Autonomous Driving Car for Cadman Plaza Park
A PROJECT REPORT

Submitted by

ABHIMANYU DHAWAN (N13725770)
SARVESH SIVAPRAKASAM (N11059298)
SRIDHAR CUDDALORE PARTHASARTHY (N16077628)

Under the guidance of
VIKRAM KHAPILA
(Professor, Department of Mechanical & Aerospace Engineering)

in partial fulfilment for the course
of
ADVANCED MECHATRONICS (ME – GY 6933)
for
MECHATRONICS AND ROBOTICS ENGINEERING
of
TANDON SCHOOL OF ENGINEERING

6 MetroTech Center, Brooklyn, NY 11201
ABSTRACT

The aim of the project is to develop an autonomous driving system capable of traversing through the pathway of Cadman Plaza Park. In this term project, we are using Arduino Uno and Raspberry Pi 3. RaspiCam is used for extracting the data from video feedback and OpenCV using Python 2.7 was used for the analyses of the extracted video. The scope of the project is to develop a system of capable of differentiating between the black road and grass in the Cadman Plaza Park and communicate the instructions to Arduino for controlling the driving systems.

ACKNOWLEDGEMENT

On our path to completing the project we have received a lot of help and we would like to thank them for helping us despite their busy schedule. First and foremost, we would like to thank Professor Vikram Kapila. He was very instrumental in helping us select a suitable project.

We would also like to thank MakerSpace for allowing us to use the 3D Printers and instruments for manufacturing and testing purpose and for the graduate assistants for staying late with us after working hours. We also like to thank the people in Cadman Plaza Park for being co-operative and patient during our trial runs in their pathway.
INTRODUCTION

An autonomous car is a vehicle that is capable of sensing its environment and navigating without human input. Many such vehicles are being developed, but as of May 2017 automated cars permitted on public roads are not yet fully autonomous. They all require a human driver at the wheel who is ready at a moment's notice to take control of the vehicle. Autonomous cars use a variety of techniques to detect their surroundings, such as radar, laser light, GPS, odometry, and computer vision. Advanced control systems interpret sensory information to identify appropriate navigation paths, as well as obstacles and relevant road signs.

Initially the team started with autonomous braking system as Arduino mini project and then extended to autonomous driving. The primary reason is to work on autonomous driving system to gain an overall understanding of computer vision using OpenCV, test various concepts learnt in the class in a true dynamic environment.

Fig 1: Assembled Autonomous System
MECHANICAL

A commercial RC car, circuitry is removed and the wires from the motor are connected to Arduino through Adafruit shield. In the existing mechanical structure, Ping Sensors were attached to attached for autonomous braking. A camera mount was designed to attached the front end of the car to attach the RaspiCam. To get the required field of vision for the effective image processing the end Camera angle from the car must be 20° at a height of 20 cm. So, the camera mount was designed and printed in a 3D printer.

Fig 2: Camera Mount Design

Fig 3: 3D Printed Camera Mount
ELECTRICAL

POWER SOURCE:
1. Inbuilt power source of Car is used to power the steering, drive train motor, Arduino Uno with the shield.
2. External power Bank is used to power the Raspberry pi 3

ELECTRONICS
1. nRF24L01 Module is used at Arduino as well as Raspi for communication between them
2. Ping sensors used for autonomous braking and also in parallel parking
3. RaspiCam is used to capture the video feedback from the system

COMMUNICATION
SPI communication is used for data transfer between the devices. 8 Bit data were transferred from Raspi to Arduino. The message is interpreted the following way in the Arduino side

1. Bits 1-3: driving motor speed
2. Bits 4-6: steering motor speed
3. Bit 7 : Driving motor direction
4. Bit 8 : Steering motor direction

The messages are generated from the Raspi based on the analysis from the video feed. These messages are sent to Arduino as a string for further manipulation to send commands for motor actuation. Since Image processing takes a lot of computing, the motor control happens in Arduino Uno and image processing in Raspberry Pi. This improves the overall efficiency of the entire process.

(a) Arduino and NRF module
(b) Raspberry pi and NRF module

Fig 4: Circuit Diagram of nRF module
FLOWCHART: Process Flow for OpenCV Program

1. Video extraction from RaspiCam
2. Frame by Frame feed
3. Applying Gaussian Blur
4. Conversion from BGR to HSV
5. Removing unwanted area from Frame
6. Dynamic Threshold Parameter extraction from ROI
7. Masking based on Dynamic Threshold Parameters
8. Applying Erosion
9. Applying Opening
10. Applying Closing
11. Taking Decisions for Motor Commands
12. Sending commands to Arduino through SPI
(a) Image before Gaussian Blur

(b) Image after Gaussian Blur

(c) Image after BGR to HSV conversation

(d) Image during Dynamic Threshold & Masking

(e) New region of Interest and deciding on Turning directions

Fig 5: Output Frame from OpenCV
CONCLUSION

As proposed, we could make the system drive autonomously in the Cadman Plaza park. As a future development, we would be redesigning the Camera Mount to get a precise Field of Vision. Implementing Wheel Velocities signal scaling based on the voltage feedback from power source. Currently we are planning to look for the processors which would suit our need i.e. high computing performance processor and optimize the code. Now that we are confident to work in real world environment with true noise, we would be trying out similar applications with drones.

Fig 6: A picture of car driving autonomously in Park