(dir1Pin); low(dir2Pin); low(enPin);

} }

25

IMAGE LOCATION -CLICK (RPI)

#include <ctime>

#include <iostream>

#include <raspicam/raspicam_cv.h>

#include "opencv2/highgui/highgui.hpp"

#include "opencv2/imgproc/imgproc.hpp"

#include "opencv2/core/core.hpp"

#include <stdio.h>

#include <unistd.h>

#include <fcntl.h> //Used for the UART

#include <termios.h> //Used for the UART

using namespace std;

using namespace cv;

Mat image;

int TMx=660; //can change TMx,TMy,XPR,YPR based on calibration

int TMy=28;

int XPR=9.4;

int YPR=9.4;

int Yoffset=5; //cm

int Cx;

int Cy;

int xval;

int yval;

static void on_mouse(int e, int x, int y, int d, void *ptr)

{

 if (e == EVENT_LBUTTONDOWN) {

 int x1=x;

 int y1=y;

 Cx=x1;

 Cy=y1;

 cout << "Pixel Position:x(" << Cx << ")" << endl;

 cout << "Pixel Position:y(" << Cy << ")" << endl;

 sleep(1);

 destroyAllWindows();

 } }

int main()

{

//Establish Serial Comm

 int uart0_filestream = - 1;

26

 uart0_filestream = open("/dev/ttyS0", O_RDWR | O_NOCTTY | O_NDELAY);

 //Open in non- blocking read/write mode

 if (uart0_filestream == - 1)

 {

 //ERROR - CAN'T OPEN SERIAL PORT

 printf("Error - Unable to open UART. Ensure it is not in use by another

application\n");

 }

 struct termios options;

 tcgetattr(uart0_filestream, &options);

 options.c_cflag = B115200 | CS8 | CLOCAL | CREAD; //<Set baud rate

 options.c_iflag = IGNPAR;

 options.c_oflag = 0;

 options.c_lflag = 0;

 tcflush(uart0_filestream, TCIFLUSH);

 tcsetattr(uart0_filestream, TCSANOW, &options);

//Record mouse click on picture code

 Point p;

 Mat image = imread("raspicam_cv_imageRevM1.jpg");

//pass a pointer to `p` as parameter

 cvSetMouseCallback("window",on_mouse, &p);

//from mouse2pixel example

 raspicam::RaspiCam_Cv Camera;

 if (!Camera.open()){

 cerr<<"Error opening the camera"<<endl;return - 1;

 }

 sleep(1);

//Start capture

 Camera.grab();

 Camera.retrieve (image);

//Save image

 imwrite("raspicam_cv_imageRevM1.jpg",image);

 Camera.release();

//Display all images

 namedWindow("Original");

27

 moveWindow("Orginal",0,0);

 resizeWindow("Orginal",200,200);

 cv::imshow("Original", image);

 cout<<"Click a point on the desired location"<<endl;

//Function

 cvSetMouseCallback("Original", on_mouse, (void*) (&p));

 waitKey(15000);

//Processing coordinates function: Convert pointer to integer, transform pixel values

to real world distance values

char response;

 xval=((TMx- Cx)/XPR);

 yval=((Cy- TMy)/YPR)- Yoffset;

 cout << "The equivalent real world coordinates are:" << endl;

 sleep(1);

 cout << "In x- axis(" << xval<< ")" << endl;

 cout << "In y- axis(" << yval << ")" << endl;

 sleep(1);

 cout << "Do you want to proceed with these coordinates(y/n)?" << endl;

 cin>>response;

 if (response == 'y'){

 cout << "Sending the coordinates to Propeller" << endl

// ----- TX BYTES -----

 char tx_buffer[20];

 sprintf(tx_buffer, "%d:%d:",xval,yval);

 if (uart0_filestream != - 1)

 {

 int count = write(uart0_filestream, &tx_buffer[0], 20);

 //Filestream, bytes to write, number of bytes to write

 if (count < 0)

 {

 printf("UART TX error\n");

 } }

 }else if (response == 'n'){

 cout << "No valid input, rerun program" << endl;

 sleep(3);

return 0;

}

28

OBJECT DETECTION (RPI)

USAGE

python ball_tracking.py -- video ball_tracking_example.mp4

python ball_tracking.py

import the necessary packages

from collections import deque

from imutils.video import VideoStream

import numpy as np

import argparse

import cv2

import imutils

import time

construct the argument parse and parse the arguments

ap = argparse.ArgumentParser()

ap.add_argument("- v", "-- video",

 help="path to the (optional) video file")

ap.add_argument("- b", "-- buffer", type=int, default=64,

 help="max buffer size")

args = vars(ap.parse_args())

define the lower and upper boundaries of the "green"

ball in the HSV color space, then initialize the

list of tracked points

greenLower = (29, 86, 6)

greenUpper = (64, 255, 255)

pts = deque(maxlen=args["buffer"])

if a video path was not supplied, grab the reference

to the webcam

if not args.get("video", False):

 vs = VideoStream(src=0).start()

otherwise, grab a reference to the video file

else:

 vs = cv2.VideoCapture(args["video"])

allow the camera or video file to warm up

time.sleep(2.0)

keep looping

while True:

29

 # grab the current frame

 frame = vs.read()

 # handle the frame from VideoCapture or VideoStream

 frame = frame[1] if args.get("video", False) else frame

 # if we are viewing a video and we did not grab a frame,

 # then we have reached the end of the video

 if frame is None:

 break

 # resize the frame, blur it, and convert it to the HSV

 # color space

 frame = imutils.resize(frame, width=600)

 blurred = cv2.GaussianBlur(frame, (11, 11), 0)

 hsv = cv2.cvtColor(blurred, cv2.COLOR_BGR2HSV)

 # construct a mask for the color "green", then perform

 # a series of dilations and erosions to remove any small

 # blobs left in the mask

 mask = cv2.inRange(hsv, greenLower, greenUpper)

 mask = cv2.erode(mask, None, iterations=2)

 mask = cv2.dilate(mask, None, iterations=2)

 # find contours in the mask and initialize the current

 # (x, y) center of the ball

 cnts = cv2.findContours(mask.copy(), cv2.RETR_EXTERNAL,

 cv2.CHAIN_APPROX_SIMPLE)

 cnts = imutils.grab_contours(cnts)

 center = None

 # only proceed if at least one contour was found

 if len(cnts) > 0:

 # find the largest contour in the mask, then use

 # it to compute the minimum enclosing circle and

 # centroid

 c = max(cnts, key=cv2.contourArea)

 ((x, y), radius) = cv2.minEnclosingCircle(c)

 M = cv2.moments(c)

 center = (int(M["m10"] / M["m00"]), int(M["m01"] / M["m00"]))

 # only proceed if the radius meets a minimum size

 if radius > 10:

30

 # draw the circle and centroid on the frame,

 # then update the list of tracked points

 cv2.circle(frame, (int(x), int(y)), int(radius),

 (0, 255, 255), 2)

 cv2.circle(frame, center, 5, (0, 0, 255), - 1)

 # update the points queue

 pts.appendleft(center)

 # loop over the set of tracked points

 for i in range(1, len(pts)):

 # if either of the tracked points are None, ignore

 # them

 if pts[i - 1] is None or pts[i] is None:

 continue

 # otherwise, compute the thickness of the line and

 # draw the connecting lines

 thickness = int(np.sqrt(args["buffer"] / float(i + 1)) * 2.5)

 cv2.line(frame, pts[i - 1], pts[i], (0, 0, 255), thickness)

 # show the frame to our screen

 cv2.imshow("Frame", frame)

 key = cv2.waitKey(1) & 0xFF

 # if the 'q' key is pressed, stop the loop

 if key == ord("q"):

 break

if we are not using a video file, stop the camera video stream

if not args.get("video", False):

 vs.stop()

otherwise, release the camera

else:

 vs.release()

close all windows

cv2.destroyAllWindows()

31

APPENDIX-III: MODULES

RASPBERRY PI 3 B+

Fig: Raspberry pi 3 B+ model

The Raspberry Pi 3 Model B+ is the latest product in the Raspberry Pi 3 range.

¶ Broadcom BCM2837B0, Cortex-A53 (ARMv8) 64-bit SoC @ 1.4GHz

¶ 1GB LPDDR2 SDRAM

¶ 2.4GHz and 5GHz IEEE 802.11.b/g/n/ac wireless LAN, Bluetooth 4.2, BLE

¶ Gigabit Ethernet over USB 2.0 (maximum throughput 300 Mbps)

¶ Extended 40-pin GPIO header

¶ Full-size HDMI

¶ 4 USB 2.0 ports

¶ CSI camera port for connecting a Raspberry Pi camera

¶ DSI display port for connecting a Raspberry Pi touchscreen display

¶ 4-pole stereo output and composite video port

¶ Micro SD port for loading your operating system and storing data

¶ 5V/2.5A DC power input

¶ Power-over-Ethernet (PoE) support (requires separate PoE HAT)

Source: https://www.raspberrypi.org/products/raspberry-pi-3-model-b-plus/

PARALLAX PROPELLER BOE

Fig: Propeller Parallax Board of Education

¶ System clock speed: DC to 80 MHz

o Global (shared) RAM/ROM: 64 K bytes; 32 K RAM/32 K ROM

o The HUB manages mutually exclusive resources

¶ Terminology: HUB --Propeller --Spinner

o Cog RAM: 512 x 32 bits each, i.e., 512 Longs (or 2KB)

https://www.raspberrypi.org/products/raspberry-pi-3-model-b-plus/

