CATCH ME IF YOU CAN...

Advanced Mechatronics :

Final Project

Presented By:

Federico Gregori

Karim Chamaa

Presented to:
Dr. Vikram Kapila

Outline

» Introduction » Technical Specifications
» System Description » Cost Analysis

» Improvements » Future Improvements
» Coding » Conclusion

» Components

Introduction

» Design a writing and drawing machine capable of mimicking a paint or captured imag
» Goal is to implement the Raspberry Pi to provide on-board computational power

» Improve and modify the system in order to achieve better results

Image To Capture

Description

Stoppers —— —

Push Buttons

Raspberry

Manipulator Camera

Arduino Mega +
Stepper Drive

T i Sl gt ' : T Logic Level
LCD CLNSS v £ | [Py

Improvements

Servo Motors Steppers Motors + Belt + Stoppers

LabVIEW Raspberry Pi

Paint Image Paint Image + Camera Image

Data Manually Copied Data Transmitted Serially

Need of Pc for Feedback LCD for feedback

2222

Result: Achieved a Stable, Stand-Alone and Autonomous system

Coding
Python Transmitter

STEP1 » Import Packages, setup LED’s and acquire choice (Camera or Paint Im

import serial

import time

import picamera

import math

import array

import PIL

import numpy

from PIL import Image

import RPi.GPIO as GPIO
GPIO.setmode (GPIC.BCHM)
GPIO.setwarnings (fFalse)
buttonPin = 22

ledPinl = 23

ledPin2 = 24

GPIO.setup (buttonPin,GPIO.IN,pull up down=GPIOC.PUD_UP)
GPIO.setup(ledPinl, GPI0O.0OUT)
GPIO.setup(ledPin2,GPIO.0UT)

while True:
GPIO.output (ledPinl, GPIO.HIGH)
GPIO.output (ledPin2, GPIO.LONW)
print ("System started”)
while True:
inputValue=GPIO.input (buttonPin)
if (inputValue == False):
print ("Black button pressed”)
GPIO.output (ledPinl, GPIO.LOW)
Selection='1"’
break

Coding
Python Transmitter

STEP2 » Transforming Image into matrix form depending on choice selected

if Selection=='0":
MatrixImage=numpy.asarray(Image.open('Paint.jpg") .convert('L"'))
elif Selection=='1"':
with picamera.PiCamera() z= camera:
camera.resolution=(2592,1944)
camera.brightness=40
camera.sharpness=100
camera.start_preview()
time.sleep(5)
camera.capture ('Cameralmage.jpg’')
camera.stop_preview()

MatrixImage=[[255 for X in range(210)] for y in range (90)]#Define Matrix 9(

#3cale the image to a smaller one by changing the basewidth 115- 86

basewidth=80

img=Image.open('Cameralmage.jpg')

img=img.crop((880,580,1820,1100))

wpercent= (basewidth/float (img.size[0]))

hsize=int ((float (img.size[l]) *float (wpercent)))

img=img.resize ((basewidth,hsize) ,PFIL.Image .ANTIALIAS)

img.save ('ScaledCamera.jpg")

#5caled Iage to Matrix

Cameralmage=numpy.asarray (Image.open('ScaledCamera.jpg').convert('L"))

#Add Values to the workspace side of Matrix

for i in range(len(CameraImage)) :#Scan Matrix up to down
for j in range (len(CameraImage[0])):# Row outer loop and column inner

MatrixImage[i+45] [J+130]=CameralImage[i] []]

Coding
Python Transmitter

STEP3 » Extracting points by setting a threshold

#Find X and Y not mapped

#Replace by indexes and get Mapped ValuesXN

XNotMapped=1ist ()

YNotMapped=list ()

XNotMappedGlobal=1list ()

YNotMappedGlobal=l1list ()

for i1 in range(len(MatrixImage)) :#Scan Matr

for j in range (len(MatrixImage([0])):#% |
if MatrixImage[1][]]1<50:

XNotM=i;
YNotM=3j;
XNotMapped. append (XNotM)
YNotMapped.append (YNotM)
XNotMappedGlobal.append (XNotM) #§
YNotMappedGlobal.append (YNotM)

Coding
Python Transmitter

STEP4 » Mapping the points using an efficient algorithm

#Map x and Y
indexArray=list ()
IndexArrayMapped=1list ()
LiftArray=list ()
Newi=0 #Since I am not able to change indices of for loop
Python Start at 0
for i in range (len(XNotMapped)):
for j in range (len(XNotMapped)):
MinDis=math.sqgrt (pow ((XNotMapped[j]-XNotMapped[Newi]),2) + pow((YNotMapped[j]-YNotMapped[Newi]),2))
indexArray.append (MinDis)
if 1 in indexArray:
index=indexArray.index (1)
Lift=0
2lif math.sqgrt(2) in indexArray:
index=indexArray.index (math.sgrtc(2))

Lift=0
else:
if (i==len (XNotMapped)-1):
Lifc=1
index=indexArray.index (math.sqgrt (0))
else:

for k in range (len(indexArray)):
if (indexArray[k]<100 and indexArray[k]>0):
index=k
Lifc=1

XNotMapped [Newi]=10000

YNotMapped [Newi]=10000

IndexArrayMapped.append (Newi)

LiftArray.append (Lift)

Newi=index

indexArray=list () #Need to empty it otherwise it append

Coding
Python Transmitter

STEP5 » Applying Inverse Kinematic Equations

#Replace by indexes and get Mapped Values

XMapped= list ()

YMapped=1list ()

for i in range (len(IndexArrayMapped)):
XMapped.append (XNotMappedGlobal [IndexArrayMapped([i]])
YMapped.append (YNotMappedGlobal [IndexArrayMapped([i]])

print ("XMapped=",XMapped)

print ("YMapped=", YMapped)

#Apply Inverse Kinematics Equations
Angle2= list ()
Anglel=list ()
SteplArray=list ()
Step2Array=1ist ()
for i in range (len (XMapped)):
D= (pow (XMapped[i], 2) +pow (YMapped[i],2)-pow(132,2)-pow (100,2))/(2*%132*100)
AngZ2=math.atan2 (math.sqgrt(l-pow(D,2)),D)
Angle?2.append (math.degrees (Ang2))
2=100*math.sin (Ang2)
B=132+ (100*math.cos (Ang2))
Angl=math.atan2 (YMapped[i] ,XMapped[i])-math.atan2 (A,B)
Anglel.append (math.degrees (Angl))
Stepl=int (round((math.degrees (Angl) *470)/9))
Step2=int (round((math.degrees (Ang2) *470) /9))
SteplArray.append (Stepl)
Step2Array.append (Step2)

Coding
Python Transmitter

STEP6 » Transmitting data serially to Arduino

GPIC.output (ledPin2, GPIC.HIGH)

print ("Computation done™)

$Serial Part
ser=serial.Serial('/dev/ttyAMAO"',b9600)
startmsg=str(b'x")

ser.write (bytes (startmsg, encoding="ascii"))
while True:

if ser.read(l) == b'S5S":
GPIC.output (ledPin2, GPIO.LOW)
print ("Red button pressed"™)
break

for i in range(len(SteplArray)):
messagel=str (SteplArray[i]+1000)
messageZ=str (Step2Array[i]+1000)
message3=str (LiftArray[i])
ser.write (bytes (messagel, encoding="ascii"))
ser.write(bytes (message2, encoding="ascii"))
ser.write (bytes (message3, encoding="ascii"))
$time.sleep(0.5)
while True:

if ser.read(l) == b'S5":
break

Coding
Arduino

Components

» Stepper motors by Adafruit
» 350mA, 12v
» 200 steps/revolution

» Up to 18,800 steps/revolution

with gear reduction and

microsteps function.

Components

Adafruit Motorshield V2

Up to 2 steppers and 2

servos working together

Addressable 12C

communication

;[=
8 =
g -
10 =
1M1-
12a
13 &
14 &
15a
16 &
17 &
18 a
19a
20=

Components

W " A M A AR A B EEE N B
—
F-N

» 4 Bi-Directional Adafruit
Logic Level Shifter

» Allows communication

between R-Pi and Arduino

Components

.]s LCM1602 o O IC

\JC{‘
'gwﬂo = -
0% STl
~ o 0-.S
| © Hova " B o o B
D
= NG OO

L&

» 12C LCD by Geeetech

» Default I12C address 0x27

» Orange backlit

Components

» Push buttons

User control
‘ and feedback
» Bicolor Led

&

Technical Specifications
System Speed and Number of Angle

- \>\“.. .
6\ » Gear Ratio 1:6

| 90 Degrees ‘ 47000Steps
Perimeter:160mm

Draw Time :3 minutes

0.88 mm/second

| Specifications

Technica

.

Workspace Area

0v¥Z G¢¢ 0lc S61

SIXe-X
08l G91 0GL GE€L OC¢lL S0L 06 S.Z 09

Sy 0€ Gl

0

T

T T T T T

Kiepunog aseds3iopp

0
Gl
0€
°14
09
S
06
S0L
0clL

sixe-A

' GEL
0s1
S99l
081
S61
(0] %4
144

- 0ve

Technical Specifications
Captured Image Scale

SCALE
1Pixel=1mm

Technical Specifications
Accuracy

|
«— ST
A i » The error evaluated is 0.8%*
A A
= £ E
(&) (&) o 13
<t (00) <t — ‘
\ A v |
* The tecnique used is the mean
Y value of the relative error of

the three mesuraments.

Technical Specifications

Accuracy
Board Number of | Motors Function %Error
Processors
Arduino Servo LabVIEW
Programming
Arduino 1 Servo writeMicroseconds() 1.6
Propeller 2 Servo Servo_angle 5.8
Propeller 1 Servo Servo_angle 7.8
Propeller 1 Servo Pulse_out 2
Propeller 2 Servo Pulse_out 1.2

Arduino+Pi 1 Steppers AccelMotor Libraty 0.8

Cost Analysis

Pexgas cach 24 245
Raspberry Pi 1 cach 358 358
Steppers + Board 2 Each 255 505
Printing Parts 2 Each 255 505
ArduinoMega 1 cach 308 308
= B cach 15 15
Voltage Converter cach s s
= B cach 15 15
- 1 Each 255 255
- Prototype Total Cost= 2565

Future Improvements

» Path Planning: Fitting trajectories (example: Cubic or sinusoidal) between

desired joint variables at discrete points in time.

» Control: Designing an inverse proportional controller or PD in order to
minimize the error over time. A combination of encoders and tachometers

must be used in order to provide feedback.

[mrmrmim e .
E Primary Controller

i’ Inverse
T > Dynamics

il

— > .
Robot q

Conclusions

» We achieved better results by replacing the servo motors by stepper motors since

the range of angle and torque increases.

» We were able to design a stand alone system by the help of raspberry pi and

eliminated the need of LabVIEW.

» To achieve better results more efficient algorithms and controllers should be used

Thank You

Questions ?

