Advanced Mechatronics:
Final Project

Ball tracking with

Omni-Directional
obot

Ball-tracking Omni-bot Intro

Recognizing Raspberry Pi's powerful capability of vision processing, we
added more functionality to our omni-directional robot, where the robot is
able to distinguish different colors of objects and tracks the user-selected ball

For this project, we have configured all the processes on a mobile platform

Raspberry Pi is performing real-time color segmentation to distinguish the
user-selected object from other objects and identifies the position of the
object

Arduino receives the position of the object, and gives commands to the
motors to align the robot with the center of the object

Hardware Components

Hitec
HS-645MG

Raspberry Pi 2

DK Electronics
Motor Shield

Arduino Uno

Omni-Directional Robot

v=a, t, (1)
A
Vg =— 03 % ¥y = O 410 = @ X ==V, (2)
—_ —_ —_ _ ."-_ =y
1'5 = meE, X rbz — (DB?’bl = 0]3?" (%:\' + ﬂMT}'];) - %1._1' + NT‘\'[(3)
- - - - 3 3
Ve =WMcC3 X FCy = = OclC; = OcF (%T - N7311) = %13— - %31'_1. (4)
vy = [|v]| cos® (5)
vy = ||| sin® (6)
_ -1 5y
O =tan (;) (7)
Vil = N 572 ®) . X
| X
4 4 a3 Y b, b; < S E;
x| -1 | 0o o | L o | L | L | o |_B
y | 0 0 | -1 |-XL] o 1 R 1
z 0 -1 0 0 -1 0 0 -1 0

Connection/Communication

* Raspberry Piis connected to Arduino

via Logic Level Converter
Camera o USART Communication (RX/TX)

Motor

o Softserial is utilized in Arduino
(Pin2: RX / Pin13:TX)

* i0OS device to RPiI: (TTL Serial

B Comm)
s _fﬁ = * One additional motor is used to
9 i v ol 5 control the pitch of the camera
i0S Rasp.berry Logic Level Arduino Mc?tor = I\/IOtOI‘ Shleld used to COI’]tI‘O| DC
Device Pi 2 Converter Shield

motors

IPhone: User Interface

00000 izon ¥ 10:44 PM 85%)

Real-time Color Segmentation
nd Object Tracking

Pick a colored ball to track:

v
o @

|

Connect Connection Status

NYU

POLYTECHNIC SCHOOL
OF ENGINEERING

A user can choose from three different
colored balls to track

When a ball is selected by the user, a
message is sent to raspberry pi to indicate
which HSV values should be utilized when
performing the vision processing

A non-blocking server is used to establish
communication with the raspberry pi

Each ball falls in a different range of hue
values, allowing each ball to still be in frame

Vision Processing

« An original frame(RGB) is converted to the
HSV frame

o An Input from iOS device is given to distinguish
between different colors of the balls

o For each input, the vision processing is performed to
identify the contours of the ball (erode/dilate with HSV
constraints)

o The center of the ball is then calculated based on the
identified contours

« The coordinates of the center is then
compared with the pre-designated range

* Raspberry Pi sends a message to Arduino
whether to move the motors to align the
center of the ball with the center of the image

12) ~ R:170 G:173 Bi166

Vision Processing

12) ~ R:170 G:173 Bi1 [02) ~ R:160 G:171 B:166 $102) ~ Ri167 G:172 B:168

(o3}
5]

Vision Processing

2 1
....................... ¥min
De '
........................ max
3 2 4
Image (640 x 320)
Xr;lln Xl;|ax

Arduino: Actuating motors

« Vertical movement
« Initial Servo angle: 45 degree
» Raising the camera: +1 degree every time when raise
message received
* Lowering the camera: -1 degree every time when lowering
message received

 Horizontal movement
* Clockwise rotation
* Anti-clockwise rotation

Arduino: Actuating motors

1Pt == -1 && £2 == 1)
pos += bj
servol.writelpos’;

for {int § = 1; jeo=h; e+t

motorl.run{FORWARD
motorl.zetSpeed{wl_speed);
motor 2 run{FORWARD s
motorZ . setSpeed{wl_speed);
motor3 . run{FORNARD
motor3.zetSpeed{wl_speed);

b

motorl . setSpesd (B’ ;

motorZ.zetopeedi @’y ;

motor3.zetSpeedi @) ;
EER=PT L B H

b

elee if(tl == 1 &8 12 == 19
pos += b;
servol.writelpos’;

for fint § = 1; je=hs j++edf
motorl . runBACKWARD 3
motorl.zetSpeed{wl_speed);
motorZ . run{BACKWARD s
motorZ . setSpeed{wl_speed);
motor3 . run{BACKWARD 3
motor3.zetSpeed{wl_speed);

motorl . setSpesd (B’ ;

motorZ.zetopeedi @’y ;

motor3.zetSpeedi @) ;
e Loy {487

¥

Problems

Slow reaction to the change
« Due to the image processing being performed on the Raspberry Pi, there
IS a significant delay between new images and messages sent
« Arduino processes the data much faster than Raspberry Pi’'s vision
processing
« Overshoot happens due to this delay
= Which introduces oscillations
Streaming / SSH to monitor the process in real time introduces significantly
larger delays
Standard servo motors conflict with the timer used in software serial
» This causes for flickering in the servo pitching the camera

Conclusion

e Utilizing the Raspberry Pi 2's computing capabilities, we were able to
successfully track the motion of the selected ball
e |Implementation of different advanced mechatronics topics allowed us to;
o Create user defined variables for sensor input
o Track the position of different colored objects utilizing a webcam
o Use position data to operate a series of servo and DC motors in order to
maintain object visibility
o Communicate between different micro-controllers

