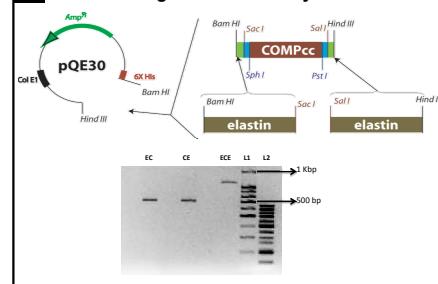


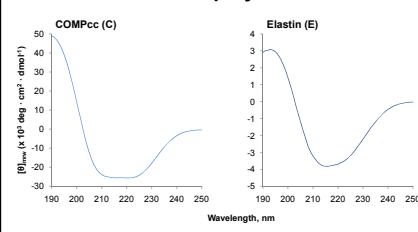
Orientation and number of blocks influence structure and self-assembly of protein copolymers

Jennifer S. Haghpanah¹, Carlo Yuvienco¹, Peter J. Baker¹, Hanna Barra¹, Deniz E. Civay², Sachin Khapli¹, Natalya Voloshchuk¹, Mukta Asnani¹, Susheel K. Gunasekar¹, Murugappan Muthukumar², and Jin Kim Montclare^{1,3}

Chemical & Biological Sciences, Polytechnic Institute of NYU, Brooklyn, NY, 11201¹

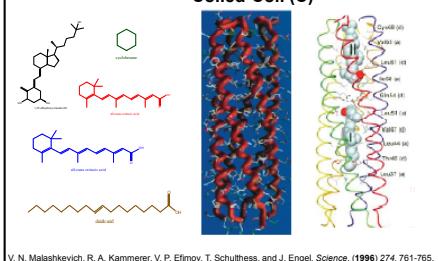

Polymer Science and Engineering Department, University of Massachusetts, Amherst, MA 01003²

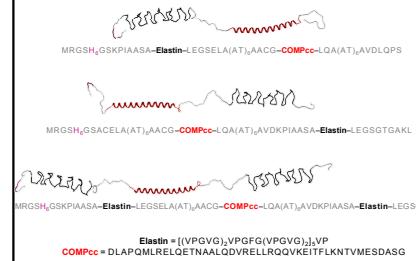
Department of Biochemistry, SUNY Downstate Medical Center, Brooklyn, NY, 11203³

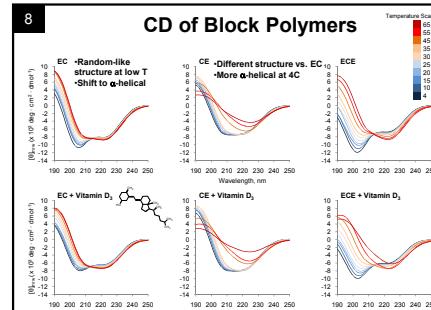

1 Abstract

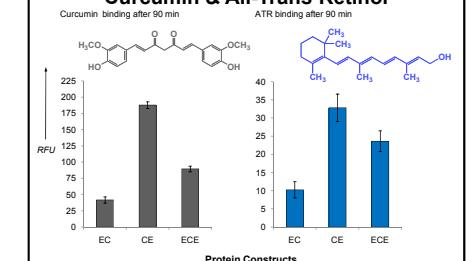
The requirement for smart biomaterials to change in macromolecular structure in response to external stimuli necessitates the design of controllable modes of self-assembly. Driven by this need and inspired by the natural self-assembly of proteins, we describe the biosynthesis and characterization of three block polymers that consist of a b-spiral elastin-mimetic polypeptide (E) and the α -helical coiled-coil region of cartilage-oligomeric matrix protein (C). These proteins, synthesized as the block sequences – EC, CE, and ECE – were chosen for their distinct structures, functions, and modes of self-assembly. For these fusion constructs we demonstrate that the block orientation and the number of repeated blocks of the two protein motifs play a significant role in their self-assembly on the micro- and macroscale. Our results provide insight into the future development of smart biomaterials with emergent properties.

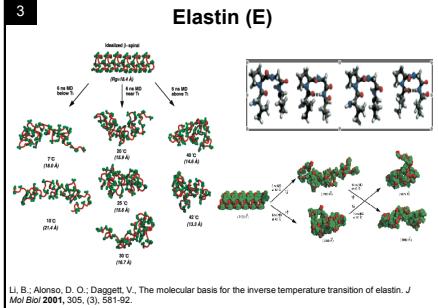
4 Cloning of Block Co-Polymers

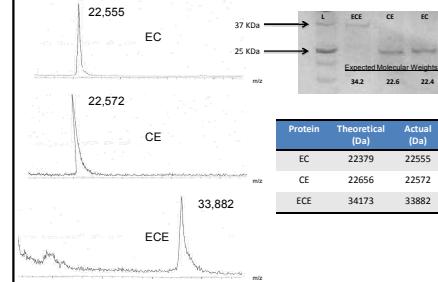

7 Circular Dichroism (CD) of Homopolymers

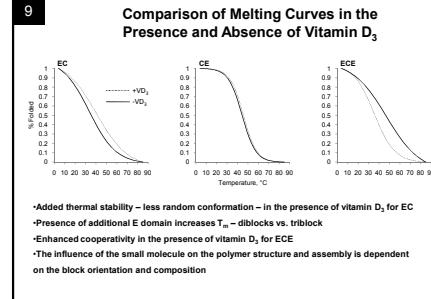

10 Dynamic Light Scattering (DLS) of Block Polymers


2 Cartilage Oligomeric Matrix Protein Coiled-Coil (C)


5 Protein Block Polymers


8 CD of Block Polymers


11 Binding of Polymers to Curcumin & All-Trans Retinol


3 Elastin (E)

6 Protein Purification & MALDI Analysis

9 Comparison of Melting Curves in the Presence and Absence of Vitamin D₃

12 Conclusions & Future Work

- Our studies with CD and DLS suggest that the physicochemical behaviors of EC and CE constructs, compositionally similar macromolecules, are different.
- Further comparison with ECE shows that the number of blocks contributes to modes of self-assembly taking place.
- We will continue to study rheological properties of the constructs.
- We hope these block co-polymers will provide protein engineers with an extra level of control for drug delivery. These will also serve as novel scaffolds for tissue engineers.

ACKNOWLEDGEMENTS

WE WOULD LIKE TO THANK POLYTECHNIC UNIVERSITY START-UP FUNDS, THE OTHMER INSTITUTE, THE WECHLER AWARD, AIR FORCE OFFICE OF SCIENTIFIC RESEARCH, SOCIETY OF PLASTIC ENGINEERS, ACS CHEMISTRY INSTITUTE, ACS ENVIRONMENTAL CHEMISTRY DIVISION, UNILEVER, THE NATIONAL SCIENCE FOUNDATION GK-12 FELLOWS GRANT DGE-0741714