NYU:POLY

POLYTECHNIC INSTITUTE OF NYU

Mechatronics Final Paper

Autonomous Refrigerator Robot

Vinicius Bazan
Adam Jerozolim

Luiz Jollembeck

Table of Contents

TaageTo [V 4] o IUUR TR PO PPTT T PPPPPPPPP 4
160e] 0] o Lol aT=] o | £-J OO OO PPPPTPPTPPR 5
(o] ool (o] f T [o | TP PP PP PP OPPPPPPPPP 5
B 12 T=T 0 1] o T S PP P PP PP OPPPPPPPPPPNS 6
Hobrid e oo 7
CaPADI IS e, 7
Get the Coldest Can/SAMPIEviiiiiiiei et e e e rbb e e e e etb e e e e e eabeeeeseabbeeeeebbaeeesaraeens 7
Gt @ COIA CAN/SAMPIE ...t et e et e e e tbe e e e esbae e e eetbeeeesabaeeeeetbaeeeaaraee s 7
CRECK FrEZING ..ttt s 8
Bill O MAtEIIALS «eeeeneieee ettt e st e s st e s s e e e e e e eeenans 8
CIMCUIT .o 9
BUTEONS. ..ottt 9
LCD DHSPlay.ccccei e, 9
SEIVO IMIOTOIS ..ttt s 10
DO IMOTON ittt 10
Position recognizing and sample finding systemcccc i 11
L8 L1500 1 5 o TP PP ST PP PRPPPPPPP 13
Mathematical DACKEIOUNG..........uuueeiiiiiii e naan 14
Resistor-Capacitor CIrCUIT — RCTIME .uuuiiiiiiiieeiie et e et s e e et e e e e e e e eaa e e eeea s e e easaeeaeananaans 14
Op-Amp CircUit — HYSTEresiS CIrCUIT . covvveeiiiiiie e e e e e e e e e e e e e e e e e e aeas 14
Current limitation — BS ProteCTIONeeii e an 16
(@] 7= = 4 o] [PPN 16
Y= LYot oY= d- TN STU [ool £ To] o 1SSt 16
o Yol g = VI - [o LS 17
EMErZENCY BUTLON et st et et et s e ea s e et s et e et e e eas e eennseanneaenns 17

VI ¢ e 18

R3] =1 S PP PPPPPPTN 18

(0] o] o] o IEUUU T PO PP UPPPPPPPRR 19

(61 1=Tol o] o -SSP TP PP PPPPPRPPPP 19
NOCANS ettt s 20
GENEIAl SUDIOUTINES ... et e s e e e s 20

The Thre@ FUNCLIONS ...ttt sttt e s s e e s e e seree e e eaaneeee s 23
(G184 Tl o] Lo [T A o= I PP PP PPR S PPPPPP 23

G The FIrST COlA CaN ...eeeiiiiiiiie ettt ettt et e e st e e st e s e e e snreeeesannees 24
=174 o ¥ - SO OTP PR TPPTPTPPPPRt 24
DTSV] o] 1= 2 0 25
[aa] o] fo)Y=T 0 aT=] o) &3P OTUR P PPPRTPPPRE 25
(60 0T (D11) FO PP PP P PP PPPPPP 26
APPENAIX A = COUE ..ooeeiiiiiiieieiiieeeieee ettt eeeeeeeeeeeeeeeeeeeeeeeeseeeeeeeaassassaesssasssssssssssssssssssssssssssssssssessssssssssnnnnnnes 27

Introduction

One of the most common pieces of equipment found in all biomedical and research laboratories
are the specimen refrigerator. While seeming not as glamorous or fancy as some of the other
laboratory equipment, the specimen refrigerator plays a crucial role in libratory research. Almost all
experiment involving living cultures or specimens require them to be maintained at a specific
temperature. Sometimes the temperature change can be for |
preservation purposes and sometimes it might be to simulate

an actual environmental condition. Nevertheless, temperature
control of experiments is of outmost importance in any modern
research facility.

When working with specimens in a laboratory it is often
necessary to process samples at specific temperatures and
times. In a busy biomedical lab, managing and handling all of
the samples can be an overwhelming and daunting task.
Different materials with varying densities can have different
heat transfer coefficients as well as specific heats. With each
sample put into the fridge at a different time there is almost no
way to know when each sample will reach its ideal temperature.

Some samples might be required to be chilled to near freezing
while some might just need their temperatures reduced by a few degrees. A device that could both
measure the temperature of the samples, as well as retrieve them from the refrigerator when a desired
temperature is reached, would be an ideal sought after device to have in a biomedical laboratory.

The goal of our Mechatronics final project was to design and create a device capable of
managing a biomedical laboratory’s refrigerated
sample inventory. In order to achieve this, the device
needed to be able to completely operate on its own
without needing the operator’s input or
commanding. The device would operate
autonomously within an enclosed refrigerator and
monitor the samples and vials being studied in the
lab. When called upon to, the device would be able
to retrieve a required sample based either on the

time of day, time the specimen was required to be in
the refrigerator or even have it removed at a set
temperature point.

The flexibility of incorporating a micro
controller into the device allows it to be configured to various users’ preferences. For instance, a
university might be performing a class experiment and require a number of samples to be taken out of
the refrigerator and cooled before a class begins. By using our device the teacher can program in a time

4

that the samples are to be ready and the device will automatically make sure they are out and ready for
use.

A different researcher might be performing an experiment that requires a culture to be chilled
for an exact amount of time. Using our device to make sure the specimen is removed after the proper
time will free up the researcher to perform other tasks while waiting for the sample, improving
productivity and performance.

The most complex, and therefore most marketable, use for our device would be in a scenario
where a variety of samples and cultures are being studied simultaneously. In a scenario such as this
one, where different specimens are required to be controlled at similar temperatures, figuring out
exactly how long and at what time each sample will reach its set temperature can be a task that can take
a dedicated researcher all day to achieve. By incorporating our device into the lab, the researchers are
free to take care of more pressing devices while our machine monitors all of the specimens. Without
any effort at all it can not only monitor each of the specimens’ temperatures, but remove them from the
refrigerator when the desired temperature is reached and place it on the lab table, alerting the
researcher that his specimen is ready. This type of control and operation can allow optimal efficiency
and productivity in the lab.

Components
In addition to standard common electronics, our robot incorporated other more complex and
wider ranging devices. In this section we will explain how some of those devices work and where they

are used.
Photoresistor

In order for the robot to understand when and where a new specimen was placed into the
refrigerator, a sensor system needed to be set up. K-ohms
The system allows the robot to identify in what 1000 F aiiil
locations and when an object was placed in a =+
given location with the use of a photoresistor. A o~ 3
photoresistor is a resistor that can change its 100 ‘f’* L N <
resistance based on a light incident on its surface. 8
A photoresistor placed in a dark environment will _4; :*: 5107
have a very large resistance, possibly in the Mega- fo— 5004
ohm range, while the same resistor placed in a ™ I PNl | [Tl 8003

10 4 +— B103

well lit area can have a resistance as small as one P £203
K-ohm. This change causes an almost 1,000 time il {}g,"
increase in the resistance of the photoresistor.
The photoresistors we selected for our project 1
were Jameco #202403 photoresistors. The i 10 100 hax

operating parameters and characteristics of the photoresistor can been see in the graph to the left.

By placing a photoresistor in each of the possible sample locations within the refrigerator, we

can get a reading of where and when a sample was placed in the

resistance.

by providing it with 5v on the V side of it. When the pin
then goes low, the capacitor begins to charge. When the
capacitor voltage reaches 3.6V approximately, the voltage
on the Basic Stamp pin is 1.4V and the pin state flips from
HIGH to LOW. The time of this process is recorded by the
microcontroller. This time is dependent of the resistance
of the photoresistor and the capacitance of the capacitor.
By measuring the variations in time, we can determine
whether the photoresistor is in its high or low resistance
state, and thus covered or uncovered, respectively. Figure
5 exemplifies and RC circuit using photoresistor.

Thermistor
Another
involved the use of a thermistor. A thermistor, similarly to

component integral to our design

refrigerator. When a sample is placed in the refrigerator it covers one of
the photoresistors, thus blocking out the light and increasing its
Since the basic stamp can only operate in a high and low
setting, the change in resistance alone is not enough for the basic stamp
to recognize when the resistance is raised. Instead, we were able to use
an R-C circuit, with the photoresistor acting as the resistor, and the basic
stamp function RCTime. When a pin is set high it will discharge a capacitor

QUICK REFERENCE DATA

PARAMETER VALUE
Resistance value at 25 °C 3.34110 470 ki2
Tolerance on Rue - value 2%, 23% . 25%

Biges - value

2880K 1o 4570K

Tolerance on By - value . 05%1023%
Maximum dissipation 500 m\W

7 |
Dissipation factor & Eilmr\\':';}"'(x

5 mW/

(for indcemation only)

({for Ras value < 630 Q)

Response time

1.2s

Thermal time constant ©
(for indormaticn only)

Operating temperature range

at zero dissipation. continucusly

155

-40°Cto+125°C

at zero dissipation: for short periods <150 °C
at maximum disspaton 0°C1055°C
Climatic category asc. I1EC $0068-1 2012556
Weight *03¢g

the photoresistor, is a variable resistance device. However, what makes the thermistor differ from the

photoresistor is that instead of changing resistance relative to the light incident on its surface, the

thermistor changes its resistance based on the temperature of its surface. The consequence of that is

that when the surface of the thermistor becomes cold,
its resistance goes up, and conversely, when the surface
of the thermistor becomes hot the resistance goes
down. The graph shows the operating characteristics of
our thermistor. As the graph reveals, once the
thermistor enters its operating range, the relationship
between the change in temperature and change in
resistance is relatively linear. The thermistor we

selected for our project is the SEN-00250.

Similarly to the photoresistor, in order to
interface the variable resistor with the basic stamp, an
RC circuit has to be constructed and monitored using
the RCTime function. By calibrating the thermistor with
a know temperature we are able to figure out what

AT
(K)

40 -
{‘ —
/
35 /
3.0 /1/2:—,:
25 / 2
20 '/ 4)r“'
7727
1.5 P /// |
S S 7./ 741
R 77
N
0.5 /
N
f340 0 40 80 120 160
T{°C)

temperature the thermistor is sensing based on the return value from the RCTime function.

H-bridge

Another unique component to our project is the use of an h-bridge. When running a DC motor,
such as the one we use to operate the robot arm, a large amount of current is needed, especially on
start up. If run directly off the basic stamp the current would be too high and would short out the basic
stamp’s circuitry. To circumvent this from happening a
device called an H-bridge is used. The component runs
off the 5v source of the basic stamp, but in addition has
a separate and isolated power source connected to it to
run a device requiring higher currents than the stamp
can provide, such as a DC motor. The 5v source from the
basic stamp is used to control MOFSET transistors within

the H-bridge. By opening and closing specific transistors
in specific patterns the H-bridge is capable of directing
the higher source current through either direction in the
motor. This allows the motor direction to be controlled

using only the limited current 5V source from basic
stamp. With the Basic Stamp pin control it’s possible to set the proper combination of High and Low
states at the pins of the H-Bridge in order to make the current flow in one or other direction through the
motor, making it run forward or backwards.

Some of the more common components used in our project and not mentioned in this section
include LED’s to provide a trigger for the photoresistors, resistors and capacitors to complete circuits for
the outboard components and servo motors to control the driving motion of the robot and opening and
closing of the robotic arm.

Capabilities
The device can be programmed to perform a variety of functions. In this prototype, 3 functions were
implemented. They are better explained as follows.

Get the coldest can/sample

In this function, the coldest can/sample among the set is picked up. For each existing sample the
temperature is recorded and then compared to the lowest one. After all samples have been tested, the
robot gets back to the position of the coldest one, picks it up and puts in the position for the user to get
it.

Get a cold can/sample

A cold reference is set. The device searches for the first sample to be in a temperature under this
reference temperature. When it is found, the robot picks up the sample and, similarly to the previous
function, puts it on the position where the user can get it.

Check freezing

This last function is responsible for checking if the samples are below a pre-set freezing temperature.
This is a particular especial function, since the freezing temperature reference can be set to any desired
temperature, and thus a researcher is able to have feedback of the actual condition of the samples
which temperatures are expected not to go below a certain reference. If any of the samples’
temperatures reaches the freezing temperature, a warning is reported to the user.

Bill of materials
The following table contains all the materials used to build the device, as well as their costs.

Component Quantity Cost per unit Cost (9)
($)
Photoresistor 4 1.99 7.96
LED 4 0.50 2
Thermistor 1 1.95 1.95
H-Bridge 1 2.95 2.95
Servo-motors 2 12.99 25.98
DC Motor 1 20 20
Buttons 3 0.50 1.5
Op-Amp IC 1 0.55 0.55
0.01puF Capacitor 3 0.15 0.45
1u Capacitor 1 0.75 0.75
Resistors 12 0.20 2.4
Battery holder 2 1.99 3.98
AA Batteries 6 2.50 15
Basic Stamp 2 1 49.99 49.99
LCD Display 1 25 25
Board of 1 69.99 69.99
Education
Breadboard 2 10 20
Wire pack 1 10 10
K'nex set 1 30 30
Total 290.45

The overall cost was calculated based on the commercial price of each component. If however the
device is going to be produced in large scale, the price would probably be much lower. First of all due to
large volume discounts for most of the components. Besides that, in a real large scale production, the
hardware would have to be modified, since K'nex is very good for prototyping but not for a final
product. Thus, 3D print of parts as well as aluminum and steel fabricated sections of the robot should be
considered, which would make the hardware itself stronger and even cheaper, since these materials are
widely used and their easy handling and fast production contributes cost reduction.

Most of the components used in this project are produced by Parallax. The cost reduction for large
guantities is approximately of 10%. The expected cost reduction for the other components can also be
expected to follow the same standard. The only possible bigger reduction would be the hardware
production since an automated factory as well as cheaper materials yields less costs than K’'nex.

In particular, the unit price for a large amount of Basic Stamps is cut by half. For the board of education,
the reduction is 20%. Considering all the components and parts involved on the production of the
robotic device, the large production price is estimated to be around US$ 220,00.

Circuit

Buttons

Three buttons are present on the system. One of them is used to choose the function that the system
will perform, the second is to enter that option and the third one is used as an emergency button. When
this last button is pressed, all the functions that the device is performing are stopped. The circuit used
for the buttons is shown on Figure 1.

+V

BS Pin = V)

Figure 1: Buttons — NO, Active Low

All three buttons are normally open, active low.

LCD Display

A LCD display is used to show to the user the options that the device can perform and also show
warnings, such as “No cans on the fridge”. The display used was the one produced by Parallax, 2x16,
non-backlit. The connections for this component are shown in Figure 2.

+V

BS Pin —ed RX

ene Parallax LCD

Figure 2: LDC display connections

Servo Motors

Two Parallax servo motors are responsible for two actions: running on the trail and opening/closing the
claw to pick up cans or samples. The first one is a continuous servo, while the second has limited angular
movement. Both are controlled using PULSOUT command, as better explained on the Programming
section. On Figure 3 it is possible to see how they are connected to Basic Stamp.

+V
A
Continuous - Trai
BS Pin
"‘.
BS Pin—

| Red

Figure 3: Servo motors connections

DC Motor

For the purpose of putting the device’s arm up and down, a DC motor was used. It was chosen, instead
of a servo, due to the easier attachment of this motor to the K’'nex structure. Furthermore, since for
performing opposite actions such as putting the arm up and down requires the motor to be run in
opposite directions, an H-Bridge was used to make the current flow either on one or the other direction

10

on the motor. Also, the motor has to be powered by an external source, a 6V battery pack, since it may
require more current to work than the Basic Stamp can provide. Also, it was noticed that the voltage of
the battery pack had to be greater than the one provided by BS in order to the H-Bridge work properly.
Figure 4 presents an schematic of the circuit used for the DC motor.

BS Pin« . [: uj,:| 1
BS Pin « X Ez 15 []-Es

5 SN754410,, }—

BS Pin = p—

- rrrra
J

Figure 4: DC Motor + H-Bridge

Position recognizing and sample finding system

Various samples can be placed on the fridge and the device has to know where to stop in order to reach
them. Also, a good amount of time can be saved if the device only stops at the positions where there are
samples, skipping the ones where there’s nothing. Thus, in each position where a sample can be placed
there is a photoresistor in a RC circuit. As previously described, when there is no sample in a spot, the
resistance of the photoresistor gets lower, due to the presence of light. When a sample is placed, the
darkness makes the resistance go higher. With this, it is possible to save the positions where there are
samples and avoid stopping on the ones that no sample is placed.

11

0.01pF

Ky
Mt

vV

{
\
\

J/

Figure 5: Position photoresistors circuit

Besides that, in front of each position, on the trail, a lit LED is placed so that the device can count how
many positions it has passed through. In order to detect a lit LED, another photoresistor, attached to the
device, is used. This one, however, is connected to an Op-Amp with positive feedback instead of a RC
circuit. The purpose of this is that it would be a bad option to place between every line of code a portion
of code to check the time of charging of the capacitor, since it isn’t possible to run programs in parallel
using BS. Thus, the photoresistor was connected to an Op-Amp circuit working as a comparator. A
reference voltage was defined in order to tell if there is LED light or not reaching the photoresistor.
Thus, the output of the Op-Amp is either zero or one, when there is LED light or not.

BS Pin

&
on

Figure 6: Op-Amp circuit for photoresistor-based LED detecting

12

This circuit with positive feedback is used to avoid chattering. The resistance of the photoresistor varies
approximately from 2.5kQ to 4kQ when there is no LED light and when there is, respectively. Thus, this
circuit was made in order that the comparison value is 2V and the upper and lower thresholds are,
respectively, 1.9V and 2.07V.

The LEDs were connected as shown below. Since in the prototype there are 3 slots, there are 3 LEDs for
them and one more to indicate the position where the sample has to be dropped. The LEDs are
connected in parallel and are powered by a 3V battery pack.

Sy
3V Battery Pack

Figure 7: LED connections

Thermistor

The device’s temperature sensing is made using a thermistor. Like the position photoresistors, the
thermistor is connected in a RC Circuit. It take some seconds to reach steady-state, that is, for the
resistance to stop varying. The circuit for the thermistor connection is show in the following figure.

13

1uF :

BS Pin

Figure 8: RC circuit — Thermistor

Mathematical background

Resistor-Capacitor circuit - RCTime

As previously mentioned, the RCTime function is capable of recording the time for the capacitor in a RC
circuit to charge from 0 to 3.6V. The basic circuit for this purpose is the one of Figure X. Basically, this is
a first order system. It can be shown through the use of Laplace and inverse Laplace transform on the
circuit’s mathematical model that the time for this charging is given by

t = —RC *In (ﬂ) 1)

5V
Where t is the charging time, R is the resistance value, C, the capacitance, 1.4V is the threshold for High-
Low transition on the BS and 5V is the voltage supply on which the RC circuit is connected. Therefore,
the time for charging the capacitor varies linearly with the value of R and C, since In(1.4/5) is a constant.

Op-Amp circuit - Hysteresis circuit

The Op-Amp circuit used in this project is a comparator with positive feedback to avoid chattering. The
values of the resistances are chosen in order to set an upper threshold and a lower threshold. Given a
comparison reference set as the non-inverting voltage, the upper threshold should be higher than this
value and the lower threshold, lower. The proximity between these two values can be configured by just
varying the values of the resistances. Given the following circuit,

14

rR1 > &V

< '_.."-‘ “""___._+ g
R2 < Vi R . i

A A

A
Figure 9: Comparator with positive feedback
it is possible to show that the upper threshold is defined for V, through the expression

VoR + V4Rg

>V (2
R+ Ry @)

Where in this case V, = OV, since the voltage output should go from low to high. For the lower
threshold, the expression would be

VoR + V4R
—<V. (3

R + Rf (3
In this case, V, = 5V, since I/, goes from high to low.

This effect is called hysteresis and is very good to avoid chattering, which could make the entire device’s
operation go wrong. This effect is better visualized on the next figure.

Hysteresis phenomenon

o I j

Vo Vor
Figure 10: Hysteresis Phenomenon

15

Current limitation - BS protection
One of the main issues on any project involving the use of a microcontroller like the Basic Stamp which
has several general purpose 1/0 pins is the pin protection. All the connections should be planned not to
exceed the maximum current that each pin can handle. When only one pin is used, it is capable of
sinking 25mA and sourcing 20mA. When a group of 8 pins is used, the group can sink 50mA and source
40mA. Thus, in order not to exceed the maximum current at a pin, the protection resistor’s resistance
has to be calculated through
%4
R = (4)

I max

Where V is usually 5V, the BS power supply. And |, is the maximum current that can go into or out a
pin, and depends on the components used and the number of pins working at the same time.

Operation

The robotic arm is developed to work in cold, closed environments. For its proper operation, the
surroundings must be clean and free of any kind of obstacles that could stop it from moving on the
trails, or hitting objects while moving the arm. During the execution of a function, the robot must not be
touched or pushed in any ways. Unexpected contact may cause permanent malfunction.

Selecting a Function

To start the operation, the robot must be turned on. This is done by changing the position of the
switch from 0 to 1. The LCD display will then list the functions. The user must wait until the message
“Select Function” is shown to start pressing the buttons. Button 1 is used to select the function, where
pressing the button increases the number until the user reaches the desired number. Button 2 enters
the selection and starts operation.

16

Placing the Cans

To make sure the arm will detect, sense, and lift the cans properly, every can must be placed
carefully on the determined spot. There are 3 possible positions, each one with its own circular pad. The
user must place the can on the Holder (supplied) and, then, position it adequately on the pad. The arm
will automatically detect the positions and perform the selected functions. The Holder makes possible
for the robot to lift the can, being an important part of the product.

Emergency Button

Even taking all precautions, errors or misbehaviors may occur. If any malfunction may cause
harm to the robot, users or surrounding environment, the emergency button must be pressed. It
immediately stops the arm from functioning. To make it keep working from where it stopped, the
emergency button must be pressed again. Do not press the reset button!

Programming

The Basic Stamp has a restriction of only 24 bytes of memory for code and variables. To make
sure this amount of memory would be enough, the code was built to be as modular as possible. With
this, subroutines were created to perform repetitive actions that are called from several parts of the
code, reducing its size. The constant branches may slow the process for some microseconds, since the
pipeline needs to be flushed every time a branch happens. The arm doesn’t have any severe time
restriction, though, so the trade-off is reasonable.

17

A short explanation of some important parts of the code is shown below. The full code can be
found under Appendix A.

Main
The main loop of the program is very simple, only calling a sequence of subroutines that are
responsible for determining which actions should be taken.

MAIN: 'structure

DO

GOSUB START 'subroutine that displays the operational options of the robot
'and asks to choose one of them

GOSUB OPTION 'subroutine in which it is possible to choose the option and
'submit it to the robot controller

GOSUB CHECKCANS 'subroutine that checks in which positions there are cans and
'in which there are not

IF POSCANS = 0 THEN GOTO NOCANS 'if no can was found in CHECKCANS, then system
'alarms that there's no can on the fridge

IF FUNCTION = 1 THEN GOSUB GETCOLDEST 'depending on the option selected, the

'program is redirected to a different subroutine
IF FUNCTION = 2 THEN GOSUB FIRSTCOLD
IF FUNCTION = 3 THEN GOSUB FREEZING

LOOP

As noticed, it is in loop, which means it will restart after functions is executed.

Start

This is the first subroutine called by Main. It is responsible for showing the user which functions
are available, by displaying them and their respective numbers on the LCD screen.

START:

PAUSETIME = 10

SEROUT LCDPIN, 84, [22, 12] 'ACTIVATE LCD, CLEAN SCREEN
PAUSE 5

SEROUT LCDPIN, 84, ["Select an", 13, "option:"]
GOSUB PAUSESUB

SEROUT LCDPIN, 84, [12]

PAUSE 5

SEROUT LCDPIN, 84, ["1:COLDEST CAN"]

GOSUB PAUSESUB

SEROUT LCDPIN, 84, [12]

PAUSE 5

SEROUT LCDPIN, 84, ["2:ANY COLD CAN"]

GOSUB PAUSESUB

SEROUT LCDPIN, 84, [12]

PAUSE 5

SEROUT LCDPIN, 84, ["3:CHECK FREEZING"]

GOSUB PAUSESUB

SEROUT LCDPIN, 84, [12]

PAUSE 5

SEROUT LCDPIN, 84, ["Press buttons", 13, "to select"]
GOSUB PAUSESUB

RETURN

18

Option

After the Start subroutine is over, the user is allowed to select the desired function. The Option
subroutine checks if any button is pressed, detects it and performs operations accordingly.

OPTION: 'SELECTED INSTRUCTION

SEROUT LCDPIN, 84, [12]

PAUSE 5

SEROUT LCDPIN, 84, ["Function: ", DEC FUNCTION] 'prints on the LCD display the number
'of option while it's being selected

DO

IF (BUTTON1l <> PRVSVALUEl) AND (PRVSVALUEl = 0) THEN 'the buttons 1 and 2
'are Normally Open, Active Low
'button 1 changes
'function and has to be released in order to the command to be processed

FUNCTION = FUNCTION + 1 'this is the purpose of
'checking if the logic state of the button is different of

IF FUNCTION > 3 THEN FUNCTION = 1 'the previous one
' (PRVSVALUE)

SEROUT LCDPIN, 84, [138, DEC FUNCTION]

ENDIF

PRVSVALUE1l = BUTTON1
PAUSETIME = 2

GOSUB PAUSESUB

LOOP UNTIL BUTTON2 = 0 'When button 2 is pressed, executes the selected
'functionality

SEROUT LCDPIN, 84, [12]

PAUSE 5

SEROUT LCDPIN, 84, ["Function", 13, "selected: ", DEC FUNCTION] 'Keeps displaying
'the function selected while running

RETURN

The majority of the subroutine runs inside a LOOP cycle. This checks if button 1 was pressed,
incrementing the value of the function to be selected. The PRVSVALUE1 variable is used to determine
whether the button was pressed and changed its state to “not pressed”, allowing the program to only
detect it once, after the user releases it. The LOOP keeps running until user presses button 2, which will
then show the selected function and return to main.

Checkcans

When the function is selected, the arm checks the can spots to recognize which ones have cans and
which don’t. This is done by reading the RC circuit and comparing it to a threshold: when the time is
higher than the threshold, there is a can, otherwise, no cans are places on that spot.

CHECKCANS: 'CHECKS IF THERE ARE CANS ON THE POSITIONS. IF YES, SETS THE BIT OF THE
'VARIABLE TIME REFERRED TO THAT POSITION

19

PAUSETIME = 1

HIGH POS1 'RC circuit was used
GOSUB PAUSESUB

RCTIME POS1, 1, TIME

IF TIME > 500 THEN POSCANS = POSCANS | %1

HIGH POS2

GOSUB PAUSESUB

RCTIME POS2, 1, TIME

IF TIME > 10 THEN POSCANS = POSCANS | %10 'different time values for
'different photoresistors

HIGH POS3

GOSUB PAUSESUB

RCTIME POS3, 1, TIME

IF TIME > 500 THEN POSCANS = POSCANS | %100

RETURN

Due to differences on the photo resistors, each circuit needs a different threshold. The bits of the
variable POSCANS are set according to the detected cans. This means that, for example, there’s a can on
the third spot, the third bit of this variable will be set. This procedure allows the arm to easily check
where to stop, as further shown.

Nocans

The Nocans subroutine is very simple. Basically, what is does is check the variable POSCANS. If it is zero,
which means no cans were detected, displays an alert message and returns to the beginning of the
program.

NOCANS: 'If no can is detected, warning is shown

SEROUT LCDPIN, 84, [12]

PAUSE 5

SEROUT LCDPIN, 84, ["NO CANS!"]
PAUSETIME = 10

GOSUB PAUSESUB

GOTO MAIN

General Subroutines
These are functions that are used several times through the code. Making them subroutines avoids the
need of placing the same repetitive code in different places on the program, saving memory space.

e leaveled:
When the robot stops in a position, it is always sensing that it is above an LED. So, after doing what it

should do in that position, it needs to leave the LED area before sensing again when to stop. This
function makes the arm move on the trail for a while, making sure that happens.

LEAVELED: 'this function makes the movement servo run for a while before
'sensing if it is on a spot or not

FOR X = 0 TO 100 'this makes possible to use DO LOOP UNTIL function to sense
'position

IF BUTTON3 = 0 THEN GOSUB EMERGENCY

20

PULSOUT RUN, FORWARD
PAUSE 20

NEXT

RETURN

e Armdown:

Function responsible for making the arm go lower, until the can position. A DC motor is used, so the
control is done with an H-Bridge. First we need to enable it, and then select the pins that should be high
and low, in order to run the motor to the correct direction. These states should be kept for a
determined amount of time. Notice that, when there is a can, the time is lower, since it pushes the arm
down.

ARMDOWN : 'function that lowers the arm until the can position

HIGH CSARM 'enables the h-bridge

LOW PINARMUP 'sets the right pins so that the motor runs on the desired direction
HIGH PINARMDOWN

IF HASCAN = 1 THEN 'if there is a can, the weight pushes the arm down, needing

'less time to get to the position
PAUSETIME = 45
GOSUB PAUSESUB
ELSE
PAUSETIME = 53
GOSUB PAUSESUB

ENDIF
LOW CSARM 'disables h-bridge
LOW PINARMDOWN 'sets pin as low
RETURN

e Armup:

Similar to the Armdown function, but makes the arm go back to the highest position by selecting
different pins of the H-Bridge. The time here is higher when there’s a can, since it pulls the arm down.

ARMUP: 'function that moves the arm up until the highest position
HIGH CSARM 'enables the h-bridge
LOW PINARMDOWN 'sets the right pins so that the motor runs on the desired direction
HIGH PINARMUP
IF HASCAN = 1 THEN 'if there is a can, the weight pulls the arm down, needing more
'time to get to the position
PAUSETIME = 62
GOSUB PAUSESUB
ELSE
PAUSETIME = 61
GOSUB PAUSESUB

ENDIF

LOW CSARM 'disables h-bridge
LOW PINARMUP 'sets pin as low
RETURN

e Closeclaw/Openclaw:

To open and close the claw, we basically need to send the servo the desired position. This is used via
PWM, determining the time of the high pulse. The servo recognizes and runs until the position set.

21

CLOSECLAW: 'sends PWM pulses to the claw's servo, closing the claw
FOR X = 1 TO 100
IF BUTTON3 = 0 THEN GOSUB EMERGENCY
PULSOUT CLAW, 650
PAUSE 20
NEXT
RETURN

The Openclaw function is the same, changing only the value 650 to 300.
e Pausesub:

Since an emergency button was implemented, we need to check it all the time to make sure the
program stops running whenever it is pressed. Pause commands make the code be stuck for a while, not
allowing the button to be sensed. This way, instead of leaving the program frozen on a long pause
command, we divided each pause in small 100 milliseconds parts. Every time it loops, it checks if the
button was pressed.

PAUSESUB: 'function that enables pausing for a defined time while sensing
'emergency button
FOR X = 1 TO PAUSETIME
PAUSE 100
IF BUTTON3 = 0 THEN GOSUB EMERGENCY
NEXT
RETURN

The variable Pausetime must be set before calling the function. It determines the amount of loops,
increasing or decreasing the pause according to the needs.
e Emergency:

This is a handler for the act of pushing the emergency button. It doesn’t do anything, just waits for the
button to be released and pushed again, meaning that the program is ready to go back to where it
stopped.

EMERGENCY:

DO

LOOP UNTIL BUTTON3
DO

LOOP UNTIL BUTTON3
DO

LOOP UNTIL BUTTON3
RETURN

Il
=

Il
o

Il
=

e Tostart:

This function takes the arm back to the position zero, where it started. It basically runs the robot
backwards until an LED is found. It, then, decrements the position and checks if it's zero. If not, keep
running. If yes, checks if there’s a can being carried. Drops the can and goes back to main.

TOSTART: 'this function leads the arm back to the start position
FOR X = 0 TO 100 'as in the LEAVELED subroutine, runs for a short period so that

'the robot doesn't get stuck on a LED position
IF BUTTON3 = 0 THEN GOSUB EMERGENCY

22

PULSOUT RUN, BACKWARD
PAUSE 20
NEXT

DO 'runs until next spot is sensed
IF BUTTON3 = 0 THEN GOSUB EMERGENCY
PULSOUT RUN, BACKWARD
PAUSE 20

LOOP UNTIL CAN = STOPVALUE

IF POSITION = 0 THEN 'if position is start point, checks if there is a can
IF HASCAN = 1 THEN 'if so, drops the can
GOSUB DROP
RETURN
ENDIF
ELSE 'else, keeps moving until stop point

POSITION = POSITION - 1
GOTO TOSTART
ENDIF
RETURN

The Three Functions

Get the coldest can

This function is divided in two subroutines. The first one, called Getcoldest, is responsible for the
movements and checking temperature, until the coldest can is found. The other, Pickcan, is responsible
for picking the coldest can after it has been determined. The explanation for some important parts of
each subroutine can be seen below.

e Getcoldest:

The subroutine will make the arm move on the trail until it finds an LED. It then increments the
position variable and compares it to the values of the bits of variable POSCANS, to check if there is a can
in that position. If not, loops back to Getcoldest, which makes it go to the next LED spot. If positive, goes
on to the next part of the function.

IF POSITION = 1 AND POSITION <> (POSCANS & %1) THEN GOTO GETCOLDEST
IF POSITION 2 AND POSITION <> (POSCANS & %10) THEN GOTO GETCOLDEST
IF POSITION 3 AND POSITION > (POSCANS & %$100) THEN GOTO TOSTART

The arm will go down, close the claw, pause for a time for temperature sensing, and check if it's the
coldest can. If so, stores the position in variable COLDEST and the temperature time value on the
variable LOWERTEMP.

IF LOWERTEMP = 0 THEN 'if this is the first can measured, sets this position
'as the coldest
LOWERTEMP = TEMP
COLDEST = POSITION

ENDIF
IF TEMP > LOWERTEMP THEN 'else, compares the current temperature value to the
'coldest
LOWERTEMP = TEMP 'if current is lower, stores position as coldest

23

COLDEST = POSITION 'values are in time units, so colder means higher value
ENDIF

The claw will then open, and the arm will go up. If the tested position is the last one in which there’s a
can, the subroutine Pickcan will be called. Otherwise, goes back to the start of Getcoldest subroutine.

IF POSITION = 1 THEN 'checks to know if it should keep moving or pick the can
IF POSCANS > 1 THEN 'poscans > 1 means that there are cans on other spots,
'so it shouldn't pick
GOTO GETCOLDEST
ELSE
GOTO PICKCAN 'if there are no cans on the other spots, then picks the
can
ENDIF
ENDIF

Checking the other positions is similar.
e Pickcan:

After the position of the coldest can is determined, Pickcan is called to pick it. This is a very simple
subroutine. It will run backwards on the trails until the position of the coldest can is reached. Then, the
arm will go down, close the claw, go up, and call subroutine Tostart, previously described.

IF POSITION = COLDEST THEN 'if the current position is where the coldest can is
'located, picks the can

GOSUB ARMDOWN

GOSUB CLOSECLAW

HASCAN = 1

GOSUB ARMUP

GOTO TOSTART 'sends the robot back to the start position
ENDIF

Get the First Cold Can

The procedures taken by this function are similar to the ones on Getcoldest. Since we don’t need to
store a position, though, there’s no need for calling the Pickcan subroutine. The cold can is picked when
itis found, branching to the Tostart subroutine to lead the robot back to its initial position and drop the
can. If all the cans are sensed and none of them is cold, displays a message warning that there are no
cold cans and goes back to starting point.

IF POSITION = 1 AND POSCANS = 1 THEN 'checks if there are cans on untested positions

GOSUB NOCOLDCANS 'if not, shows message and goes back to start point
GOTO TOSTART
ENDIF

Procedure for other positions is similar.

Freezing

The movement of this function is just as described previously for the others. This function, though, tests
every can available. If the temperature is below the freezing temperature, a warning message will be
displayed on the LCD screen, stating that the can is freezing.

24

IF TEMP > FREEZETEMP THEN 'if temperature is lower than reference, warns
'that can is freezing/frozen

SEROUT LCDPIN, 84, [12]

PAUSE 5

SEROUT LCDPIN, 84, ["WARNING!"]

PAUSETIME = 10

GOSUB PAUSESUB

SEROUT LCDPIN, 84, [12]

PAUSE 5

SEROUT LCDPIN, 84, ["FREEZING CAN", 13, "ON POSITION ", DEC POSITION]
ENDIF

Development

Although prototyped as a “refrigerator insert”, the automatic refrigerator device can be built
directly into a larger more spacious laboratory refrigerator. When not being used as an insert, the
device can be incorporated into numerous shelves and spaces. This will allow to device to monitor
dozens, if not hundreds, of specimens and cultures. One shortcoming of our device was our limited
access to microcontroller devices. The basic stamp is build with only a limited number of input and
output pins available. This shortcoming severely limits our device’s ability to monitor large amount of
samples.

Another manufacturing hurdle that would need to be overcome for a retail prototype would be
materials. Our robot was build almost entirely out of K'nex. While using K'nex allowed us to build an
operational and fully integrated robot in a short amount of time, it is limited in its compactness and
weight. A robot made entirely of aluminum would be able to be built stronger, lighter and smaller. The
prototype we designed would require a large refrigerator for only a few samples, while a smaller more
compact device would take up a smaller footprint within the refrigerator allowing for more capability. A
properly designed and constructed device wouldn’t take up much more space than the samples it is
programmed to monitor.

In addition, the temperature of the samples we were demonstrating was taken using a
thermistor. While not a rare electrical component, it is not considered to be a mainstream electrical
device. This severely limited our abilities to find a device with the response time and range our device
fully required. We found our thermistor to have a steady state response time of approximately 20
seconds. While adequate for the prototype, in a retail model a quicker and more accurate thermistor
could be used, perhaps one requiring only a few seconds to reach steady state conditions.

Improvements

Even though the emergency button allows the user to stop the execution of the program if a
problem occurs, an accidental reset due to random issues would make the robot lose track of its

25

position. The addition of an arm position, a claw state and track position sensors would solve this issue,
making possible an initialization routine that would take the robot back to a standard initial state.

Additionally, a better organization of the cables, maybe using a bigger breadboard, would make
the prototype a lot better looking, easier to handle, easier to maintain and would avoid problems like
wires unintentionally short-circuited.

Conclusion

The refrigerator robot can prove to be an asset to any biomedical or university lab throughout
the country. The device can allow researchers to focus on important tasks while taking care of ensuring
specimens and cultures are properly taken care of. In addition to increasing productivity and
performance, the device can help insure that laboratory errors are left frequent and more controlled.
Often a researcher will forget about a sample in a refrigerator or not store it in the precise temperature
required. The automatic refrigerator device will remove the various errors associated with precious
specimen temperature control. Once properly constructed and manufactured, the automatic specimen
refrigerator device is a machine that no laboratory will be found without.

26

Appendix A - Code

' {SSTAMP BS2}
' {SPBASIC 2.5}

'Pausetime for functions armup and armdown must be adjusted accordingly

BUTTON1 PIN O
BUTTON2 PIN 1
CSARM PIN 2
PINARMUP PIN 3
PINARMDOWN PIN 4
THERMPIN PIN 5
BUTTON3 PIN 6
POS1 PIN 7
POS2 PIN 8
POS3 PIN 9

CAN PIN 10

LCDPIN PIN 13
RUN PIN 14
CLAW PIN 15

FORWARD CON 740

BACKWARD CON 760

REFTEMP CON 4000 'Temperature of reference to tell if cold
SENSINGTIME CON 5000

FREEZETEMP CON 10000 'Temperature of reference to tell if freezing
STOPVALUE CON 1

PRVSVALUEL VAR Bit
FUNCTION VAR Nib
POSITION VAR Nib
COLDEST VAR Nib
TEMP VAR Word
LOWERTEMP VAR Word
HASCAN VAR Bit

X VAR Byte

POSCANS VAR Nib
TIME VAR Word
PAUSETIME VAR Byte

POSCANS = 0
LOWERTEMP =
POSITION = 0
FUNCTION = 1
PRVSVALUEL =
COLDEST = 0

0

1

MAIN: 'structure
DO
LOWERTEMP = 0
COLDEST = 0

GOSUB START 'subroutine that displays the operational
'options of the robot and aks to choose one of them

GOSUB OPTION 'subroutine in which it is possible to
'choose the option and submit it to the robot controller

GOSUB CHECKCANS 'subroutine that checks in which positions
'there are cans and in which there are not

IF POSCANS = 0 THEN GOTO NOCANS 'if no can was found in CHECKCANS, then

'system alarms that there's no can on the fridge

27

IF FUNCTION = 1 THEN GOSUB GETCOLDEST 'depending on the option selected, the
'program is redirected to a different subroutine

IF FUNCTION = 2 THEN GOSUB FIRSTCOLD

IF FUNCTION = 3 THEN GOSUB FREEZING
LOOP

START:

PAUSETIME = 10

SEROUT LCDPIN, 84, [22, 12] 'ACTIVATE LCD, CLEAN SCREEN
PAUSE 5

SEROUT LCDPIN, 84, ["Select an", 13, "option:"]
GOSUB PAUSESUB

SEROUT LCDPIN, 84, [12]

PAUSE 5

SEROUT LCDPIN, 84, ["1:COLDEST CAN"]

GOSUB PAUSESUB

SEROUT LCDPIN, 84, [12]

PAUSE 5

SEROUT LCDPIN, 84, ["2:ANY COLD CAN"]

GOSUB PAUSESUB

SEROUT LCDPIN, 84, [12]

PAUSE 5

SEROUT LCDPIN, 84, ["3:CHECK FREEZING"]

GOSUB PAUSESUB

SEROUT LCDPIN, 84, [12]

PAUSE 5

SEROUT LCDPIN, 84, ["Press buttons", 13, "to select"]
GOSUB PAUSESUB

RETURN

OPTION: 'SELECTED INSTRUCTION

SEROUT LCDPIN, 84, [12]

PAUSE 5

SEROUT LCDPIN, 84, ["Function: ", DEC FUNCTION] 'prints on the LCD
'display the number of option while it's being selected

DO

IF (BUTTON1l <> PRVSVALUEl) AND (PRVSVALUEl = 0) THEN 'the buttons 1 and 2
'are Normally Open, Active Low
'button 1 changes
'function and has to be released in order to the command to be processed

FUNCTION = FUNCTION + 1 'this is the purpose of
'checking if the logic state of the button is different of

IF FUNCTION > 3 THEN FUNCTION = 1 'the previous one
(PRVSVALUE)

SEROUT LCDPIN, 84, [138, DEC FUNCTION]

ENDIF

PRVSVALUE1l = BUTTONL
PAUSETIME = 2

GOSUB PAUSESUB

LOOP UNTIL BUTTONZ2 = 0 'When button 2 is
'pressed, executes the selected functionality

SEROUT LCDPIN, 84, [12]

PAUSE 5

SEROUT LCDPIN, 84, ["Function", 13, "selected: ", DEC FUNCTION] 'Keeps displaying
'the function selected while running

28

RETURN

CHECKCANS:
'positions.
PAUSETIME
POSCANS

If yes,
1

0

HIGH POS1
GOSUB PAUSESUB

RCTIME POS1, 1, TIME

IF TIME > 500 THEN POSCANS = POSCANS | %1

HIGH POS2

GOSUB PAUSESUB

RCTIME POS2, 1, TIME

IF TIME > 10 THEN POSCANS = POSCANS | %10
'photoresistors

HIGH POS3

GOSUB PAUSESUB

RCTIME POS3, 1, TIME

IF TIME > 300 THEN POSCANS = POSCANS | %100

DEBUG DEC POSCANS, CR

RETURN

NOCANS : 'If no can is detected
SEROUT LCDPIN,
PAUSE 5

SEROUT LCDPIN,
PAUSETIME 10
GOSUB PAUSESUB
GOTO MAIN

84, [12]

84, ["NO CANS!"]

GETCOLDEST: 'in this functionality,
'every can and gets the coldest one

GOSUB LEAVELED
DO
DEBUG BIN CAN, CR
PULSOUT RUN, FORWARD
PAUSE 20
IF BUTTON3
LOOP UNTIL CAN

'runs until dete

0 THEN GOSUB EMERGENCY
STOPVALUE

POSITION POSITION + 1

IF POSITION 1 AND POSITION <>
'there is a can in this position

IF POSITION 2 AND POSITION <>

IF POSITION 3 AND POSITION >
'reach this point.

&

(POSCANS
= (POSCANS &
(POSCANS &
Just for safety

o
°

GOSUB ARMDOWN

GOSUB CLOSECLAW

PAUSETIME SENSINGTIME/100
GOSUB PAUSESUB

'waits fo

29

'checks i1if there are cans on the

sets the bit of the variable time referred to that position

'RC circuit was used

'different time values for different

, warning is shown

the robot checks the temperature of

cts that it is in a can spot

%1) THEN GOTO GETCOLDEST 'Checks if
%10) THEN GOTO GETCOLDEST
100) THEN GOTO TOSTART 'shouldn't

r steady state sensing

HIGH THERMPIN 'temperature sensing
PAUSE 100
RCTIME THERMPIN, 1, TEMP

IF LOWERTEMP = 0 THEN 'if this is the first can measured, sets this position
'as the coldest
LOWERTEMP = TEMP
COLDEST = POSITION

ENDIF
IF TEMP > LOWERTEMP THEN 'else, compares the current temperature value to the
'coldest
LOWERTEMP = TEMP 'if current is lower, stores position as coldest
COLDEST = POSITION 'values are in time units, so colder means higher value
ENDIF

GOSUB OPENCLAW
GOSUB ARMUP

IF POSITION = 1 THEN 'checks to know if it should keep moving or pick the can
IF POSCANS > 1 THEN 'poscans > 1 means that there are cans on other spots,
'so it shouldn't pick
GOTO GETCOLDEST

ELSE
GOTO PICKCAN 'if there are no cans on the other spots, then picks the
'can
ENDIF
ENDIF
IF POSITION = 2 THEN 'same logic as previously described

IF POSCANS > 3 THEN
GOTO GETCOLDEST
ELSE
GOTO PICKCAN
ENDIF
ENDIF
IF POSITION = 3 THEN
HASCAN = 0
GOTO PICKCAN
ENDIF

GOTO GETCOLDEST

LEAVELED: 'this function makes the movement servo run for a while before
'sensing if it is on a spot or not

FOR X = 0 TO 100 'this makes possible to use DO LOOP UNTIL function to sense
'position

IF BUTTON3 = 0 THEN GOSUB EMERGENCY
PULSOUT RUN, FORWARD
PAUSE 20

NEXT

RETURN

PICKCAN: 'function that does the logic for picking the can when getcoldest is
'selected

IF POSITION = COLDEST THEN 'if the current position is where the coldest can is
'located, picks the can
GOSUB ARMDOWN
GOSUB CLOSECLAW
HASCAN = 1
GOSUB ARMUP
GOTO TOSTART 'sends the robot back to the start position
ENDIF

30

FOR X = 0 TO 100 'as in the LEAVELED subroutine,
'that the robot doesn't get stuck on a LED position

runs for a short period so

IF BUTTON3 = 0 THEN GOSUB EMERGENCY
PULSOUT RUN, BACKWARD
PAUSE 20
NEXT
DO 'keeps moving until next position
IF BUTTON3 = 0 THEN GOSUB EMERGENCY
PULSOUT RUN, BACKWARD
PAUSE 20
LOOP UNTIL CAN = STOPVALUE

POSITION = POSITION - 1

GOTO PICKCAN

DROP:
GOSUB ARMDOWN
GOSUB OPENCLAW
GOSUB ARMUP
HASCAN = 0

'drops the can

RETURN

FIRSTCOLD: 'in this subroutine,
'comparing the can's temperature to a referece one

GOSUB LEAVELED

DO 'moves until next position
IF BUTTON3 = 0 THEN GOSUB EMERGENCY
PULSOUT RUN, FORWARD
PAUSE 20

LOOP UNTIL CAN = STOPVALUE

POSITION = POSITION + 1
IF POSITION = 1 AND POSITION <>
'there is a can in this position
IF POSITION = 2 AND POSITION <>
IF POSITION = 3 AND POSITION >

(POSCANS & %1)

(POSCANS & %10)
(POSCANS & %100)

GOSUB ARMDOWN
GOSUB CLOSECLAW
PAUSETIME =

'measure
GOSUB PAUSESUB

SENSINGTIME/100

HIGH THERMPIN
PAUSE 100
RCTIME THERMPIN,

'temperature sensing
1, TEMP
DEBUG DEC TEMP, CR
IF TEMP > REFTEMP THEN
HASCAN = 1
GOSUB ARMUP

GOTO TOSTART
ENDIF

31

THEN GOTO FIRSTCOLD

the robot gets the first cold can it finds,

'checks if

THEN GOTO FIRSTCOLD
THEN GOTO TOSTART

'time for the Thermistor to reach steady state

'if can is cold enough, picks it

GOSUB OPENCLAW
GOSUB ARMUP

IF POSITION = 1 AND POSCANS = 1 THEN 'checks if there are cans on untested
'positions
GOSUB NOCOLDCANS 'if not, shows message and goes back to start
e
point

GOTO TOSTART
ENDIF

IF POSITION = 2 AND POSCANS <= 3 THEN
GOSUB NOCOLDCANS

GOTO TOSTART
ENDIF

IF POSITION = 3 THEN
GOSUB NOCOLDCANS

GOTO TOSTART
ENDIF

GOTO FIRSTCOLD
RETURN

NOCOLDCANS :
'no cold cans

SEROUT LCDPIN, 84,
PAUSE 5
SEROUT LCDPIN, 84,
RETURN
TOSTART:

FOR X = 0 TO 100

'the robot doesn't
IF BUTTON3 = 0

'function that cleans the lcd and shows message saying there are

[12]

["NO COLD CANS!"]

'this function leads the arm back to the start position

'as in the LEAVELED subroutine, runs for a short period so that
get stuck on a LED position
THEN GOSUB EMERGENCY

PULSOUT RUN, BACKWARD

PAUSE 20
NEXT

DO
IF BUTTON3 = 0

'runs until next spot is sensed
THEN GOSUB EMERGENCY

PULSOUT RUN, BACKWARD

PAUSE 20

DEBUG BIN CAN, CR

LOOP UNTIL CAN = STOPVALUE
IF POSITION = 0 THEN 'if position is start point, checks if there is a can
IF HASCAN = 1 THEN 'if so, drops the can
GOSUB DROP
RETURN
ENDIF
ELSE 'else, keeps moving until stop point

POSITION = POSITION - 1

GOTO TOSTART
ENDIF
RETURN

32

FREEZING:
'likely to freeze, that is,
GOSUB LEAVELED
DO
IF BUTTON3 =
PULSOUT RUN, FORWARD
PAUSE 20
LOOP UNTIL CAN = STOPVALUE

POSITION = POSITION + 1

IF POSITION = 1 AND POSITION
'is a can in this position

IF POSITION = 2 AND POSITION

IF POSITION =

GOSUB ARMDOWN

GOSUB CLOSECLAW

PAUSETIME = SENSINGTIME/100
GOSUB PAUSESUB

HIGH THERMPIN

PAUSE 100
RCTIME THERMPIN, 1, TEMP
GOSUB OPENCLAW

GOSUB ARMUP

IF TEMP > FREEZETEMP THEN

'in this subroutine,
below a freezing reference temperature

3 AND POSITION > (POSCANS &

the robot keeps checking if one or more cans is

0 THEN GOSUB EMERGENCY

<> (POSCANS & %1) THEN GOTO FREEZING 'checks if there

<> (POSCANS & %10) THEN GOTO FREEZING

$100) THEN GOTO TOSTART

'time for the Thermistor reach steady state measure

'temperature sensing

'if temperature is lower than reference,

'warns that can is freezing/frozen

SEROUT LCDPIN, 84, [12]
PAUSE 5
SEROUT LCDPIN, 84, ["WARNING!"]
PAUSETIME = 10
GOSUB PAUSESUB
SEROUT LCDPIN, 84, [12]
PAUSE 5
SEROUT LCDPIN, 84, ["FREEZING CAN", 13, "ON POSITION ", DEC POSITION]
ENDIF
IF (POSITION = 1 AND POSCANS = 1) THEN 'checks if there are any untested cans
GOTO TOSTART 'if not, goes to start
ENDIF
IF (POSITION = 2 AND POSCANS <= 3) THEN
GOTO TOSTART
ENDIF
IF (POSITION = 3) THEN
GOTO TOSTART
ENDIF
GOTO FREEZING 'else, keeps testing

RETURN

ARMDOWN :

'function that lowers the arm until the can position

33

HIGH CSARM 'enables the h-bridge

LOW PINARMUP 'sets the right pins so that the motor runs on the desired
'direction

HIGH PINARMDOWN

IF HASCAN = 1 THEN 'if there is a can, the weight pushes the arm down, needing

'less time to get to the position
PAUSETIME = 45
GOSUB PAUSESUB
ELSE
PAUSETIME = 53
GOSUB PAUSESUB

ENDIF

LOW CSARM 'disables h-bridge

LOW PINARMDOWN 'sets pin as low

RETURN

ARMUP: 'function that moves the arm up until the highest position
HIGH CSARM 'enables the h-bridge

LOW PINARMDOWN 'sets the right pins so that the motor runs on the desired direction
HIGH PINARMUP
IF HASCAN = 1 THEN 'if there is a can, the weight pulls the arm down, needing more
'time to get to the position

PAUSETIME = 62

GOSUB PAUSESUB
ELSE

PAUSETIME = 61

GOSUB PAUSESUB

ENDIF

LOW CSARM 'disables h-bridge

LOW PINARMUP 'sets pin as low

RETURN

CLOSECLAW: 'sends PWM pulses to the claw's servo,

'closing the claw

FOR X = 1 TO 100
IF BUTTON3 = 0 THEN GOSUB EMERGENCY
PULSOUT CLAW, 650
PAUSE 20

NEXT

RETURN

OPENCLAW: 'sends PWM pulses to the claw's servo, closing the claw
FOR X = 1 TO 100
IF BUTTON3 = 0 THEN GOSUB EMERGENCY
PULSOUT CLAW, 300
PAUSE 20
NEXT
RETURN

PAUSESUB: 'function that enables pausing for a defined
'time while sensing emergency button
FOR X = 1 TO PAUSETIME
PAUSE 100
IF BUTTON3 = 0 THEN GOSUB EMERGENCY
NEXT
RETURN

EMERGENCY :

DO

LOOP UNTIL BUTTON3
DO

LOOP UNTIL BUTTON3
DO

I
—

I
o

34

LOOP UNTIL BUTTON3 = 1
RETURN

