Automated Robotic Manipulator
Integrated Engineering (A.R.M.IL.E)
Report
Project On A Hollow Robotic Arm Pair Capable Of

Interaction With Environment With Increased
Workspace

Erdong Xiao - N12456325 ME-GY 6933
Armando Granado - N19941172 Professor Vikram Kapila
Sahil Kumar - N18120540 Spring 19

INDEX

1. Background
2. Goal of the project

3. Methods
3.1 Design
3.2 Research
3.3 Kinematics
3.4 Inverse Kinematics
3.5 Workspace
3.6 Object Recognition Using OpenCV
3.7 Hardware Prototype
3.8 Components Used
3.9 Software Used

4. Conclusion
5. Applications
6. Future Work
7. Citation

8. Appendix
8.1 codes for the smaller arm
8.2 codes for the smaller arm

0O NN O W

10
11
13
14
14

14
15
15
15

16
16
19

1. Background

Manipulator Arms:

An automated arm is a kind of mechanical arm, normally

programmable, with comparative capacities to a human arm;

the arm might be the aggregate of the system or might be a

piece of a progressively perplexing robot. The connections of such a
controller are associated by joints permitting either rotational movement,
(for example, in an explained robot) or translational (straight) displacement.
The connections of the controller can be considered to shape a kinematic
chain. The end of the kinematic chain of the controller is known as the end
effector and it is undifferentiated from the human hand

" - - .n
[y
gll: =

Types:
e (Cartesian:

This robot arm has 3 prismatic joints.
e Cylindrical:
The axes of this robot forms a cylindrical coordinate system.
e Spherical robot:
It's axes form a polar coordinate system.
e SCARA robot:
Used for work such as pick and place by two parallel rotary
joints.
e Articulated robot:
A robot whose arm has in any event three rotational joints.
e Parallel robot:
It's arms have concurrent prismatic or rotary joints.
e Anthropomorphic robot:
A robot that is similar to a human hand.

Cylindrical Cartesian

Articulated

Robot workspace:

https://en.wikipedia.org/wiki/SCARA_robot
https://en.wikipedia.org/wiki/Articulated_robot
https://en.wikipedia.org/wiki/Parallel_robot
https://en.wikipedia.org/wiki/Anthropomorphic

Robot Workspace is that volume of room that the end-effector of the
robot or controller can reach. For an answer to exist, the predefined
objective point must exist in the workspace. It is helpful to think about
two meanings of workspace:

Dextrous workspace is that volume of space that the robot
end-effector can reach with all orientations. That is, at each point in
the dextrousworkspace, the end-effector can be arbitrarily oriented.
Reachable workspace is that volume of space that the robot can
reach in at least one orientation.

Clearly, the dextrous workspace is a subset of the reachable
workspace.

The Monte Carlo Method is also a very famous method in the
reinforcement learning, which can have a very powerful application
when the transformation probabilities are not known. We can use the
Monte Carlo method to generate the workspace.

Mechanism 2D Workspace 3D Workspace | Mechanism 2D Workspace 3D Workspace

- | g
.
RRR | Nl .i:/: ks |

2. Goal of the project

Build a robotic manipulator arm that is unique and advantageous all the
same. A hollowed out robotic manipulator pair that can work together to not
only conserve time and power but also improve the workspace that the
robot can go to.

The robotic arm would also need to be smartly designed so as to capture
images and use OpenCV to detect the object in front of the robot to be
picked up and handed off to the other arm. This can have multifaceted uses
and help in many ways.

OpenCV would pickup the location of the object and hand it over to the
propeller which would then use inverse kinematics to go to that point and
pickup the object and hand it off to the other arm behind it.

When not being used for this, the 2 arms would be capable of working
individually.

3. Methods

Design.

Research

Use DH convention to find kinematics.

Find inverse kinematics using 2D planar model.

Figuring out the workspace using the Monte Carlo method.
Object recognition using OpenCV.

Create hardware prototype.

3.1 Design

The design was originally designed using Simscape Multibody on MATLAB
and then refined to give a clear understanding of how the robot would work
in real life scenarios.

The arm links were designed with the following lengths:
Bigger Arm:
e 9inches - Link 1
e 6.5inches - Link 2
e 9inches - Link 3 including gripper

Smaller Arm:
e 9inches - Link 1
e 11.5inches - Link 2 including gripper.

3.2 Research

For Materials and Structure, the research paper “Design, analysis and
fabrication of robotic arm for sorting of multi-materials” was studied and it
was found that metal is the common material in robots due to its strength

https://www.researchgate.net/publication/281642602_Design_analysis_and_fabrication_of_robotic_arm_for_sorting_of_multi-materials
https://www.researchgate.net/publication/281642602_Design_analysis_and_fabrication_of_robotic_arm_for_sorting_of_multi-materials

along with rigidity. Various papers were also used to find the stress factor,
motor type and mechanisms to be taken into consideration.

For this project, acrylic plastic was used as the material due to its strength
and ability to perform basic tasks and prove validity. Along with that
standard servos with appropriate weight lifting capabilities were also used.

For the Physics calculations, research papers were used to consult for the
torque calculations. As for the design process, a research paper named
“Design Analysis And Fabrication Of Robotic Arm For Sorting Of Multi
Materials” was used which gave insight on how big companies and how
their robotic product development works. This was a huge step as it gave a
step by step process of the right way to conduct such research.

3.3 Kinematics

The DH convention was used as shown to find the kinematic solution to this
robot. We design a rotation joint in the base, and for the torso of the
manipulators we design them as a 3 degree of freedoms planar arms. The
DH parameters are as shown above. We multiply each of the

Transformation Matrix together, and then in the result matrix the upper left
corner 3x3 matrix will reflect the orientation of the end-effector and the
upper right corner 3x1 vector will reflect the position of the end-effector.

3.4 Inverse Kinematics

[
I

0 0o 4oy JU =H 9 poyar o 51 2 G
TETL e [o o e [[8 o e ne
I—: 2 g o o0 o

LA BLa e i

o =5 ¢ L4
B oLy 0 Ly
2 LAY |

G =% @ LbprLuba iy
S8 g O HS-L-‘E-HL{%;JI
o - |]

L L R |

.
i LI P I N \];1“.4‘!3:! 5 Ll Flagiz
i =>
o Lo asg ugy o s = L5 s
¥
g §77 7o uby
Y= Lt

[rhtarng @ T AT rhelisalag

L S
L) B
Ak ST et e op), detmzzasats)
“Tf g

x v Latalr -Laofwn gy

i Ak Tﬂ'ﬂ-nﬁmr.ur.s.f.

* Rafals 1 Lada® vlise
P ¥t LSt ¢ har LIS,

= ¥ - [t Lol 4 Lifa i
Y Gomegan =7 - WLet Huarw)) - (o)t oS

sl - s

o T e
(e tl) 4 Bg1,5 Ahetn v ptan (1) ¢ = fo% 50",

‘lf 74P, jee frey.
hetire - A8RI%R) | fletal v - Qdanld

The 2D planar model was used as shown to find the inverse kinematic
solution to this robot, since the third joint is designed to be actuated by DC
motor, which is not convenient to do the position control. We supposed the
third joint is just for doing the slight end-effector orientation adjustment,
moreover, we suppose the desired orientation and the posture of the third
link and joint are already known. Therefore, the theta1 and theta2 will be
variables to be controlled and calculated. Based on that, we build a user
interface, in which whenever we enter the desired position relative to the
origins of the manipulators then the needed servo angles will be
automatically calculated.

3.5 Workspace

The Monte Carlo method was used to determine the workspace using
simulation. This method was based on a stochastic model, in this model the
input is a large amount of random value joint variables arrays, since for
each of the joint variables array we can use forward kinematics to calculate
a possible position of the robot end-effector, the output is a point cloud
cluttered by a lot of possible positions of the end-effector.

The strength of this model is we can distinguish the difference between the
point in the workspace. For instance, for the locations where the points
appear to be sparse, that reflect the singularity. On the contrary, for the
locations where the points appear to be dense, that means in that places,
the robot arm have higher flexibility.

The other strength of the Monte-Carlo method is it could make the
workspace easier to be visualized and solved, compared to those
traditional geometry methods.

3.6 Object Recognition Using OpenCV

Using opencv we were able to blur the camera frames and resize images
taken from pycam. The raspberry pi was able to do this in real time. It

s maximum detection was 9 frames per second, but it was enough for our
system. After the frame was blurred we can convert it to hsv color space.
Next we perform a mask to only retain hsv ranges to allow yellow, green,
and red objects. Ti improve accuracy we the erode and dilate this same
frame.

From here opencyv is able to detect the contours of the above image. After
this opencyv is able to fit a square around the object. Then a small
calculation can be done to calculate the center of the object from the
rectangle’s position, width, and height. However, the center location found
by opencyv is the pixel location. Therefore, the camera must be fixed to
include the proper workspace of the initial robot arm. Once the proper
camera location is found, which encapsulates the whole workspace, it is
recorded. Then after taking four measurements, we can create a proper
equation to convert pixel location to real world (x,y) positions relative the
base frame. 0.0332*Xpixel-2.6758 = Xlocation (In.), and -0.0424*Ypixel +
17.456 = Ylocation(in).Now that the center is calculated we are able to

publish the center point data to Propellor. By using asynchronous
communication via the rx and tx pins on raspberry pi.

3.7 Hardware Prototype

3.8 Components Used

e 10 Acrylic plastic links.

8 Standard servo motors.

2 DC motors.

2 DC motor enabled grippers.
1 Arduino

1 Raspberry Pi

1 RaspiCam

3.9 Software Used
e Propeller IDE

e Arduino IDE
e OpenCV
e Python

4. Conclusion

A hollow robotic manipulator was the main objective. The application of
the arm would be great for environments in which two manipulators are
needed. We discuss this more in depth in the next part. However, the robot
requires much power to actuate. Also, stronger motors and a redesign are
need for this prototype. mounting the motors on the link adds too much
weight to the system. If the motors could be mounted on the floor and a
system was created to actuate the joints the robot would require less
power, and have a greater size workspace. If a rigid link could connect the
parallel joints, then half motors would be needed as well. The rigid joint
would still preserve the hollowness, which would allow one arm to go in
between the other.

Propellor is more than sufficient in powering the motors. By utilizing the
cogs, we can actuate all motors at the same time. thus reducing lag and
maintain rigidness between parallel joints. Arduino was proper to control
the h-bridges needed for the system’s DC motors. Finally, raspberry pi had
enough ram to process the center point of the object and send it propellor.
If more time was had the integration of all three would work smoothly.

5. Applications

Required Mobility (KUKA Omnirob),

Required Precision (Da Vinci Surgical Robot),
Quiality and quantity of work for low cost,

Low power consumption.

Surgical robots - Doctor Nurse Pair.

e Some applications might require just speed (Smaller arm), some just
strength (Bigger arm) and some both, with precision.

6. Future Work

Making it structurally sound.

Further research on applications and parts.

Mount motors on the base, to avoid unnecessary added weight.
rigid links between joints to half the amount of servo motors needed.

7. Citation

[1] https://www.researchgate.net/publication/281642602_Design_analysis_
and_fabrication_of robotic_arm_for_sorting_of multi-materials

[2] https://www.researchgate.net/publication/289674591 DESIGN_AND _
DEVELOPMENT_OF A MECHANISM_OF ROBOTIC_ARM _FOR _LIFTI
NG_PART5

[3] http://www.cs.cmu.edu/~ylpark/publications/Shin_SAGE_IJRR_2010.pdf
[4] http://vigir.missouri.edu/~gdesouza/Research/Conference CDs/IFAC _
ICINCO_2010/ICINCO/ICINCO/Robotics%20and%20Automation/Posters/|
CINCO_2010_220_ CR.pdf

[5] http://users.ox.ac.uk/~kneabz/Stress4 mt07.pdf

[6] https://www.amci.com/industrial-automation-resources/plc-automation-
tutorials/stepper-vs-servo/

[7] http://www.robotoid.com/howto/materials-for-robot-building-an-
introduction.html

[8] https://skyciv.com/education/types-of-supports-in-structural-analysis/

[9] http://www.robotics.stanford.edu/~ang/papers/icral1-LowCostCompliant
Manipulator.pdf

[10] https://www.builditsolar.com/References/Glazing/physicalproperties
Acrylic.pdf

[11] https://www.engineersedge.com/strength_of materials.htm

8.Appendix

8.1 codes for the smaller arm

#include "simpletools.h" // Include simple tools

#include "servo.h"

unsigned int stack1[40+25];

static volatile int Acc,pin,angle1,angle2,angle11,angle22,ag0,ag1;
unsigned int stack2[40+25];

unsigned int stack3[40+25];

unsigned int stack4[40+25];

void motor1(void *par);
void motor2(void *par);

int main() // Main function
{

set_direction(0,1);

int gripper;

/I Add startup code here.

ag0=900;

ag1=900;

/Iservo_angle(14,ag0);

/[servo_angle(15,ag0);
();
()

//[servo_angle(16,ag1
/[servo_angle(17,ag1

while(1)
{

float theta1,
float theta2,;
float s2;

float c2;

float t1;

float L1;

float L2;
float x;

float y;
L1=9;L2=11.5;
/IL1=6.5;L2=9;
print("Please enter the desired position:\n");
print("x=");
scanf("%f",&x);
print("y=");
scanf("%f",&y);

if(y>0)

{
c2=(pow(x,2)+pow(y,2)-pow(L1,2)-pow(L2,2))/(2*L1*L2);
s2=sqrt(1-pow(c2,2));
t1=((L2*c2+L1)*(y/x)-L2*s2)/((L2*c2+L1)+(y/x)*L2*s2);
theta2=asin(s2)*180/PI;

theta1=atan(t1)*180/PI;

}

if(y<0)

{

y=-y;
c2=(pow(x,2)+pow(y,2)-pow(L1,2)-pow(L2,2))/(2*L1*L2);
s2=sqrt(1-pow(c2,2));
t1=((L2*c2+L1)*(y/x)-L2*s2)/((L2*c2+L1)+(y/x)*L2*s2);
theta2=-asin(s2)*180/PI;

theta1=-atan(t1)*180/PI,

}

if(c2>1]|c2<-1)

{print("the position is outside the workspace\n\n");}
else

{

print("the deisred servo angles are:\n");
print("theta1=%f\n" theta1);
print("theta2=%f\n",theta2);

ag0=900+10*theta1;

ag1=900+10*theta2;

/I cogstart(&motor1, NULL, stack3,sizeof(stack3));
/I cogstart(&motor2, NULL, stack4,sizeof(stack4));
print("Do you want to use the gripper? If yes type 1, if no type 0.\n");
print("gripper=");

scanf("%d",&gripper);

print("\n");

if(gripper==1)

{

high(0);

high(1);

print("Sent\n");

pause(100);

low(1);

low(0);

}

if(gripper==0)

{

high(0);

low(1);

print("Sent2\n");

pause(100);

low(1);

low(0);

}
}

// Add main loop code here.

}

void motor1(void *par1)

{

servo_angle(14,ag0);
servo_angle(15,1800-ag0);
pause(10);

}

void motor2(void *par2)

{

servo_angle(16,ag1);
servo_angle(17,1800-ag1);
pause(10);

¥

8.2 codes for the bigger arm

#include "simpletools.h" // Include simple tools

#include "servo.h"

unsigned int stack1[40+25];

static volatile int Acc,pin,angle1,angle2,angle11,angle22,ag0,ag1;
unsigned int stack2[40+25];

unsigned int stack3[40+25];

unsigned int stack4[40+25];

void motor1(void *par);

void motor2(void *par);

int main() // Main function
{

set_direction(0,1);

int gripper;

// Add startup code here.
ag0=900;

ag1=900;

//[servo_angle
/[servo_angle
/[servo_angle
/[servo_angle

14,a90);
15,ag0);
)
)

16,ag1
17,ag1

A~ A~ A~ A~

while(1)

{

float theta1;
float theta2,;
float s2;

float c2;

float t1;

float L1;

float L2;

float x;

float y;
/IL1=9;L2=11.5;
L1=6.5;L2=9;
print("Please enter the desired position:\n");
print("x=");
scanf("%f",&x);

print("y=");
scanf("%f",&y);

if(y>0)

{
c2=(pow(x,2)+pow(y,2)-pow(L1,2)-pow(L2,2))/(2*L1*L2);
s2=sqrt(1-pow(c2,2));
t1=((L2*c2+L1)*(y/x)-L2*s2)/((L2*c2+L1)+(y/x)*L2*s2);
theta2=asin(s2)*180/PI;

theta1=atan(t1)*180/PI;

}

if(y<0)

{

y=-y;
c2=(pow(x,2)+pow(y,2)-pow(L1,2)-pow(L2,2))/(2*L1*L2);
s2=sqrt(1-pow(c2,2));
t1=((L2*c2+L1)*(y/x)-L2*s2)/((L2*c2+L1)+(y/x)*L2*s2);
theta2=-asin(s2)*180/PI;

theta1=-atan(t1)*180/PI,

}

if(c2>1]||c2<-1)

{print("the position is outside the workspace\n\n");}

else

{

print("the deisred servo angles are:\n");
print("theta1=%f\n",theta1);

print("theta2=%Tf\n" theta2);

ag0=900+10*theta1;

ag1=900+10*theta2;

Il cogstart(&motor1, NULL, stack3,sizeof(stack3));

/I cogstart(&motor2, NULL, stack4,sizeof(stack4));
print("Do you want to use the gripper? If yes type 1, if no type 0.\n");

print("gripper=");

scanf("%d",&gripper);
print("\n");
if(gripper==1)
{

high(0);
high(1);
print("Sent\n");
pause(100);
low(1);

low(0);

Y
if(gripper==0)
{

high(0);
low(1);
print("Sent2\n");
pause(100);
low(1);

low(0);

Y

}

// Add main loop code here.

}

}

void motor1(void *par1)
{

servo_angle(14,ag0);
servo_angle(15,ag0);
pause(10);

}

void motor2(void *par2)

{

servo_angle(16,ag1);
servo_angle(17,1800-ag1);
pause(10);

}

8.3 codes for the grippers

void setup() {

// put your setup code here, to run once:
Serial.begin(9600);
pinMode(2,0UTPUT);
pinMode(3,0UTPUT);
pinMode(4,0UTPUT);
pinMode(5,0UTPUT);
pinMode(6,0UTPUT);
pinMode(7,0UTPUT);
pinMode(8,INPUT);
pinMode(9,INPUT);
pinMode(10,INPUT);
pinMode(10,INPUT);
int i=0;
int k=0;
int a=0;
int b=0;
int c=0;
int d=0;

/[digitalWrite(3,HIGH);
//digitalWrite(2,LOW);
//Serial.print(a);
//delay(750);

digitalWrite(2,LOW);
digitalWrite(3,LOW);
digitalWrite(4,LOW);
digitalWrite(5,LOW)

bl

}

void loop()

{
digitalWrite(6,HIGH);
digitalWrite(7,HIGH);

/lint a;

int a = digitalRead
int b = digitalRead
int ¢ = digitalRead
int d = digitalRead

8);
9);
10);
11);

A~ N N N

inti=1;
int k=1;
/[put your main code here, to run repeatedly:

if(@==HIGH && b==HIGH)
{

int a = digitalRead(8);

int b = digitalRead(9);

Serial.print(a);
Serial.print(b);

digitalWrite(3,LOW);
digitalWrite(2,HIGH);
Serial.print(a);

delay(100);
digitalWrite(2,LOW);
digitalWrite(3,LOW);
i=2;

}

else if(@a==HIGH && b==LOW)
{int a = digitalRead(8);
int b = digitalRead(9);

Serial.print(a);
Serial.print(b);

digitalWrite(3,HIGH);
digitalWrite(2,LOW);
Serial.print(a);
delay(100);
digitalWrite(2,LOW);
digitalWrite(3,LOW);
i=2;
}
if(c==HIGH && d==HIGH)
{
int ¢ = digitalRead(10);
int d = digitalRead(11);

Serial.print(c);
Serial.print(d);

digitalWrite(4,LOW);
digitalWrite(5,HIGH);
//Serial.print(c);
delay(100);

digitalWrite(4,LOW);
digitalWrite(5,LOW);
k=2;

}

else if(c==HIGH && d==LOW)
{int ¢ = digitalRead(10);
int d = digitalRead(11);

Serial.print(c);
Serial.print(d);

digitalWrite(4,HIGH);
digitalWrite(5,LOW);
//Serial.print(c);
delay(100);
digitalWrite(4,LOW);
digitalWrite(5,LOW);
k=2;

Y

8.4 Codes for OpenCv

from collections import deque

from imutils.video import VideoStream
import numpy as np

import argparse

import cv2

import imutils

import time
import serial

ap = argparse.ArgumentParser()
ap.add_argument("-v", "--video",
help="path to the (optional) video file")
ap.add_argument("-b", "--buffer", type=int, default=64,
help="max buffer size")
args = vars(ap.parse_args())
ser = serial.Serial(
port="/dev/ttyS0’,
baudrate = 115200,
parity = serial. PARITY_NONE,
stopbits=serial. STOPBITS ONE,
bytesize=serial. EIGHTBITS,
timeout=1
)
Boundaries
Lower = (15,86,6)
Upper = (180,255,255)
pts = deque(maxlen=args["buffer"])

vs = VideoStream(src=0).start()
time.sleep(2.0)
while True:
frame = vs.read()
frame = frame[1] if args.get("video", False) else frame

if frame is None:

break

frame = imutils.resize(frame, width=600)

blurred = cv2.GaussianBlur(frame, (11, 11), 0)

hsv = cv2.cvtColor(blurred, cv2.COLOR_BGR2HSV)

mask = cv2.inRange(hsv, Lower, Upper)

mask = cv2.erode(mask, None, iterations=2)

mask = cv2.dilate(mask, None, iterations=2)

#cv2.imshow("Frame", mask)

cnts = cv2.findContours(mask.copy(), cv2.RETR_EXTERNAL,
cv2.CHAIN_APPROX_SIMPLE)

cnts = imutils.grab_contours(cnts)

center = None

only proceed if at least one contour was found
if len(cnts) > O:
find the largest contour in the mask
¢ = max(cnts, key=cv2.contourArea)
X, ¥, w, h = cv2.boundingRect(c)
cv2.rectangle(frame, (x, y), (x+w, y+h), (0, 255, 0), 2)
center = ((x+w/2),(y+h/2))
#print(center[0],center[1])
x2= center[0]*.0332-2.6578#-(800))/301
y2 = center[1]*(-.0424)+17.4576

X2 = str(x2)
x2 = x2[0:5]
y2 = str(y2)
y2 = y2[0:5]

buffer = (x2+""+y2+":")
print(buffer)
ser.write(buffer.encode())

RealCenter=(x2,y2);
print(RealCenter)

cv2.circle(frame, center, 5, (0, 0, 255), -1)

pts.appendleft(center)
key = cv2.waitKey(1) & OxFF

if the 'q' key is pressed, stop the loop
if key == ord("q"):
break
if we are not using a video file, stop the camera video stream
vs.stop()
close all windows
cv2.destroyAllWindows()

8.5 codes for the Monte Carlo Workspace

clear all;

clc;
theta1=-pi+2*pi*rand(1,100000);
theta2=-pi+2*pi*rand(1,100000);
theta3=-pi+2*pi*rand(1,100000);
% theta4=0+pi*rand(1,100000);

x=2*cos(theta1)+1*cos(thetal+theta2)+0.5*cos(theta1+theta2+theta3d);

y=0.5%*(2*sin(theta1)+1*sin(theta1+theta2)+0.5*cos(theta1+theta2+theta3)+

abs(2*sin(theta1)+1*sin(theta1+theta2)+0.5*cos(theta1+theta2+theta3)));

%
=-3*sin(theta1)+1.5*cos(theta1).*cos(theta2)+1*cos(theta1).*cos(theta2+th

eta3)+0.4*cos(theta1).*cos(theta2+theta3+theta4);

%
y=3*cos(theta1)+1.5"sin(theta1).*cos(theta2)+1*sin(theta1).*cos(theta2+the
ta3)+0.4*sin(theta1).*cos(theta2+theta3+theta4);

% z=1.5"sin(theta1)+1*sin(theta2+theta3)+0.4*sin(theta2+theta3+theta4);

scatter(x,y,".");

hold on;
x=3*cos(theta1)+1*cos(thetal+theta2)+0.4*cos(theta1+theta2+theta3)+4.5;
y=0.5*(3*sin(theta1)+1*sin(theta1+theta2)+0.4*cos(theta1+theta2+theta3)+
abs(3*sin(theta1)+1*sin(theta1+theta2)+0.4*cos(theta1+theta2+theta3d)));

scatter(x,y,".");

