
Binford ThermDetector 3000

Coal Mine Fire Detection System

Anthony Bonventre

Bo Deng

Luke Figueroa

Overview

- Introduction
- Objective
- Mechanical Design
- Electronic Circuits
- Code
- Bill of Materials & Prototype Cost
- Advantages & Disadvantages
- Conclusion

Introduction: Coal Mine Fires

- Coal mine fires are burning deposits of coal.
- Either human-induced or a result of natural occurrence
- Human induced:
 - Ignition due to mining operations
- Naturally occurring:
 - Lightning
 - Forest Fires
 - Spontaneous combustion from heat, sun, water vapor
- Most extreme case: Coal Mine Fire lasting for over 30 years

Introduction: Danger to Humans

- Various gases can be emitted such as:
 - Carbon Monoxide (CO)
 - Carbon Dioxide (CO₂)
 - Methane (CH₄)
 - Nitrous Oxides (N₂O)
 - Sulfur Dioxide (SO₂)
- Quality of life is a concern
- The combination of fire burning beneath the surface of the earth, and gases leaking out to the habitation above can be a risk for all human life.

Introduction: Affecting Quality of Life

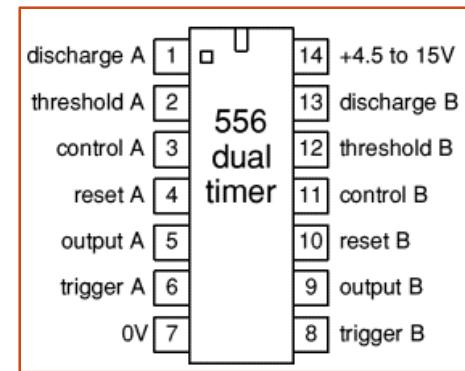
- Coal Mine Fires can affect air, water, and the food supply of the communities above it.
- Especially true for coal dependent nations such as China, or coal dependent towns such as Centralia, PA.

Objective

- Creation of the Binford ThermDetector 3000
- Fully autonomous robot to traverse a given plot of land
- Takes temperatures at each point of the field
- Send temperatures via Bluetooth to generate a heatmap
- Employ a warning system to alert locals of coal mine fires

Mechanical Design: Servomotors

- Two Parallax (Futaba) continuous rotation servomotors
- Mounted on Lego chassis
- Servo motor was modified to allow easy switching of gears
 - Epoxy applied to attach Lego axle onto servo head
- Allows for individual control and central axis turning


Mechanical Design: Use of Treads

- Ease of Movement
- Consistent turning
- Economical:
 - Only require two motors to control turning, forward and backward movement

Electronic Circuits: Warning System

- Components:
 - 556 Timer- Dual 555 timer
 - Each half represents one 555 timer
 - Share a common ground and Vdd
 - LED- visual warning
 - Piezospeaker- auditory warning
- The Siren Dilemma
 - Speaker is audible, LED blinking is too fast
 - Speaker needs to be at >3000 Hz
 - LED blinking is visible, speaker is low

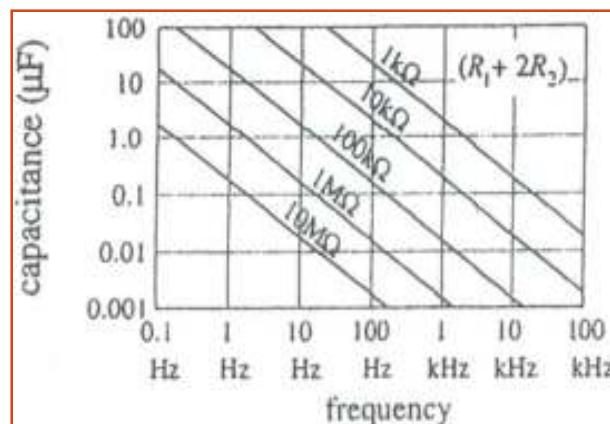
Electronic Circuits: Warning System

- The Solution: Circuiting
 - Speaker “half”- produces a high frequency output
 - LED “half”- produces a low frequency output to display visual
 - Output of LED “half” controls the rate of Speaker “half”
 - Takes the high frequency speaker output and “chops” it
- LED blinking is visible AND Speaker is audible
- Both are in astable mode at the same frequency

Electronic Circuits: Warning System

- Finding the Values

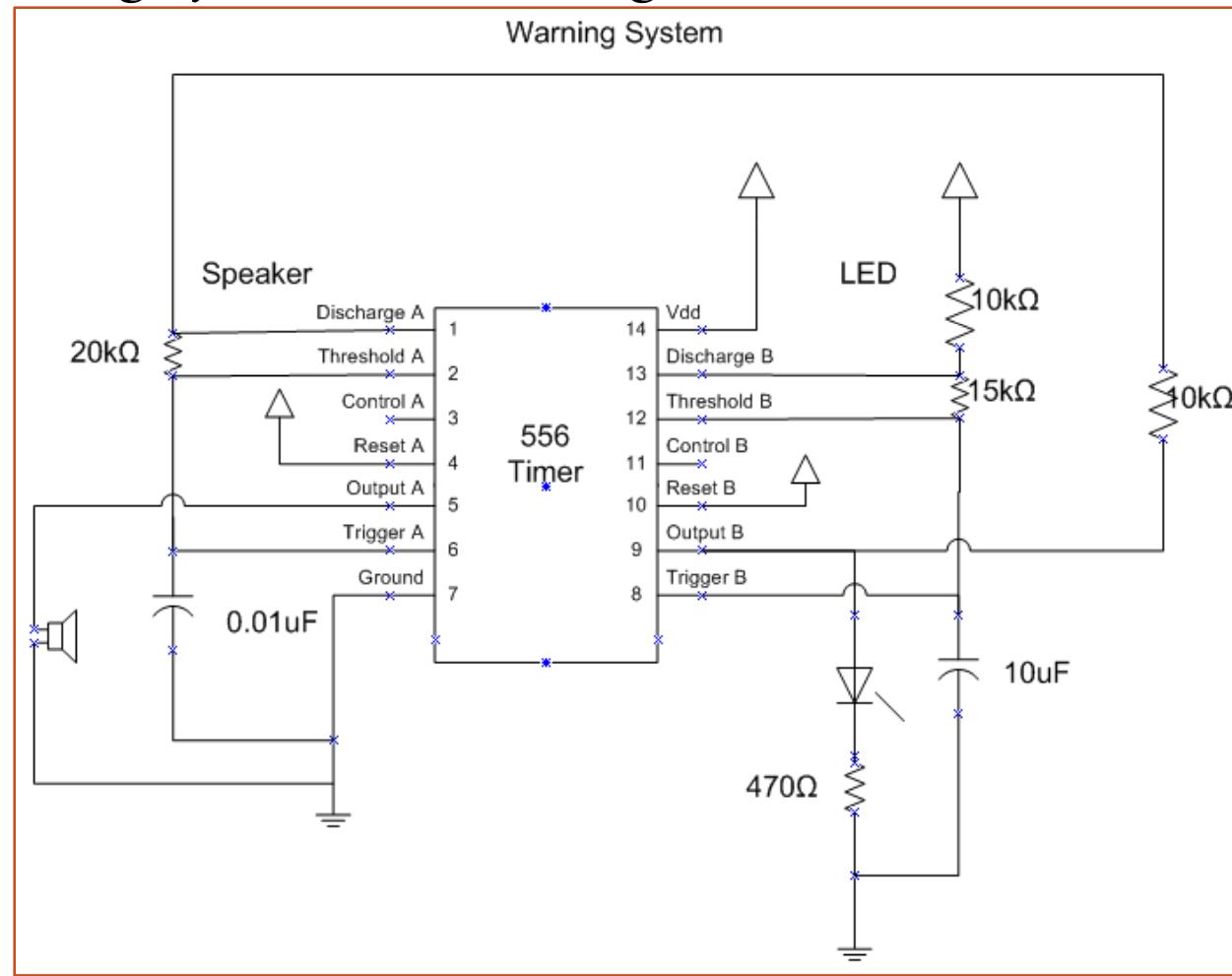
$$t_{high} = 0.693R_2C \Rightarrow R_2 = \frac{t_{high}}{0.693C} = \frac{100ms}{0.693 * 10,000nF} = 14430$$


R₂ is chosen to be 15kΩ

$$t_{low} = 0.693(R_1 + R_2)C \Rightarrow R_1 = \frac{t_{low}}{0.693C} - R_2 = \frac{200ms}{0.693 * 10,000nF} - 15,000 = 13860$$

For LED

R₁ is chosen to be 10kΩ

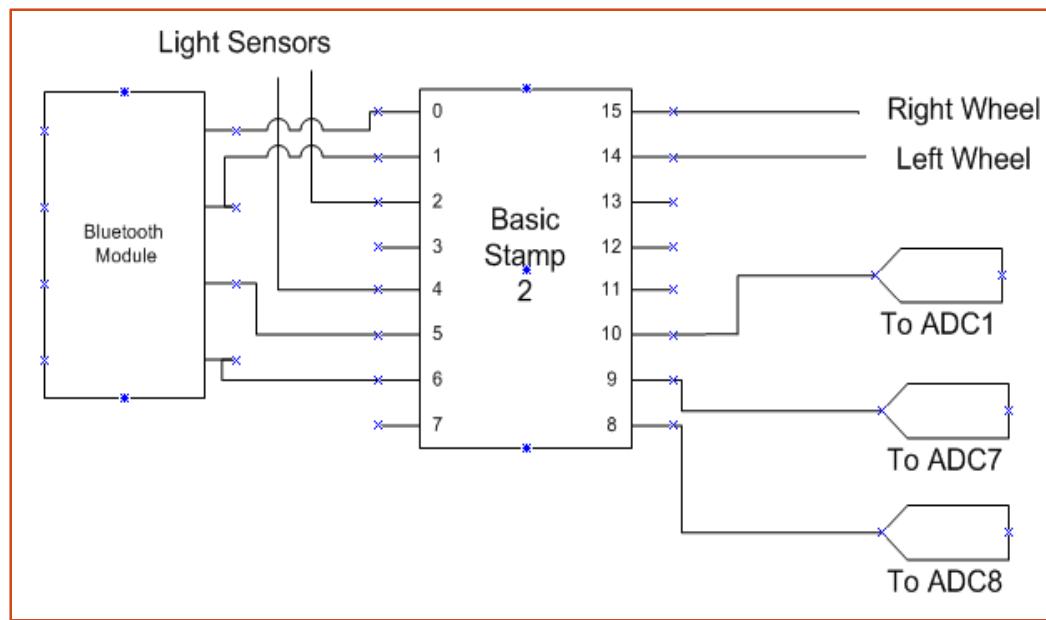

$$f = \frac{1}{t_{high} + t_{low}} = \frac{1}{0.693C(R_1 + 2R_2)} = \frac{1}{(0.693)(10,000nF)(10k\Omega + 2 * 15k\Omega)} = 3.6Hz$$

For Speaker

Electronic Circuits: Warning System

- Warning System Circuit Diagram

Electronic Circuits: Navigational


- Use of QRD1114 infrared(IR) reflective sensor
- Can be analog or digital
 - Analog- detects ranges of grey or
 - Digital- detects either white or black
- Why?
 - GPS cannot be used on this scale (2m)
 - Compass module is too sensitive to magnetism
- Mapping area of 80cm x 156cm
- Black borders allow light sensors to stop
- Simple movements to retrieve data

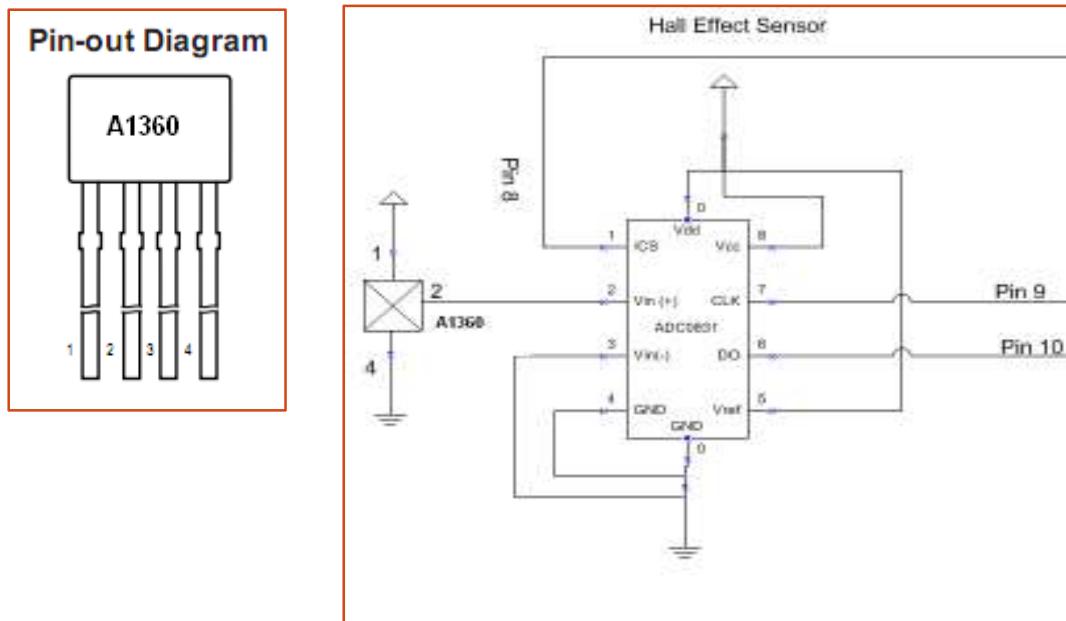
Electronic Circuits: Navigational

- The Map
- Mapping area of 80cm x 156cm
- Pegboard holes necessitate use of analog mode
- Black borders allow light sensors to stop
- Simple movements to retrieve data
 - Analogous to lawn-mowing sweeping pattern

Electronic Circuits: Navigational

Electronic Circuits: Temperature

- Use of MLX90614 Infrared Thermometer Module (90° FOV) for surface temperature readings
- Digital temperature sensor
- Serial interface for easy connection
- Placed 1.5cm above the surface to allow temperature readings in a 3cm radius
- Use of pegboard to allow even temperature distribution
- Temperatures are recorded and mapped onto a heat map


Electronic Circuits: Hall Effect Sensor

- Allego A1360 Linear Hall-effect sensor was used in connection with an AD0831 A/D Converter
- AD0831 IC allows analog voltage to be converted to digital
- Why?
 - High temperatures affect the magnetic properties of rocks
 - Hall Effect Sensor is utilized to detect these changes

Electronic Circuits: Hall Effect Sensor

- Hall Effect Sensor Circuit Diagram

Code

- Navigation-
 - Handles movement across map by conditional statements
- Temperature Readings
 - Temperature is taken from sensors
- Warning System
 - Alarm goes off when high heat or magnetism is found
- Bluetooth interfacing
 - Transmits data wireless to the Bluetooth
- Heat Map Generation
 - Takes temperature readings and plots them onto a heat map
 - May be overlayed on Google Maps

Bill of Materials

Bill of Materials: Prototype				
Item	Quantity	Cost	Total	
Basic Stamp 2 Module	1	\$49.00	\$49.00	
Board of Education Development Board (USB)	1	\$69.99	\$69.99	
Parallax (Futaba) continuous rotation servomotors	2	\$12.99	\$25.98	
QRD1114 infrared(IR) reflective sensor	2	\$5.99	\$11.98	
MLX90614 Infrared Thermometer Module (90° FOV)	1	\$39.99	\$39.99	
EmbeddedBlue Transceiver AppMod	1	\$69.99	\$69.99	
556 Timer	1	\$1.99	\$1.99	
Allegro A1360 Linear Hall-effect sensor	1	\$2.57	\$2.57	
ADC0831 A2D converter	1	\$5.99	\$5.99	
Lego Parts	1	\$20.00	\$20.00	
Various electrical components (LEDs, Capacitors, Resistors, wires, etc)	1	\$30.00	\$30.00	
Battery holder	1	\$1.99	\$1.99	
Pegboard Map	1	\$20.00	\$20.00	
Total Cost				\$349.47

Bill of Materials: Mass Production Cost

Bill of Materials: Cost for Mass Production (100 units)			
Item	Quantity	Cost	Total
Basic Stamp 2 Module	1	\$39.20	\$39.20
Board of Education Development Board (USB)	1	\$55.99	\$55.99
Parallax (Futaba) continuous rotation servomotors	2	\$11.69	\$23.38
QRD1114 infrared(IR) reflective sensor	2	\$5.99	\$11.98
MLX90614 Infrared Thermometer Module (90° FOV)	1	\$39.99	\$39.99
EmbeddedBlue Transceiver AppMod	1	\$69.99	\$69.99
556 Timer	1	\$1.99	\$1.99
Allegro A1360 Linear Hall-effect sensor	1	\$1.60	\$1.60
ADC0831 A2D converter	1	\$4.79	\$4.79
Lego Parts	1	\$20.00	\$20.00
Various electrical components (LEDs, Capacitors, Resistors, wires, etc)	1	\$30.00	\$30.00
Battery holder	1	\$1.99	\$1.99
Total Cost			\$300.90

Advantages

- Treads allow ease of movement through inclines and point turning
- Hall Effect Sensor is a novel method to find heat sources produced by rocks through magnetism
- Tightly, integrated system reduces cost and wasted space
- Warns locals

Problems Encountered

- GPS resolution is too large (2m)
- Iterations of map
 - Gradient- streaks caused imperfections with readings
 - Line following- navigational logic conflicted
 - Boundaries- low amounts of error
- Gas sensor
 - Not much sensitivity for gas
 - Would not be able to discern one gas from another

Conclusion

- Binford ThermDetector 3000 allows for
 - Transversal of land
 - Wireless transmission of data for quick analysis
 - Heat map shows areas of high danger
 - Magnetism uses novel method to detect coal mine fires
- Design process is never ending