Advanced Mechatronics:
AR Parrot Drone Control
Charging Platform

Engineering Team Members:

Ashwin Raj Kumar
Feng Wu
Henry M. Clever

Advanced Mechatronics:
Project Plan

Phase 1: Design testing platform

Phase 2. Automated landing sequence

»
O

nase 3. Battery charging station +

ntimum control performance

Landing Pad: Charging Wire

[l
il
I

Charger Adaptor

AYILLVE ITIVIDHVHOITH
HIWATOD NOI-WNIHLIT
I 2SSz ==

Joxxe]

Battery Adaptor

e

General Hardware Improvements

.“ -

Landing Pad
LED power

¥ Raspberry Pi
{ LED control

| Battery
Charger

Overview

FOHVHOIY
I"WNIHLIT

|

AR Drone System Schematic: Phase 1

AR Drone System Schematic: Phase 2

r
|
|
1
|
|
|
1
|
|
|
1
|
|
|
1
|
|
|
1
|
|
|
1
|

)l)llll)ll
=scxaussss

Wi-Fi

ettt |

Phase 3

T
—

IC

LL
@

AR Drone System Schemat

Codes for GUI Button

FPS:7.22 [=][=][x]

import pygame\ def button(x,y,w,h,cl,c2):

mousel=pygame.mouse.get_pos()
if x+we=mousel [@]=x and y+h=mousel[1l]=y:
pygame.draw. rectiscreen, cl, (x,y,w,hl)
else:
pygame.draw.rectiscreen, c2, (x,y,w,h)])

#forward huftan
button(9@,260,90,60,green_bright,greenz)
screen.blit(myfont. render("Forward",1,black),(118,280))

Codes for Variable Print

FPS: 7.05 - |[=][

import pygame

speed_display=drone.speed
s="Speed:"+str({speed_display)

scfeen.hliftmﬁfnnt.render[str{s},l,blackl,{ﬂﬂﬂ,lﬂﬂl}

Codes for Button Control

&xe¢02ll

for event in pygame.event.get():

if event.type == pygame.QUIT:
running = False

elif event.type == pygame.RKEYUP or event.type == pygame.MOUSEBUTTONUP:
drone.hover()
pygame.draw.rect(screen,black, (9,248,360,28))
pygame.draw. rect({screen,black, (3608,8,20,248))

elif event.type == pygame.MOUSEBUTTOMDOW -
if event.button ==

Zleft
it 9@=mouse[8]=8 and 3Z28=mouse[l]>=26@:
print "Left’'

drone.move_left({)

pygame.draw.rect(screen, yellow_bright, (@,24@,28,20))
#forward
glif 18@=mouse[B]=90 and 32@0>mouse[l]=260:

print "Forward'

drone.move_forward()

pygame.draw.rect(screen, yellow_bright, (9@,24@,9@,20))

Communication between

tl = Thread(target = manualControl)
t2 = Thread(target = automaticControl)
t3 = Thread(target = display)
1f _ _name_ == ' main__ ':
tl.start()
t2.start()
ti.start()

def automaticControl():
ser = serial.Serial('/dev/ttyUSBO', 9608)
while True:
#while (ser.inWaiting==0):
pass
if (ser.inWaiting!=9):
incoming = ser.readline().strip().strip('"\x08")
data=incoming.split()
if len{data)==8:
X1=int(data[@], base=18)
Y1=int(data[l],base=1@)
X2=int(datal[2], base=18)
Y2=int(datal[3], base=18)
X3=int(datal[4],base=18)
Y3=int(data[5], base=18)

Drone Autonomous Landing

ifﬂxla:léEEIana xzaﬂlﬂzﬁ and x33{15é33: # if aLl Lleds are

GPID.output(25,GPI0.HIGH) i
time.sleep(0.081) #pause for 10 ms - .
ml={x3a-x2a)/(y2a-y3a) = !
m2={580-x1a)/{360-yla) i .
t=(ml-m2) /(1+(m1+m2}) -

drone.speed = 8.1
Fhutomatic Landing control

if(({x1a-5008)=50): i
drone.move_left() #go left . "
if((36@8-yla)=50):

drone.move_Torward() #go forward
elif{{yla-360)=58):
drone.move_backward{) #go back

elif((580-x1a)=50):
drone.move_right() #go right
if{(368-yla)=50):

drone.move_fTorward() #go forward
elif{{yla-360)=58):
drone.move_backward{) #go back

elif((3608-yla)=5@):
drone.move_forward() #qo forward

elif({(yla-36@)=>50):
drone.move backward() #qo back

elif(x1a=450 and x1a<558 and yla=318 and yla<41@):
#red point 1 15 close to center
#x1la found

if(dla==228): #height control, land if close
drone. land() #land

elif (dla=220): #d3a = 368 dla=408
drone.move_down() #lower drone

drone.hover()

Consolidation

Previous control system used the following hardware:
o Wii camera + Arduino Micro + XBee for feedback
o Propeller to use parallel programmed cogs for feedback modification and
control of output plus hand controller manual control system
o Manual joystick controller
o Computer + XBee dongle with Processing code to communicate control
feedback to Drone via wifi
Current control system uses the following hardware:
o Wii camera + Arduino Micro + XBee for feedback
o Raspberry Pi for multithreading code to run GUI plus conversion of
control feedback for automatic control
This consolidation makes the system most suitable for users with disabilities
who cannot use a manual joystick for normal operation
Additionally, it removes the necessity of an extra computer operating system
and propeller processor
o Much easier to set up and move around
o Fewer hardware parts reduces the possibility of problems with the system
due to bad wiring connections

Results

e \We have developed an autonomous landing pad that has capabilities to steer
the drone and land it on the magnets of the landing pad
o The Raspberry Pi incorporates all previous controls of propeller and
processing into a single unit
o With a good hand GUI, Raspberry Pi takes commands from manual
control GUI and automatic Wii feedback to land the drone accurately.
e Our automatic landing controller is a multiple input multiple output (MIMO)
system.
o Angle of tilt still not accounted for: causes instability
o Develop and implement linear quadratic regulator (LQR)

Distance from landing pad ——» —— Move up or down

Rotation (yaw) angle ——»p ——» Rotate

CONTROLLER

Translation to landing pad ———» ______» Move back/forth or

left/right

Drone angle of tilt ———p >
Correct for tilt angle (none)

Control System: Major Issue

e Due to the difference in processing RAM of the R-Pi vs. a conventional
computer, the R-Pi code crashes unexpectedly when running

o Previously developed Linux libraries were used to link our python code
with AR Drone wifi

o We speculate these libraries are designed for operating systems with
sufficient processing power to run the Drone camera and control system
simultaneously

e But then a dilemma arises: How can the smartphone app work so well to
control the drone on an even smaller OS than R-Pi?

o More detective work is needed to modify the C libraries linking high level
control commands to AR Drone wifi so that R-Pi can run them more
efficiently: a non-trivial software problem.

e Although the system does work without error a good percentage of the time,
this problem must be fixed for reliable use.

Results-2

http://youtube.com/v/pM651EnFYl4

Future Improvements

Because of many crashes in testing the AR Drone, the blades are
damaged and need replacement. There may be additional damages as
well.
o Solution: Buy a new AR Drone
The current control system has not been tested enough to optimize the
current control configuration
o Solution: Perform more testing
The electronics onboard AR Drone are off center from the COM and
cause possible drift.
o Solution: Modify electronics to fit in the middle
MIMO systems perform better with a linear quadratic regulator (LQR)
o Solution: Implement LQR with control scheme
There are 3 inputs and 4 outputs on the MIMO loop
o Solution: Use another sensor to monitor and correct for tilt angle

