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Abstract

This report presents the development of a mobile robotic system that integrates image
processing, convolutional neural networks, and behavioral cloning with a computer in order to
assist the transfer of materials from one location to another in an industrial environment. This
project utilizes a RC vehicle platform fitted with a wide-angle camera module, an ultrasonic
sensor, servo controller, and microcontroller, which wirelessly connects to a computer. Human
users choose the object to be moved by the robot for the human through a computer interface,
and the device can drive the object to the preset destination according to traffic signs that it
detects along the way by making navigational choices. Image processing through the neural
networks enables the microcontroller to make navigation decisions to the built platform through
the servo controller. Additionally, the developed module will train the model to drive itself in a
static environment to perform repetitive tasks, which will enable industries to increase
productivity through automation in closing shifts. The developed prototype successfully
performed self-navigation, image recognition of various traffic signs in the environment, and
eventually the trained neural network performed autonomous navigation based on the commands
provided by the user. An evaluation scheme, which was proposed to test the usability of the
system, found that the developed product was user-friendly and neural networks were reliable.
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1. Introduction

In this age of iterative advancements in technology, many industries continue to use
user-controlled devices to transport objects from one part of the factory to another; this is an
avoidable waste of time, which can be used to achieve a more efficient workflow and use only
manpower for complex operations. Even industries that employ a robot to do this task do not
heavily rely on it, since the industry’s environment is continually changing [1]. This results in
the need to program the robot to incorporate these changes, or to reduce the usage of such a
robot, making it obsolete. This process needs a much smarter robot wherever possible, which
forms the objective of this project. This smart mobile robot can navigate using six different
number of traffic signs that will be strategically placed in the factory environment, and it uses
these signs to make smart navigational choices, which is possible due to recent advancements in
machine learning and artificial intelligence.

Nowadays, most of the robots work by following commands that humans set in the machine or
use a pre-saved map of the environment that becomes unnecessary when the layout of factory
operations constantly changes. Most industrial robotic systems also lack simple user interfaces.
In addition, some of the robots need constant supervision, but the real condition is that workers
cannot spend a lot of time to look after the robot while doing his/her own work, so they want a
robot that can finish some tasks by itself [1]. The question is, how can the transporting of an
object by a robot be made easier for dynamic environments? Hence, the operation of a robot
needs to be that every time there is a change in the way a factory is set up, only minimal human
intervention is needed to continue using the robot.

However, such operation methods are still not enormously available, and they are often too
complex to be used by workers who have limited knowledge of these processes. Smart robots
should combine a few important functions that make them convenient to use. The Convolutional
Neural Network based robot will utilize a Raspberry Pi wide-angle lens camera to look for signs
in the environment and to make decisions for navigation from one point to another. With the
popularity and ease of use of computers, an implementation of such a process will lead to an
increase in the usage of such robots. An added feature of this project is the use of behavioral
cloning module, in which a user can manually drive the vehicle around the factory to train a
convolutional neural network [2] to be able to drive the robot using the trained network in a
static environment. In the project, the system consists of two main parts: one is a mobile base
platform, and another is a micro-controller that controls how the base is going to move. Once the
object is loaded and the destination is selected, the mobile base can drive the object to the
drop-off point by using the traffic signs placed within the workspace of the industry; this is
accomplished through image processing using the images frame taken by the camera. This report
is organized in the following ways: Section 2 talks about the current industry leading robots and



their limitations; Section 3 presents the system components and introduces how the system
works; Section 4 presents the experiment and results for system evaluation; Section 5 presents
acknowledgment; and Section 6 references for this project.

2. Related Works

There are a wide range of mobile robots currently operating in a factory setting that are used in a
variety of applications, including but not limited to payload operations, pick and place, sorting
and security. In terms of the sensors used and the purpose, there are two robots that closely
match this project. But none of them use deep neural networks for navigation, relying instead on
LiDAR and computer vision.

2.1. OTTO 1500

OTTO 1500 [3] navigates spaces just like a person does. It maintains a map of the space in its
memory and uses visual reference points to always know its position. No guides or infrastructure
are required.

2.1.1. Main Components

1. Safety Rated Lidar:

Drives around obstacles and find new routes without getting stuck.

2. 360° Indicator Lighting:

Displays familiar turn signals, brake lights, vehicle status lighting, and audible tones so you
know where OTTO is going.

3. Configurable Payload Interface:

Carries payloads using a standard OTTO attachment, or has the flexibility to create your own
using fixed mounting points and standard power and communication ports.

OTTO 1500]3] can be loaded and unloaded manually or can use a standard attachment to
automate the pick-up and delivery process.

2.2. MiR200

The MiR200 [4] is a safe, cost-effective mobile robot that quickly automates your internal
transportation and logistics. The robot optimizes workflows, freeing staff resources so you can
increase productivity and reduce costs.

MiR200 can be used in nearly any situation where employees are spending time pushing carts or
making deliveries. These tasks can be automated, so employees can focus on higher value
activities.



2.2.1. Sensors

1.SICK laser scanners S300 (front and back):

360° visual protection around robot

2. 3D camera Intel RealSense:

Detection of objects ahead 50-500 mm above floor

3. Ultrasonic scanners :

Detection of transparent objects ahead, e.g. glass doors

With built-in sensors and cameras and sophisticated software, the MiR200 can identify its
surroundings and take the most efficient route to its destination, safely avoiding obstacles and
people. Without the need to alter your facility with expensive, inflexible wires or sensors, the
robot offers a fast return on investment, with payback in as little as a year[4].

3. Development of the System
3.1 The Overall system

The goal of project is to design a robotic system that contains a mobile robot base and a micro
controller. This system can be operated remotely through a computer once the object for
transportation is placed on it and can (1) complete autonomous navigation of an unknown map,
(2) recognize traffic signs based on convolutional neural networks, and (3) reach the preset
destination where the object is manually unloaded. The system consists of a computer, a
raspberry pi 3 model-B, a RC racing truck as the build platform, a Sainsmart wide-angle camera
module, a Sunfounder servo control board, a Parallax ultrasonic sensor, an Anker 10000mAH
battery pack, and a 3D printed assembly to complete the set up. Figure 1 shows the overall
robotic system.
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Figure 1. Components of the System

An open source design [4] from thingiverse was used to 3D print the Raspberry Pi camera holder
assembly. The following figure shows the entire labelled assembly:
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Figure 2. Robot Assembly



Figure 3. Front View of the Robot



Figure 4: Side View of the Robot

The following picture shows the alignment of the PING sensor with respect to x and y axes.



Figure 5: Alignment of the PING Sensor

3.2. Convolutional Neural Networks

The project utilizes two separate training of convolutional neural networks for each of the
navigation and behavioral cloning modules. The following sections discuss how each of these
networks are trained.

3.2.1. CNN for Traffic Sign Recognition

There are various aspects to consider when thinking about this problem:

e Neural network architecture

e Play around preprocessing techniques (normalization, RGB to grayscale, etc.)

e Number of examples per label (some have more than others)

e Generate fake data
The dataset preprocessing consisted of converting to grayscale - This worked well for Sermanet
and LeCun [5] as described in their traffic sign classification article. It also helps to reduce
training time, which was nice when a GPU wasn't available.



3.2.1.1. Data Augmentation:

Data augmentation is the single best method to increase accuracy of the model. Because several
classes in the data have far fewer samples than others the model will tend to be biased toward
those classes with more samples. Augmentation was done by creating copies of each sample for
a class (sometimes several copies) in order to boost the number of samples for the class to 4
(since the class already had at least 800 samples). Each copy is fed into a "jitter" pipeline that
randomly translates, scales, warps, and brightness adjusts the image. This was by far the most
laborious part of the project, and it takes quite some time (more than 6 hours on a virtual
machine through Amazon Web Services EC2 instance) to run the code.

The SciKit Learn train_test split function was used to create a validation set out of the training
set. 20% of the testing set was used to create the validation set.

3.2.1.2. Neural Network Architecture:

The modified LeNet architecture has been adapted from Sermanet/LeCunn traffic sign
classification journal article [5] as shown below.
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Figure 6: Modified LeNet Architecture [10]

The same architecture was implemented from the LeNet Lab [10], with no changes since the
dataset is in grayscale. This model worked quite well to begin with (~96% validation accuracy),
but implementation of the Sermanet/LeCun model from their traffic sign classifier paper and
gave an immediate improvement. Although the paper doesn't go into detail describing exactly



how the model is implemented (particularly the depth of the layers) it was possible to make it
work. The layers that used to train the model are set up like this:
e 5x5 convolution (32x32x1 in, 28x28x6 out)
ReLU
2x2 max pool (28x28x6 in, 14x14x6 out)
5x5 convolution (14x14x6 in, 10x10x16 out)
ReLU
Flatten layers from numbers 8 (1x1x400 -> 400) and 6 (5x5x16 -> 400)
Fully Connected Layer 2:Input = 145. Output = 84.
Fully Connected Layer 3:Input = 84. Output = 4.

Test Set Accuracy = 0.927

3.2.1.3. Training the Model:

Adam optimizer was used to train the model [6] . The final settings used were:
e Dbatch size: 100

epochs: 60

learning rate: 0.0009

mu: 0

sigma: 0.1

dropout keep probability: 0.5
3.2.1.4. Test a Model on New Images:

Some of the images taken by me appear to be more easily distinguishable than quite a few
images from the original dataset. I noticed that the images tend to be quite a bit brighter and
might occupy a different range in the color space, possibly a range that the model was not trained
on. In addition, the GTSRB dataset [13] states that the images "contain a border of 10 % around
the actual traffic sign (at least 5 pixels) to allow for edge-based approaches" and the images that I
used do not all include such a border. This could be another source of confusion for the model.
The model appears to have predicted the new signs perfectly for the four images to be used for
testing in real time, with 100% accuracy. This is a good sign that the model performs well on
real-world data. And while it's reasonable to assume that the accuracy would not remain so high
given more data points, judging by the low fidelity of a number of images in the training dataset
it's also reasonable to assume that if the real-world data were all as easily distinguishable as the
four images chosen that the accuracy would remain very high, as shown below:

Input Prediction Probability Action




0.72 Go
Straight
0.82 Take Left
0.77 Turn Right
0.98 Stop

A video of the trained CNN used to detect different signs in real time is linked below.




Video Link: https://www.youtube.com/watch?v=5GonZgJ X ca0&feature=youtu.be
3.2.2. CNN for Behavioral Cloning

The objective of this project is to apply deep learning principles to effectively teach the robot to
drive autonomously in a static environment to perform repetitive functions. The robot is trained
by driving either manually or using hardcoding to collect input images that record the features in
the environment. In training mode, user-generated driving data is collected in the form of
simulated robot dashboard camera images and control data (steering angle, throttle, brake,
speed). Using the Keras deep learning framework, a convolutional neural network (CNN) model
is produced using the collected driving data and saved as model.json. Using the saved model,
drive.py starts up a local server to control the robot in autonomous mode. The model weights are
retrieved using the same name but with the extension .h5.

The challenge of this project involved not only developing a CNN model able to drive the robot
around the test track without leaving the track boundary, but also feeding training data to the
CNN in a way that allows the model to generalize well enough to drive in an environment it has
not yet encountered,i.e with minor changes in the same environment.

3.2.2.1. Base Model and Adjustments

The diagram below is a depiction of the nVidia model architecture [6] which I have made use of,
using a few modifications that are explained in the coming topics.
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Figure 7: NVIDIA Architecture [11]



First I reproduced this model as depicted in the image - including image normalization using a
Keras Lambda function, with three 5x5 convolution layers, two 3x3 convolution layers, and three
fully-connected layers - and as described in the paper text - including converting from RGB to
YUV color space, and 2x2 striding on the 5x5 convolutional layers. The paper [6] does not
mention any sort of activation function or means of mitigating overfitting, so tanh activation
functions was used on each fully-connected layer, and dropout (with a keep probability of 0.5)
between the two sets of convolutional layers and after the first fully-connected layer. The Adam
optimizer was chosen with default parameters and the chosen loss function was mean squared
error (MSE). The final layer is a fully-connected layer with a single neuron.

3.2.2.2. Loading and Preprocessing

In training mode, the robot produces one images per frame while recording corresponding to
center-mounted camera. This produces a csv file which includes file paths for each of these
images for each frame. The algorithm loads the file paths for the camera views for each frame,
along with the angle, into two numpy arrays image paths and angles.

Images produced by the robot in training mode are 320x160, and therefore require preprocessing
prior to being fed to the CNN because it expects input images to be size 200x66. To achieve this,
the bottom 20 pixels and the top 35 pixels are cropped from the image and it is then resized to
200x66. A subtle Gaussian blur is also applied and the color space is converted from RGB to
YUV. Because the code uses the same CNN model to predict steering angles in real time, it
requires the same image preprocessing.

3.2.2.3. Further Model Adjustments

Some other strategies implemented to combat overfitting and otherwise attempt to get the robot
to drive more smoothly are:

e Removing dropout layers and adding L2 regularization (lambda of 0.001) to all model
layers - convolutional and fully-connected

e Removing tanh activations on fully-connected layers and adding RELU activations to all
model layers - convolutional and fully-connected

e Adjust learning rate of Adam optimizer to 0.0001 (rather than the default of 0.001)

These strategies did, indeed, result in less bouncing back and forth between the sides of the track,
particularly on the test track where the model was most likely to overfit to the recovery data.



3.2.2.6. Results

These strategies resulted in a model that performed well on both test and challenge tracks. The
final dataset included a total of 59,664 data points. From these, only 17,350 remained after
distribution flattening, and this set was further split into a training set of 16,482 (95%) data
points and a test set of 868 (5%) data points. The validation data for the model is pulled from the
training set, but doesn't undergo any jitter. The model architecture is described in the paragraphs
above, but reiterated in the image below:
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Figure 8: The Final Architecture

3.3. Packages Used:

The model depends on a number of packages that must be installed. They are:

Pickle: Used to import and export pickled file that compresses the image database.
Random: Used to generate random values for data augmentation.

Os: Controls the operating system of the raspberry pi.

Numpy: Used as an efficient multi-dimensional container of generic data to integrate with
a wide variety of databases.



TensorFlow: An open-source software library for building and training neural networks
to detect and decipher patterns and correlations.

Time: Used for giving appropriate delays in the program.

Csv: Used to import .csv type files in the database.

Donkey: Gives server and control access to the raspberry pi from the host computer.
Scipy: A scientific python library used to train the neural networks efficiently.

Adafruit PWM: Used to control the servo motors of the robot using PWM values from
the raspberry pi.

3.4. Components:

3.4.1. Raspberry Pi 3 Model B:

The Raspberry Pi 3 is a pocket size micro computer that has functions for manipulating the input

and output pins.

Figure 9: The Raspberry Pi 3 B

The specifications of the model are:

Quad Core 1.2GHz Broadcom BCM2837 64 bit CPU

1GB RAM

40-pin extended GPIO

CSI camera port for connecting a Raspberry Pi camera

Micro SD port for loading your operating system and storing data
Micro USB power source up to 2.5A

3.4.2. Raspberry Pi Camera Module V2:

The Camera Module can be used to take high-definition video, as well as stills photographs. The

v2 Camera Module has a Sony IMX219 8-megapixel sensor (compared to the 5-megapixel

OmniVision OV5647 sensor of the original camera).



It’s a leap forward in image quality, colour fidelity, and low-light performance. It supports
1080p30, 720p60 and VGA90 video modes, as well as still capture. It attaches via a 15 cm
ribbon cable to the CSI port on the Raspberry Pi. The project utilizes the camera as an input as
well as a feedback device, to train the model as well as during real time testing.
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Figure 10: The Raspberry Pi Camera V2

3.4.3. Redcat Racing RC Car:

The mobile robot platform consists of the Redcat Racing RC Car that can be hacked using a
simple PWM controller connected from the raspberry pi. It has :

e Electric Brushed 27T 540 Motor, Four Wheel Drive, High Torque Servo
e Polycarbonate Body, Aluminum Capped Oil Filled Shocks
e Transmission Forward and Reverse. 7.2v 2000mAh NiMh Battery
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Figure 11: Redcat RC Car

This gives an opportunity to use an affordable platform as a test bed for evaluating the results of
the project, at the same time, not compromising on performance.

3.4.4. Sunfounder PCA 9685 Servo Controller:

The controller communicates with the raspberry pi through an I2C interface and directly controls
the servo motors on the platform through Pulse Width Modulation.



Figure 12: PCA 9685 Controller

e Contains an I2C-controlled PWM driver with a built-in clock. It means, unlike the

TLC5940, you do not need to continuously send it signals tying up your microcontroller;
it's completely free running.

e Support using only two pins to control 16 free-running PWM outputs.

12-bit resolution for each output - for servos, that means about 4us resolution at 60Hz
update rate.

3.4.5. Anker Battery Pack:

The battery pack is used to give power to the raspberry pi, the camera module as well as the
servo controller.



Figure 13: Anker Power Bank

It has a total capacity of 10,000mAh, making it capable of delivering the required power to the

unit for more than 20 hours with a single charge.

3.4.6. Alienware 15 Laptop:

The computer is used for training the neural networks as well as for wireless communication to

the raspberry pi through a SSH connection established through the command line of the

computer. The specifications of the laptop are:

CPU:

Operating System:
RAM:

Hard Drive Size:
Hard Drive Type:
Display Size:
Native Resolution:
Graphics Card:
Video Memory:
Wi-Fi Model:
Bluetooth:

2.9 GHz Intel Core i5-4210 CPU
Ubuntu 16.04

16GB

128GB SSD

M.2 SSD

15.6

1920x1080

Nvidia GeForce GTX 970M with 3GB GDDRS5
3GB

Killer 1525 802.11ac

Bluetooth 4.1



3.5. Electrical Connection:

Fritzing [12] wiring software is used to visually illustrate the circuit connections between the

raspberry pi, the camera module, the servo controller and the servo motors of the platform
vehicle is shown below:
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Figure 14. The Electrical Connection for Behavioral Cloning
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Figure 15: The Electrical Connection for Sign Based Navigation

The raspberry pi receives input images(or videos) from the camera module and distance
measurements from Ping sensor. It then does the computation required and sends the required
PWM values to the steering and throttle servo motors through the PCA9685 module. The various
sorts of communication happening within the modules are shown below:
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Figure 16: Schematic for Communication

4. Evaluation

4.1. Behavioral Cloning Module

A test layout was created to manually drive the robot around and capture around 15,000 images.
A simple circular path was followed by the robot in order to facilitate training. The model was
tested by adding a green line boundary to simulate a change in the environment to test for the
accuracy of the model when there are minor changes to the environment. The test layout is
shown below:



Figure 17. Testing Layout 1

The aim for evaluating the module was as follows:
e Load an object at “Plant A” (see next figure).
e Start the module and test if it can reach “Plant B” where the object is unloaded and a new
object is loaded.
e The robot then brings the new object back to “Plant A.”



Figure 18. Training Layout 1

This loop is repeated for a sufficient number of start positions to (1) verify if it can stay within
the boundary (marked by green and blue tapes) and (2) match the steering values that it was
expected to give, which is evaluated in the coming sections.

A more complex track was built to train and test the same module to test for repeatability. This
module was trained in a rectangular track for 20 laps, and then the layout was modified for the
last 8 laps to see if the model was able to learn and make the robot drive in the new track. A
diagram of how these two layouts looks is shown below.
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Figure 20. Testing Layout 2
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The pictures taken during testing are shown below:

Figure 21. Testing Track 2- Image 1

Figure 22. Testing Track 2- Image 2



Figure 23. Testing Track 2- Image 3

4.1.1. Comparison of Steering Angles:

Since the model involved training by driving around the track in a circular path, the PWM values
are expected to be constant for the steering motor. However, in a practical world, there will be a
few discrepancies, owing to change in lighting conditions, minor changes in the environment,

etc. The following table plots expected and actual PWM values for 20 trials:

Trail Expected Steering PWM Value Actual Steering PWM Value
1 550 551
2 550 550
3 550 550
4 550 550
5 550 550
6 550 550
7 550 551




8 550 551
9 550 551
10 550 550
11 550 550
12 550 550
13 550 550
14 550 550
15 550 552
16 550 551
17 550 550
18 550 550
19 550 549
20 550 550

As can be observed from the table, the model’s predictions are almost equal to the expected
values and varies only in the error range of 2, which is perfectly acceptable, since it does not
cause drastic changes in the path of the robot.

Video Link: https://www.youtube.com/watch?v=euSkEnNLK f8&feature=youtu.be
Video Link 2: https://www.youtube.com/watch?v=0V-GQOhfABw&feature=youtu.be

For module 2, the results were different and are shown in the form of line graphs for three
different batch sizes below:
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Batch 1
® Training Set @ Actual Test Set

=3
=
e
{m]
5
]
[1¥]
in
2 4 6 8 10
Time (s)
Figure 24. Steering Comparison
Batch 2
@® Training Set @ Actual Test Set
600
S 400
=
&
£
8 200
&
0
2 4 6 8 10

Time (s)
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Figure 26. Steering Comparison

4.1.2. Boundary limits

The next part of evaluation is to observe if the model can keep the robot within the track at all
times for different starting positions (Plant A and Plant B) when performed for 5 trials each.
These results are tabulated below:

Start Point Trial Touch Outer | Touch Inner
Boundary? Boundary?
Plant A 1 No No
2 No No
3 No No
4 Yes No
5 No No




Plant B 1 No No
2 No No
3 No No
4 No No
5 No No

As can be observed from the table, the model performed exceptionally well, only touching the
outer boundary once out of 10 trials.

For the second track, the results are tabulated as follows.

Start Point Trial Touch Outer | Touch Inner
Boundary? Boundary?

Start A 1 No No

2 No No

3 Yes No

4 Yes No

5 No No

6 No No

7 No Yes

8 No No

9 No No

10 No No

The model performed well considering the complex setup of the track and the hardware
limitations of the robot, only touching the boundary four times out of 10 trials.



4.2. Traffic Sign Module

The goal of the traffic sign module is for the robot to be able to navigate based on only the signs
it encounters in the environment. The general working of this module is as follows:
e Wait for material loading and start program by the user.
e (o straight until encountering a sign (sliding window search and template matching) and
avoid obstacles.
e Preprocess the images and feed it to the trained network — outputting one of the four
classes.
Navigate based on the obtained output and continue straight.
Repeat the process until the stop sign is detected.

4.2.1. Individual Testing

To test the functioning of model in real time, each traffic sign was tested individually. The
following table shows how the model reacted to the signs for each of the 5 trials:

Traffic Sign Trial Success of Detection

Right turn 1 Yes
2 Yes

3 No

4 Yes

5 Yes

Left turn 1 Yes
2 Yes

3 Yes

4 No

5 Yes

Stop 1 Yes

2 Yes




3 Yes
4 No
5 Yes
Straight 1 Yes
2 Yes
3 Yes
4 Yes
5 Yes

Video Link 1: https://www.youtube.com/watch?v=IXC2TxQnW8o
Video Link 2: https://www.youtube.com/watch?v=pFbWb_RIWvY

4.2.2. Testing Entire System:

To test the detection of signs in real time, all of the traffic signs being used was tested together in
a track layout as shown below:




Figure 27. Testing Layout

The following table shows how the model reacted to the signs done for 10 trials:

Trail Detection Total Time (s)
1 All 32
2 Right, Left, Stop 32
3 All 33
4 All 32
5 Right, Stop 32
6 All 33
7 All 32
8 All 34
9 All 35




10

All

34

Average

329

4.2.3. Delay Time:

The time taken for detecting each of the signs for 5 trials is documented below:

Traffic Sign Trial Time for Detection (s)
Right turn 1 2
2 2.1
3 2.1
4 2
5 2.1
Average 2.06
Left turn 1 2.2
2 2.2
3 2.2
4 2.1
5 2.1
Average 2.16
Stop 1 2.2
2 2.1
3 2.1
4 2.0
5 2.0




Average 2.125
Straight 1 2.1
2 2.1
3 2.1
4 2.0
5 2.0
Average 2.06

4.2.4. Boundary limit:

The next part of the evaluation is to observe if the model can keep the robot within the track at
all times for different starting positions for 5 trials each. These results are tabulated below:

Trial Boundary exceeded?
1 Yes
2 No
3 Yes
4 No
5 No

It can be said that the system needs to be more accurate to not go beyond the lines, which might
be a major hassle in an industrial setup, but this issue mainly arises because the robot platform
has limited steering capabilities.

Subjective Evaluation

An experiment was designed to test the effectiveness of the system in a simulated factory
environment. It involved one person loading the material to be transferred and start the robot,
while the other person waits for the material and unloads it off of the robot as shown in the
pictures below:
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Figure 28: Loading the material
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Figure 29: Robot Navigating to the location



Figure 30: Unloading the material

This was repeated for 22 test subjects. A survey was conducted with questions concerning safety,
effectiveness, time taken, etc., and the results were summarized below:



How safe did you feel working with the robot?

22 responses
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Figure 31: Subjective Evaluation 1

How do you rate the motion quality of the robot?

22 responses
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Figure 32: Subjective Evaluation 2



How stable/ robust did you find working with the robot?

22 responses
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Figure 33: Subjective Evaluation 3

How convenient was it to work with the robot?

22 responses

15.0
125
10.0
75
5.0 6

(27.3%)

25
0 {cln%) 0 {?%} 0 (0%)

0.0

1 2 3

Figure 34: Subjective Evaluation 4
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What was your level of your situational awareness when working with the
robot?

22 responses
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Figure 35: Subjective Evaluation 5

How engaged were you when working with the robot?
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Figure 36: Subjective Evaluation 6



What was your level of confidence when working with the robot?
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Figure 37: Subjective Evaluation 7

How useful is the working principle when working with the robot?

22 responses
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Figure 38: Subjective Evaluation 8
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How efficient is the system?

22 responses
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Figure 39: Subjective Evaluation 9

Could the vehicle recognize all the signs?
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Figure 40 :Subjective Evaluation 10



Did it cross the boundary?
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Figure 41 Subjective Evaluation 41

Did it reach the target position?
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Figure 42: Subjective Evaluation 42



Did it allow for loading/unloading the materials?
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Figure 43: Subjective Evaluation 43

As can be seen from the results above, the robot performs exceedingly well in all of the
important measures, except the motion’s quality. This was an expected attribute since the robot
has now been programmed to go one step at a time to make sure that each sign is detected.

5. Conclusion and Discussion

This project presents two novel approaches for navigating an industrial material transfer
robot/vehicle — namely, behavioral cloning and traffic sign based, autonomous navigation. There
were numerous challenges faced during the development of the robot, including the following:
creating an elaborate and efficient dataset to train the CNN model, performing various model
adjustments and data augmentation, and making the system work in real time using a low cost
computing platform like raspberry pi. Even though there was an average of 2.1 seconds delay in
recognizing the sign, it can be considered negligible, considering the entire cost of the project
was less than $350.

An opportunity to improve the overall efficiency of the system exists, and future work on this
project may take into account a few of the following improvements in order to create an even
better industrial material transfer robot:

e A different build platform to control the robot more efficiently. This is due to the fact that
the Redcat Racing RC platform cannot be efficiently controlled to steer at right angles
(maximum steering angle is 55 degrees) [9] and has an inefficient and flawed battery
system.



Make use of a dedicated controller where neural networks can be trained locally. This
eliminates the use of a stand-alone computer, making the system more portable, as well
as giving extra computational power to the microcontroller.

Incorporate mapping and localization techniques. This is to give the user a choice of
using a pre-built map for navigating the industrial environment in a static environment
which is faster, or to use the navigation module based on traffic sign recognition and
behavioral cloning.

A better sliding window search algorithm. This will detect traffic signs and match them
to a virtual bounding box, which may increase the accuracy of the CNN in real-time
detection.

Use a LiDAR. To replace the unreliable ultrasonic sensor in a dynamic environment to
implement collision avoidance — making it safer, as well as facilitating the
implementation of SLAM or other localization techniques.
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