
 

Term Project  

Advanced Mechatronics 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Term Members 

Dong Dong Liu 

Mingzhe Ye 

Xuchu Xu 
 
 
 
 
 

Abstract  
Disabled people or patient face many difficulties with daily life routine. Easy things 
like fetching a beer from refrigerator can take much more time than normal people. 
Especially patient with paralysation. Our project aims to design a robot to assist 
these group of people for better life and achieve specific goals that normally would 
have paid much effort. 
Introduction 
Our robot is designed to be gesture controlled with both hand. By controlling both 
hands with gloves, user can move the car to target destination and fetch target 



object with five-joint robot arm. In the meanwhile, user can monitor robot motion by 
ipad with webcam in the robot chassis.  
 
Working process  
At the starting point we built up the car chassis which is caterpillar-driven car 
chassis. Then we developed the robot arm with five servo motors and frames. Next 
we did some research in studying ROS environment for controlling the servo motor. 
And next we set up two Xbee module configurations for wireless connection between 
one Arduino and raspberry Pi. Then we build up the circuits of two gyroscopes and 
two flex sensors with this Arduino. After that we designed the algorithm for catching 
the valid and stable data of IMU due to unstable data value. Next we setup webcam 
by using several sudo commands. Finally we connect another Arduino with 
Raspberry Pi in serial port connection way. This Arduino is built in car chassis for 
control two DC motors. With that, one H-bridge is applied. Below shows our 
mechanism: 

 
 



Technology 
As we are using two IMUs and two flex sensor, we have enough data to control our 7 
DOF robot: 
flex1 Elbow joint 
flex2 claw joint 
theta x left hand for car forward & car backward  
theta y left hand for car turn left & car turn right  
theta z right hand for waist joint 
theta x right hand for shoulder joint 
theta y right hand for wrist joint 
 
Xbee data transformation and receiving: 

String toTransfer = identifier_s; 
  for (int i =0; i < SENSOR_NUM; i++) 
  { 
    toTransfer = toTransfer + sensor_str[i]+identifier; 
  } 
  toTransfer = toTransfer + identifier_e; 
  Serial.print(toTransfer); 
 
ROS Working flow chart: 
There are two parts about the structure in the robot except the wearing device called 
remote controller. The upper level called master controller is Raspberry Pi and the 
lower level called slave controller is Arduino. In the master controller, ROS system is 
running to maintain the control of robot arm and car movement, as well as being in 
charge of receiving the data from the remote controller via Xbee module.  

In the initial phase, the remote controller collects data from the gyro and process the 
data such as integration through time. Then the remote controller sends data via 
Xbee and the master controller gets data with serial_node maintained by roscore 
from another Xbee connected to master controller via USB port. 

The serial_node decodes the data by identifying the delimiters contained in the 
transmitting package and publishes the data through topic called xbeeRead0, 
xbeeRead1, xbeeRead2, etc.  

Table1xbee_node Topic List Definition 



Topic Name  Data 
Type 

Topic Definition 

xbeeRead0 UInt3
2 

Elbow control  

xbeeRead1 UInt3
2 

Claw control 

xbeeRead2 UInt3
2 

Car forward & backward 
control 

xbeeRead3 UInt3
2 

Car turn left & right 

xbeeRead4 UInt3
2 

Waist control 

xbeeRead5 UInt3
2 

Shoulder control 

xbeeRead6 UInt3
2 

Wrist control 

By subscribing the topic from serial_node, move_motor node first process the raw 
data from Xbee, such as extreme value limit, data monitor, adjusting the controlling 
angle by comparing the sensor data and the actual position of motor. The node then 
publishes the control commands via topic dc_motor to slave controller and 
joint1_controller/command, joint2_controller/commands, etc., to the slave controller.  

 



 
 
IMU algorithm and calculation: 
//Accelerometer angle calculations 
  acc_total_vector = sqrt((acc_x*acc_x)+(acc_y*acc_y)+(acc_z*acc_z));  //Calculate 
the total accelerometer vector 
  //57.296 = 1 / (3.142 / 180) The Arduino asin function is in radians 
  angle_pitch_acc = asin((float)acc_y/acc_total_vector)* 57.296;       //Calculate the 
pitch angle 
  angle_roll_acc = asin((float)acc_x/acc_total_vector)* -57.296;       //Calculate the 
roll angle 
  angle_yaw_acc = asin((float)acc_z/acc_total_vector)* 57.296;  
//To dampen the pitch and roll angles a complementary filter is used 
  angle_pitch_output = angle_pitch_output * 0.9 + angle_pitch * 0.1;   //Take 90% of 
the output pitch value and add 10% of the raw pitch value 
  angle_roll_output = angle_roll_output * 0.9 + angle_roll * 0.1;      //Take 90% of the 
output roll value and add 10% of the raw roll value 
  angle_yaw_output = angle_yaw_output * 0.9 + angle_yaw * 0.1; 
   
Conclusion 
In this project we have got a deep understanding of ROS. With the realization of 
communication between Rpi and Arduino in serial port way and wireless way, we 
have learned a lot and experienced the efficiency of ROS and Rpi. 
 
Appendix 
See all the code files in Term project file. 
 


