All-Terrain Robot for Controlling Wildfires
(Term project)

Yadukrishna BG

Deep Trivedi

Shivam Joshi

MAE Department MAE Department MAE Department
NYU Tandon School of Engineering NYU Tandon School of Engineering NYU Tandon School of Engineering
ybg211@nyu.edu dht258 @nyu.edu shivam.joshi @nyu.edu

Abstract—A prototype of all-terrain robot has been
fabricated as first module of project in developing a robot
for assistance in wildland firefighting. Aim is to follow
closely and inculcate most of the potential functions of a
ground robot as discussed in report by Texas Engineering
Extension Service [1]. Complete list of these functions is
as follows:

1. Hualing

. Direct Fire Suppression

. Mobile Weather Station

. Reconnoiter

. Hot Spot Identification

. Investigate Fire Hazard Zone.

SN hAWN

Through a series of mini-projects we have implemented
the first four functionalities. In this part we will add
following functions to existing robot prototype:

e Hot Spot Identification
e Investigate Fire Areas.

This will be done using a raspberry Pi camera, commu-
nication between Pi and arduino and some web-services
from Google.

Index Terms—unmanned ground robots, rescue robots,
wildfire, firefighting, rocker-bogie, Arduino

INTRODUCTION

This report presents the design considerations,
fabrication methods, underlying arduino sketch,
Raspberry Pi recipe, mechatronics design, code
documentation, results, and conclusions for the
Integrated term project. As we have been focusing,
wildfires have become a recent concern due
to increased frequency through out the world.
Wildland firefighting is not a novel engineering
domain though it is indeed a developing application
in the field of robotics. We tried to abate the gap
in desired functions and current implementations

adopted by smoke jumpers - the group of most
elite firefighting squads in USA.

As mentioned in the report [1] there are fewer
attempts in scientific literature regarding ways to
tackle requirements of wildland firefighters and
hence there are limited implementations like the
work being done under this project.

OBJECTIVE

The main purpose of the robot is to provide
assistance during wildfires by providing insightful
data, perform remote tasks and creating firelines. In
this Firelines or anchor points in terms of wildfire
fighting are basically natural or manually created
gaps in the vegetation beyond which wildfires do
not proceed due to absence of fuel. An example of
firelines is shown in the fig.[I] In order to meet these
requirements, the robot is quipped with capabilities
of remote operation, remote surveillance and remote
manipulation.

MECHANICAL DESIGN

Mobile Base: The robot uses rocker-bogie mech-
anism (shown in figure 2) as it allows robot to move
over obstacles as large as twice the size of robot
wheel while keeping all six wheels on ground during
the maneuver, example includes passing through
pile of fallen trees in our case. This is achieved
virtue of absence of springs and stub axles for
wheels. Springs and other suspension systems un-
desirably limit the tilt stability by the height of
centre of gravity and tend to tip easily as the loaded
side yields. Moreover, the mechanism minimizes

o/

|
)
]
\
\e
)
4
’
[}
\
1
1
]
(N
\\

Fig. 1. Representation of a fireline

dynamic shocks and potentials damages to the robot
when obstacles are encountered.

Fig. 2. Typical rocker-bogie mechanism

Because of the above mentioned features, The
Rocker-Bogie system has been the suspension ar-
rangement used in the Mars rovers. It is currently
NASA’s favored design for rovers and multiple
rovers including Spirit, Opportunity, and Curiosity.

Manipulator: The Manipulator Arm has a
simple mechanical design. It is a 3-Degree of
Freedom robotic arm having a gripper as it’s
end-effector.The manipulability and the dexterity of
any robotic manipulators depend upon its degree of
the redundancy. Serial robotic arm is very popular
in industrial applications because of its simplistic
designs. Serial robotic manipulators are also
designed for the joint fault tolerance. The design of

3-Degree of Freedom serial robotic arm has been
presented in figure.2. Its mechanical structure has
been developed using the CAD software.

In robotics terminology, an end-effector is the
device at the end of a robotic arm, designed
to interact with the environment. In the strict
definition,the end effector means the last link of
the robot. The exact nature of this device depends
on the application of the robot. Here, we have a
Gripper as our end-effector as it is required to grip
the tree firmly in order to let the cutter mechanism
function without any discrepancy.

FABRICATION METHODS

The structure of the robot combines a chassis,
a platform for microcontrollers , motor drivers,
and batteries, motor mountings at the base, six
DC motors, some additional accessories for joining
the links and clamping motors, and wide thumper
wheels for higher traction. In chassis, the links of
the mechanism are made using easily accessible u-
PVC pipes as they serve the purpose of providing
sturdiness to the whole mechanism and keeping the
total weight low at the same time. The platform for
the robot is 3D printed using PLA material. The
platform is used to mount Arduino Mega, motor
drivers, batteries ultrasonic and weather sensors.
Same PLA material is used for 3D printing motor
mountings too which serve as stable housing to
sustain high torque motors. In figure 2 we have
shown the robot chassis mounted with motors, mo-

Fig. 3. Chassis with motor, wheels mounted

tor mountings and thumper wheels mounted. Metal

clamps are used to further fasten the motors rigidly
to the chassis.

For the manipulator, we have used the 3D printed
platform from the first phase to mount the manipu-
lator base. The manipulator arm has three linkages
and a gripper. The linkages are basically iron clamps
used to hold the whole structure in place.The fab-
rication of linkages is done keeping in mind the
dimension of motor and shaft so that motors easily
fit in appropriately.The actual representation is seen

in fig @}

Fig. 4. Actual Manipulator Arm

MECHATRONICS COMPONENTS AND CIRCUIT
DESIGN

Mechatronics components used in this phase of
the project include:

1. Ardiuno Mega microcontroller (ATmega2560)
2. Bluetooth Module (HC-05 BSM)
3. Motor drivers (L298N)
4. Li-ion Battery (7.4V 1500mAh)
5. Alkaline Battery (9V)
6. Humidity and Temperature Sensor (DHT 22)
7. Ultrasonic Sensor (HC - SR04)
8. DC Motors
9. Raspberry Pi
10. Raspberry Pi Camera

Arduino Mega was used over the more popular
design Uno because of the availability of 15 PWM
output pins for future requirements. Bluetooth
connection is established between the smartphone
and Mega microcontroller using a HC-05 module
and android application. The commands sent via
smartphone are read by the microcontroller and
then it directs corresponding commands to the
motor drivers in three L298N motor driver which
then control motors. The motor drivers employ
a 7.4V - 1500mAh Li-ion Battery which solely
drives the motors. We have used another power
source to power the microcontroller circuitry using
a small 9v alkaline battery.

For creating the mobile weather station on
top of the platform a humidity and temperature
(DHT 22) is being used. This particular sensor is
more sensitive and accurate which made us choose
the sensor over other available counterparts like
DHT11 and DHT14.

A separate section is denoted to the sensor
readings in the mobile application where the
readings from sensor sent to the microcontroller
are sent to the bluetooth module and then to the
smartphone app interface. Hence, we have a two
way communication and data is being sent both
from the smartphone app to the microcontroller to
actuate motors and from sensors to microcontroller
to smartphone to monitor the weather conditions
online. We have also included a ultrasonic sensor
to calculate the distance to any obstacle in front of
the robot. This distance also has a designated space
in the smartphone app to be monitored. Moreover,
we have implemented code in such a way that if
the distance from the obstacle is too small the robot
will automatically stop in order to avoid collision.

Fig. 5. Circuit Diagram

The circuit design for the robot is depicted in
Figure [5] which shows six DC motors connected
to three L298N motor drivers. One motor driver is
being used to control two motors. We are driving
the motors using a separate 12v Li-polymer battery.
This is done to keep the microcontroller separate
from the actuator circuit which is essential here as
a safeguard measure.

SOFTWARE DOCUMENTATION

Before any description, it is necessary to mention
the communications taking place in the project,
Refer fig. [6]

Basically there are four main nodes in this
communication network. We are giving commands
to move robot from a mobile phone to the
Firebase based realtime DB, then these commands
are being fetched by raspberry Pi from the
firebase webserver, then these commands are
being forwarded to arduino using USB serial
communication. Moreover, we wished to use same
channel from sensor mounted on arduino, sent
back to raspberry pi and then over internet sent to
the mobile app, but we have currently opted for
bluetooth communication from arduino to nearby
mobile phone due to lack of resources. We have
described below all different codes for each of
these nodes of the project.

The programming effort in this project consisted of
followin domains:

Firebase Database Setup
Arduino program

Raspberry Pi program
Android application program

S N

Firebase: We have done setup for a realtime
DB using google service called Google-Firebase
(https://console.firebase.google.com).

Creating such a database on Firebase website (you
will have to log in with your Google account)
requires following steps:

1. Click on the Get Started button which will take
you over to the firebase console.
2. Create a new project by clicking on the Add
Project button, fill in the requirements (name, de-
tails, etc) and complete by clicking on the Create
Project button.
3. Select database from the menu on the left-hand
side.
4. Click on the Create Database button, select the
test mode option.
5. Set the database to a realtime database. Select
the rules tab and change them to true.
6. Finally click on the data tab and copy the
database URL.

Arduino: Once the setup of database is done,
through arduino program, we are primarily using
serial communication to take inputs from the user

'.--.I.--.-
-

&
n
&

Firebase Realtime
Database

Will sync with all your mobo
devices in milliseconds.

Fig. 6. Communication

of android app(coming from Raspberry Pi via
firebase) and using those inputs to send commands
to motors in order to drive motors. Along with
this function we have also deployed in the code,
a functionality to send processed sensor data to
the android app so that the user is notified of
the weather conditions surrounding robot using
bluetooth. We have included following libraries for
our code in form of header files:

1. SoftwareSerial
2. DHT_ U
3. Servo

Here, SoftwareSerial library has built-in support
from arduino hardware and is being used for serial
communication. This uses universal asynchronous
receiver-transmitter (UART) which allows the
Atmega chip to receive serial communication even
while working on other tasks, as long as there room
in the 64 byte serial buffer. This library is being
used here for USB serial communication between
RPi and arduino Mega as well as for bluetooth
communication between arduino and smartphone.
Basically, we are using two serial communication
channels, one to transfer data between arduino and
RPi, and another for bluetooth.

Second library used here, i.e. DHT_U (Adafruit

DHT Humidity & Temperature Sensor Library) is
an Arduino library for the DHT series of low-cost
temperature/humidity sensors. This library is being
used to send data to the android app using serial
communication.

We have used baud rate at 9600 for both
Serial and Bluetooth, as used in most of the sensor
communications. Some basic calculations are
also done to get the distance in centimeters from
the ultrasonic readings. Such calculations were
not required for DHT sensor virtue of available
library. a function for manipulator is also shown to
represent manipulator to be mounted on the robot.
The full program used is shown in Figure [7 [§]
and

Raspberry Pi: We need some modeules in Pi
before getting started. These include:
1. python-firebase module, and
$ sudo apt-get python-firefox)

2. RPi-Cam-Web-Interface module

($ git clone https://github.com/silvanmelchior/
RPi_Cam_Web_Interface.git)

$ cd RPi_Cam_Web_Interface

$./install.sh

“#include =SoftwareSerial.hx
#include <DHT.h>
#include <DHT_U.h>

#define echopin 40 // echo pin

#define trigpin 44 // Trigger pin

edefine DHTPIN 2 // Digitsl pin connected to the DHT sensor
#define DHTTYPE DHT22 // DHT 22 (AM2382)

#define dht_pin 2 // Fin sensor is connected to

DHT_Unified dht{DHTPIN, DHTTYPE):
SoftwareSerial BT(22,24):

int MotorAinputl = 36;

int MotorCinput2 =
int MotorDinput
int MotorDinput:
int MotorEinputl =
int MotorEinput
int MotorFinputl = 12;
int MotorFinput2 = 14;

int state;
int Speed = 138;

uintaz_t delayMs: // humidity sensor

int temp;
int hum;

int tiner = 9;

int distanceFvd;
Tong duration;

int ehk = 0;
int set = 10

7/ Functions
void backward (J{

digitalirite (36, HTGH); digitalwrite (34,L08); dinitalwrite (4, Low) digitaliirite s, HIGH) digitalirite (6, HIGH) ; digitalirite (7, Low) ;digitalwrite (8, Lowd;digi talirite (9, HIGH) s digitalwrite (10, Low) digitalwrite (11, HIGH); digitalwrite (12,L00); digitalwrite {14, HIGH); }

void forvard (4) _

Fig. 7. Arduino Code 1

// Functions
void backward (}{

digitalliri te (36, HIGH) ; digitallrite (34, LON) ; digi talWrite (4, LON) ; digitalWri te (S, HIGH) ; digi talWri te (6, HTGH) ;digitaliiri te (7, LOW) ; digitalWri te (8, LON); digitalirite {8, HIGH) ; digitalWri te (18, LON); digitalWri te (11, HIGH) ; digi talWri te (12, LOW} ;digitaliirite {14, HIGH); }

void forward(}{

digitalirite (36, L0M) ; digitaliirite (34, HIGH) ; digitalirite(d, HIGH) digitaliritedS, LON); digitalirited,LON) digitalirited7, HIGH) ;digitaliirite(8, HIGH) ;digitalirited, LoW) ;digitalirite (10, HIGH) ;digitalWrite (11, LOW) ;digitalWrite {12, HIGH) ;digitalirite (14, LOW): 3

void turnRight ()4

digitalirite (36, L0M) ; digitaliirite (34, HIGH) ;digitalWrite (6, LON) ;digitalirite (7, HIGH) ;digitaliiri te (16, HIGH) ; digitalWrite (11, LON);digitalWrite{d, LoW);digitaliirite(S, HIGH) digitalirite (8, LON) ;digitalirite (8, HIGH) ;digitalirite (12, LOW) ;digitalirite (14, HIGH) ; }

void turnteft(}{

digitalirite (36, HIGH) ;digitalirite (34, LOW); digitalWrite(s, HIGH);digitalirited7,LON); digitslWrite (18, LOW);digitalWrite (11, HIGH); digitalWrite(d, HIGH);digitalWrite(S, LON);digitaliirite (8, HIGH) ;digitalWrite (8, LOW);digitalirite (12, HIGH) ;digi talurite (14, L04) :

void Stop(}{

digitalurite (36,L0); digitalwrite(34,Lon); digitalwrite{s, Low); digitaluriteds,Lon); digitalwriteds,Lom); digitalwrite(7,Lon);digitaluriteds, Low);digitalurite (9, LoW); digitalwri te (10, LoW); digitalwrite (11, Low); digitalwrite(12,Low); digitalwrite{14,Lom);}

Lang datal)

1 digitalWrite(trigpin,LOA); delayMicroseconds(2); digitalWrite(trigpin,HIGH); delayMicrosecands(18); duration-pulseln {echopin,HIGH};
2}

return duration / 26 / 2;

void setup) {
/7 ultrasonic

pintiode (trigpin, OUTRUTY:
pintiode (echopin, TNPUT J:

7f Temp and hunidity

dht . begin{);
7/ Print tenperature sensor details
sensor_t sensor;
dht . temperature (1. getSensor {Ssensor) ;

7/ Print hunidity sensor details,
dht humidity () .getSensor(§sensor);

77 Set delay between sensor readings based on sensor details
J/telayMs = sensor.min_delay / 1000;

7/ Wotor
pintiode (Matorfinputl, OUTFUT);
pintiode (Matorkinput2, OUTFUT);
pintiode (MatorBinputl, OUTFUT);
pintiode {MatorBinput2, OUTFUT);
pintiode{FatorCinputl, OUTPUT);
pintode{Fatorcinputz, OUTPUTY;

Fig. 8. Arduino Code 2

The code in Pi is written in Python and it basically
imports serial library to communicate with arduino.
It also imports a module called firebase and
creates an object from class firebase using function
FirebaseApplication. then in continously checks for
incoming data from firebase and saves it as variale
direction, later sends it to arduino using function
ser.write()

Full code is showin in figure [T}

Code documentation for Android app is described
in next section.

APP DEVELOPMENT

We have used the services of MIT App Inventor
to develop our Mobile application to control the bot
remotely. We had used the app for phase-1 of the
project but there are many changes to the previous
version of the app. The primary role of this app
is to be the bridge between the bot and human
controller. The app has to have dual-connection
back-end interface where it connects to the bot
and retrieves the sensor data via Bluetooth module
and simultaneously sends data to the bot via
Firebase-Raspberry pi-Arduino communication.
The first step in the app building was to make

77 Motor
pintode {Motordinputl,
pintode (Mo torainput2,
pintode (Mo torBinputl,
pintiode{MotorBinput2,
pintode Motorcinputl,
pintiode Motorcinputz,
pintiode{MotorDinputl,
pintiode MotorDinputz,
pintode{MotorEinputl,
pintiode {MotorEinputz,
pintiode{otorFinputl,
pintiode {MotorFinput2,

OUTPUT};
QUTRUT) 5
QUTRLT) ;
QUTRLT) ¢
QUTRLT) ¢
QUTRLT) ¢
QUTRLT) ;
QUTRLT) ;
UTRLT) ;
OUTRLT) ;
OUTRLT) 5
QUTPLTY

// initialize serial commumication at 8600 bits per second
Serial begin (9600} ;
BT.beqin(9600); // Setting the baud rate of Software Serial Library

char cond;

void loop) {
//if some date is sent, reads it and saves in state
if (Serial.awailable()) {
cand = Serial.read();
//Serial.print{*vou sent Arduino: *};
Serial.printinfcnnd);

distancePvd = data();
serial.println{distancerud);

if({(distanceFud=set) && {chk==1)}{chk = 2; Stop(}:}
if(distancePud=set){chk = @:}

// if the state is '1' the DC motor will go forward initial
if ({cmmd == '1'} &6 (chk==0))}{chk = 1; forvard();Serial.println{"Go Forvard!"

/¢ if the state is "2’ the motor will Reverse initial
else if {cmmd == '4'}{backward();Serial.println{"Reverse!"};}

// 1f the state is '3' the motor will turn left initial
else if (com "2 }{turnLeft(};Serial .println{"Turn LEFT"};}

7/ if the stat
else if (cond

the motor will turn right initial
lturnRight ():Serial.println(*Turn RIGHT"):}|

(05 tho ctatn e 'S tha matar wil] Stan Gnitial

Fig. 9. Arduino Code 3

4/ if the state is '4' the motor will turn right initial
else if (emmd == '3'}{turnRight();Serial.println{"Turn RIGHT"});}

/¢ if the state 1s '5' the motor vill Stop initial
else if {emnd == '0') {Stop()};Serial.println{"sTOP!"};}

if (BT.available () == 03{
/#Serial .println (*Connected");
state = BT.read ()
//Serial println(state) s
if{state = 10) { Speed = state;}

timer = timer+l;
#/BT.print("tiner:)
#/ET.printin(tiner);

if {timer==200}{

1 {distancePud~200]{distancePyd=200; }
BT.print{"a"};

BT.print (")

BT.print {distanceFud); //send distance to WIT &pp
BT.println{";"};

T
Frdelayis):

if (timer-300){
sensors_event_t event;

dnt. temperature {1 . getEvent (Sevent) ;
temp = event. tenperature |

dnt.humidity () .qetEvent (Sevent) ;

hum = event. relative_humidity;
BT.print{"8"};

BT.print{";"};

BT.print{tenp); //send distance to MIT App
BT.print({ i

BT.printhum); //send distance to WIT App
B println(":");

timer = O;

T
Frdelayil);
t
H

Fig. 10. Arduino Code 4

the app connect the Bluetooth module (HC-05),
so that sensor data from the DHT-22 temperature
sensor and HC-SR04 Ultrasonic sensor is received.
A button for the same has been provided

Block-1(refer fig: [I3])represents that app switches
its Bluetooth connection on-and lets the user
connect to HC-5. If the Bluetooth of device is not
enabled, it displays an error message.

Block-2 (refer fig{l4]) represents that a clause has
been added where, if the Bluetooth isn’t connected,
the text is label-1 which is a welcome message
is changed to “Disconnected” and the color is

changed to blue. A text-dictation patch has been
added to send a dictation notification.

A disconnect button has also been added so that
the user can disconnect Bluetooth module after the
task is finished.

Block-3 (refer fig: [I5) represents the navigation
block setup to send the user-input feed to Firebase-
dataset in order to navigate the app. The navigation
buttons forward-backward-left-right are assigned
an integer respectively to send to the firebase. For
example, if the user wants to navigate in forward
direction, he/she presses the forward button which
triggers the block and sends 1’ to firebase which

#1/usr/bin/env python3

import serial

from firebase import firebase
import time
if name ==
ser =
ser.flush()

maln

serial.Serial('/dev/ttyACMB', 96008, timeout=1)

firebase = firebase.FirebaseApplication('https://wildfire-robot.firebaseio.com/', MNone)

while True:
ser.write(b"Hello from Raspberry Pi!\n")

'data’')

line = ser.readline().decode('utf-8').rstrip()
direction = firebase.get('/wildfire-robot’,
print(line)

print("s\n")
ser.write(str(direction))

Fig. 11. Python Code

is relayed to arduino which advises the motors and
motion is achieved, all in real-time. 0’ is set as
a base value when nothing is pressed and the bot
stops when it receives zero.

Block-4 (refer fig{I6) represents the Manipulator
actuation via firebase link. The second block in
the image represents the connection to retrieve
the visual feed. The user enters the I.P address of
his/her network and as soon as connect button is
pressed, the app via local network connects to the
rpi-web-interface and displays the visual feed on
the app which helps the user to navigate through.

The process begins with users clicking the *Con-
nect Bluetooth’ button on the screen and entering IP
address of raspberry pi in the textbox provided to
get started. This automatically connect phone to RPi
over internet and gives them options to connect with
the nearby active Bluetooth clients nearby, HC-05
module in our case.

After successfully connecting with the module
and in turn with Mega microcontroller, application
has buttons enabled to move/steer the robot in
four directions .i.e. forward, reverse, twist right,
twist left. There is also provision for users to keep
checking the humidity level and temperature around
the robot base at any instant of time, as it is always
visible on the application in the bottom region.
Moreover, there is also data available for how far
the nearest obstacle is, in front of the robot. App
UI is shown in figure [12]

0:48 © O B Bl all & GD

FireBot-ATV Navigator App

3} Bluetooth’

Distance: 000

Manipulato
r Button

B Enter your |.P Address here. Connect

Disconnect

H: 00 T:00

Advance Mechatronics Term Project by:
Deep Trivedi (dht258)

Shivam Joshi (sj3104)
Yadukrishna (ybg211)

Fig. 12. User Interface of the Mobile Application

CHALLENGES AND RESULTS

Major challenges we faced during this project
were majorly in communication setup from firebase
to raspberry Pi. Using firebase with Pi has a learing

when (EEEEENE BeforePicking
do set - fo

BluetootnClienti - il AddressesAndhames - when TouchDown
do call [FIEEEEEEEIED -StoreValue

[E]

when AfterPicking
do [(=] if (=l BluetootnClient1 = MeT=nt
address
LG LstRickert - Y Elements - TR BiuetoothClient! » Jif AddressesAndNames _ |
—

valueToStore

when “TauchUp
4o call [FIEEEECDEEIEN StoreValue

tag

when nitialize
do ([@ (! not
then call (EEIZHED -ShowAlert
LULS B Bluetootn is not Enabled. go Settings to enable Jg valueToStore

-

when [EHEHIEES Click

Fig. 13. Code Blockl: MIT App Inventor do cal .GoToUrl

url 3 join

DN TexiBox1 - M Text - |

when _BluetoothErmor
functionName ~ message
L1 |l BluetoothClient1 = JRBIEI el
'© [W BluetootnCiient1 - I 1sConnecied - |
(- =Y Lavei4 - Wext - RCIMRE DisConnecied |§
=4 Ceveiiz - W TexiCoor - G

Fig. 16. Code Block4: MIT App Inventor

curve. Moreover, there we challenges related to Rpi
. web interface as well because it initiates a process

call QTAEEREIEIED -Speak in OS which does not let any other process thread
- i R Disconnected Jy like from $raspistill, or from openCV to run.
Another area which was somewhat challenging was
the process of syncing the code for different sensors,
drivers and android application together. The project
served to be a good learning ground for enhancing
our skills and knowledge.

when Click
do call _Disconnect
call Get
cal Speak
message | .

=

Fig. 14. Code Block2: MIT App Inventor CONCLUSION AND FUTURE SCOPE

Future plans for the project follows usage of
Computer vision methods to survey the live feed
from the robot. We tried using tensorflow frame-

when TouchDown
do call StoreValue
tag
valueToStore

when ([CIIYJES -TouchUp
do call _StoreValue
tag
valueToStore

do call (FEEEERELIES Storevalue
tag

valueToStore
—

when NEEIER TouchUp

do call [FIEEEERELES StoreValue
tag
valueToStore

(.

Fig. 15. Code Block3

when ([EIEETIIES - TouchDown
do call (GIEEEZEIND StoreValue
tag

valueToStore
~

when (IS TouchUp
do call (FEEEIED -StoreValue
tag

valueToStore
-

when (T3 -TouchDown
do call (FIEEERELED -StoreValue
tag

L valueToStore
—

when LIS TouchUp
g0 cal (GEESEEED StoreValue

tag
valueToStore

—

: MIT App Inventor

work for the same and wish to build usable object
detection application out of it.

LINK TO THE VIDEO

Video Link : https://drive.google.com/drive/u/1/folders/1cd9
4DI9ZDI0HqJ6¢y7ts

BILL OF MATERIAL

Following is the tabular representation of the
components we have used in our project.

Component Rate | Quantity | Cost (in Dollars)
Arduino Mega | 35.00 1 35.00
Raspberri Pi 40.00 1 40.00
RPi Camera 25.00 1 25.00
HC-05 6.99 1 6.99
DHT22 8.11 1 8.11
L298N 291 3 8.73
Li-ion Battery | 11.99 1 11.99
Alkaline Battery | 1.99 1 1.99
HC-SR04 1.99 1 1.99
DC Motors 14.00 6 84.00
Thumper Wheels | 7.50 6 45.00
U-PVC pipes 15.00 - 15.00
Others 20.00 - 20.00
Total 303.00
REFERENCES

[1] Robin R. Murphy, Rachel Brown, Reginald Grant and Clint T.
Arnett. Preliminary Domain Theory for Robot-Assisted Wildland
Firefighting. IEEE Denver, Colorado, USA, 2010
https://ieeexplore.ieee.org/document /5424143

	References

