
Course​ ​No.:​ ​ME-GY​ ​9966

Convolutional​ ​Neural​ ​Network-Based​ ​Autonomous​ ​Mobile
Robot​ ​for​ ​Industrial​ ​Material​ ​Transfer

M.​ ​S.​ ​Project​ ​Report​ ​Submitted​ ​to​ ​the​ ​Department​ ​of​ ​Mechanical​ ​and​ ​Aerospace
Engineering,​ ​Tandon​ ​School​ ​of​ ​Engineering,​ ​New​ ​York​ ​University,​ ​Brooklyn,​ ​NY

Submitted​ ​By
Mitra​ ​Varun​ ​Anand

N19790097

Abstract

This report presents the development of a mobile robotic system that integrates image
processing, convolutional neural networks, and behavioral cloning with a computer in order to
assist the transfer of materials from one location to another in an industrial environment. This
project utilizes a RC vehicle platform fitted with a wide-angle camera module, an ultrasonic
sensor, servo controller, and microcontroller, which wirelessly connects to a computer. Human
users choose the object to be moved by the robot for the human through a computer interface,
and the device can drive the object to the preset destination according to traffic signs that it
detects along the way by making navigational choices. Image processing through the neural
networks enables the microcontroller to make navigation decisions to the built platform through
the servo controller. Additionally, the developed module will train the model to drive itself in a
static environment to perform repetitive tasks, which will enable industries to increase
productivity through automation in closing shifts. The developed prototype successfully
performed self-navigation, image recognition of various traffic signs in the environment, and
eventually the trained neural network performed autonomous navigation based on the commands
provided by the user. An evaluation scheme, which was proposed to test the usability of the
system,​ ​found​ ​that​ ​the​ ​developed​ ​product​ ​was​ ​user-friendly​ ​and​ ​neural​ ​networks​ ​were​ ​reliable.

Keywords: Autonomous mobile robot, convolutional neural network, autonomous navigation,
machine learning, object recognition,traffic sign recognition, image processing, assistant robot,
industrial mobile robot, tensorflow, behavioral cloning, user interface, motor control, artificial
intelligence
Index:

Sl​ ​No Topic Page​ ​No

1 Introduction 4

2 Related​ ​Works 5

3 Development​ ​of​ ​the​ ​system 6

4 Evaluation 28

5 Conclusion​ ​and​ ​Discussion 52

6 Acknowledgement 55

7 References 56

1.​ ​Introduction

In this age of iterative advancements in technology, many industries continue to use
user-controlled devices to transport objects from one part of the factory to another; this is an
avoidable waste of time, which can be used to achieve a more efficient workflow and use only
manpower for complex operations. Even industries that employ a robot to do this task do not
heavily rely on it, since the industry’s environment is continually changing [1]. This results in
the need to program the robot to incorporate these changes, or to reduce the usage of such a
robot, making it obsolete. This process needs a much smarter robot wherever possible, which
forms the objective of this project. This smart mobile robot can navigate using six different
number of traffic signs that will be strategically placed in the factory environment, and it uses
these signs to make smart navigational choices, which is possible due to recent advancements in
machine​ ​learning​ ​and​ ​artificial​ ​intelligence.

Nowadays, most of the robots work by following commands that humans set in the machine or
use a pre-saved map of the environment that becomes unnecessary when the layout of factory
operations constantly changes. Most industrial robotic systems also lack simple user interfaces.
In addition, some of the robots need constant supervision, but the real condition is that workers
cannot spend a lot of time to look after the robot while doing his/her own work, so they want a
robot that can finish some tasks by itself [1]. The question is, how can the transporting of an
object by a robot be made easier for dynamic environments? Hence, the operation of a robot
needs to be that every time there is a change in the way a factory is set up, only minimal human
intervention​ ​is​ ​needed​ ​to​ ​continue​ ​using​ ​the​ ​robot.

However, such operation methods are still not enormously available, and they are often too
complex to be used by workers who have limited knowledge of these processes. Smart robots
should combine a few important functions that make them convenient to use. The Convolutional
Neural Network based robot will utilize a Raspberry Pi wide-angle lens camera to look for signs
in the environment and to make decisions for navigation from one point to another. With the
popularity and ease of use of computers, an implementation of such a process will lead to an
increase in the usage of such robots. An added feature of this project is the use of behavioral
cloning module, in which a user can manually drive the vehicle around the factory to train a
convolutional neural network [2] to be able to drive the robot using the trained network in a
static environment. In the project, the system consists of two main parts: one is a mobile base
platform, and another is a micro-controller that controls how the base is going to move. Once the
object is loaded and the destination is selected, the mobile base can drive the object to the
drop-off point by using the traffic signs placed within the workspace of the industry; this is
accomplished through image processing using the images frame taken by the camera. This report
is organized in the following ways: Section 2 talks about the current industry leading robots and

their limitations; Section 3 presents the system components and introduces how the system
works; Section 4 presents the experiment and results for system evaluation; Section 5 presents
acknowledgment;​ ​and​ ​Section​ ​6​ ​references​ ​for​ ​this​ ​project.

2.​ ​Related​ ​Works

There are a wide range of mobile robots currently operating in a factory setting that are used in a
variety of applications, including but not limited to payload operations, pick and place, sorting
and security. In terms of the sensors used and the purpose, there are two robots that closely
match this project. But none of them use deep neural networks for navigation, relying instead on
LiDAR​ ​and​ ​computer​ ​vision.

2.1.​ ​OTTO​ ​15OO

OTTO 15OO [3] navigates spaces just like a person does. It maintains a map of the space in its
memory and uses visual reference points to always know its position. No guides or infrastructure
are​ ​required.

2.1.1.​ ​Main​ ​Components

1.​ ​Safety​ ​Rated​ ​Lidar:
Drives​ ​around​ ​obstacles​ ​and​ ​find​ ​new​ ​routes​ ​without​ ​getting​ ​stuck.
2.​ ​360º​ ​Indicator​ ​Lighting:
Displays familiar turn signals, brake lights, vehicle status lighting, and audible tones so you
know​ ​where​ ​OTTO​ ​is​ ​going.
3.​ ​Configurable​ ​Payload​ ​Interface:
Carries payloads using a standard OTTO attachment, or has the flexibility to create your own
using​ ​fixed​ ​mounting​ ​points​ ​and​ ​standard​ ​power​ ​and​ ​communication​ ​ports.
OTTO 15OO[3] can be loaded and unloaded manually or can use a standard attachment to
automate​ ​the​ ​pick-up​ ​and​ ​delivery​ ​process.

2.2.​ ​MiR200

The MiR200 [4] is a safe, cost-effective mobile robot that quickly automates your internal
transportation and logistics. The robot optimizes workflows, freeing staff resources so you can
increase​ ​productivity​ ​and​ ​reduce​ ​costs.
MiR200 can be used in nearly any situation where employees are spending time pushing carts or
making deliveries. These tasks can be automated, so employees can focus on higher value
activities.

2.2.1.​ ​Sensors

1.SICK​ ​laser​ ​scanners​ ​S300​ ​(front​ ​and​ ​back):
360°​ ​visual​ ​protection​ ​around​ ​robot
2.​ ​3D​ ​camera​ ​Intel​ ​RealSense:
Detection​ ​of​ ​objects​ ​ahead​ ​50-500​ ​mm​ ​above​ ​floor
3.​ ​Ultrasonic​ ​scanners​ ​:
Detection​ ​of​ ​transparent​ ​objects​ ​ahead,​ ​e.g.​ ​glass​ ​doors

With built-in sensors and cameras and sophisticated software, the MiR200 can identify its
surroundings and take the most efficient route to its destination, safely avoiding obstacles and
people. Without the need to alter your facility with expensive, inflexible wires or sensors, the
robot​ ​offers​ ​a​ ​fast​ ​return​ ​on​ ​investment,​ ​with​ ​payback​ ​in​ ​as​ ​little​ ​as​ ​a​ ​year[4].

3.​ ​Development​ ​of​ ​the​ ​System

3.1​ ​The​ ​Overall​ ​system

The goal of project is to design a robotic system that contains a mobile robot base and a micro
controller. This system can be operated remotely through a computer once the object for
transportation is placed on it and can (1) complete autonomous navigation of an unknown map,
(2) recognize traffic signs based on convolutional neural networks, and (3) reach the preset
destination where the object is manually unloaded. The system consists of a computer, a
raspberry pi 3 model-B, a RC racing truck as the build platform, a Sainsmart wide-angle camera
module, a Sunfounder servo control board, a Parallax ultrasonic sensor, an Anker 10000mAH
battery pack, and a 3D printed assembly to complete the set up. Figure 1 shows the overall
robotic​ ​system.

Figure​ ​1.​ ​Components​ ​of​ ​the​ ​System

An open source design [4] from thingiverse was used to 3D print the Raspberry Pi camera holder
assembly.​ ​The​ ​following​ ​figure​ ​shows​ ​the​ ​entire​ ​labelled​ ​assembly:

Figure​ ​2.​ ​Robot​ ​Assembly

Figure​ ​3.​ ​Front​ ​View​ ​of​ ​the​ ​Robot

Figure​ ​4:​ ​Side​ ​View​ ​of​ ​the​ ​Robot

The​ ​following​ ​picture​ ​shows​ ​the​ ​alignment​ ​of​ ​the​ ​PING​ ​sensor​ ​with​ ​respect​ ​to​ ​x​ ​and​ ​y​ ​axes.

Figure​ ​5:​ ​Alignment​ ​of​ ​the​ ​PING​ ​Sensor

3.2.​ ​Convolutional​ ​Neural​ ​Networks

The project utilizes two separate training of convolutional neural networks for each of the
navigation and behavioral cloning modules. The following sections discuss how each of these
networks​ ​are​ ​trained.

3.2.1.​ ​CNN​ ​for​ ​Traffic​ ​Sign​ ​Recognition

There​ ​are​ ​various​ ​aspects​ ​to​ ​consider​ ​when​ ​thinking​ ​about​ ​this​ ​problem:

● Neural​ ​network​ ​architecture
● Play​ ​around​ ​preprocessing​ ​techniques​ ​(normalization,​ ​RGB​ ​to​ ​grayscale,​ ​etc.)
● Number​ ​of​ ​examples​ ​per​ ​label​ ​(some​ ​have​ ​more​ ​than​ ​others)
● Generate​ ​fake​ ​data

The dataset preprocessing consisted of converting to grayscale - This worked well for Sermanet
and LeCun [5] as described in their traffic sign classification article. It also helps to reduce
training​ ​time,​ ​which​ ​was​ ​nice​ ​when​ ​a​ ​GPU​ ​wasn't​ ​available.

3.2.1.1.​ ​Data​ ​Augmentation:

Data augmentation is the single best method to increase accuracy of the model. Because several
classes in the data have far fewer samples than others the model will tend to be biased toward
those classes with more samples. Augmentation was done by creating copies of each sample for
a class (sometimes several copies) in order to boost the number of samples for the class to 4
(since the class already had at least 800 samples). Each copy is fed into a "jitter" pipeline that
randomly translates, scales, warps, and brightness adjusts the image. This was by far the most
laborious part of the project, and it takes quite some time (more than 6 hours on a virtual
machine​ ​through​ ​Amazon​ ​Web​ ​Services​ ​EC2​ ​instance)​ ​to​ ​run​ ​the​ ​code.
The SciKit Learn train_test_split function was used to create a validation set out of the training
set.​ ​20%​ ​of​ ​the​ ​testing​ ​set​ ​was​ ​used​ ​to​ ​create​ ​the​ ​validation​ ​set.

3.2.1.2.​ ​Neural​ ​Network​ ​Architecture:

The modified LeNet architecture has been adapted from Sermanet/LeCunn traffic sign
classification​ ​journal​ ​article​ ​[5]​ ​as​ ​shown​ ​below.

Figure​ ​6:​ ​Modified​ ​LeNet​ ​Architecture​ ​[10]

The same architecture was implemented from the LeNet Lab [10], with no changes since the
dataset is in grayscale. This model worked quite well to begin with (~96% validation accuracy),
but implementation of the Sermanet/LeCun model from their traffic sign classifier paper and
gave an immediate improvement. Although the paper doesn't go into detail describing exactly

how the model is implemented (particularly the depth of the layers) it was possible to make it
work.​ ​The​ ​layers​ ​that​ ​used​ ​to​ ​train​ ​the​ ​model​ ​are​ ​set​ ​up​ ​like​ ​this:

● 5x5​ ​convolution​ ​(32x32x1​ ​in,​ ​28x28x6​ ​out)
● ReLU
● 2x2​ ​max​ ​pool​ ​(28x28x6​ ​in,​ ​14x14x6​ ​out)
● 5x5​ ​convolution​ ​(14x14x6​ ​in,​ ​10x10x16​ ​out)
● ReLU
● Flatten​ ​layers​ ​from​ ​numbers​ ​8​ ​(1x1x400​ ​->​ ​400)​ ​and​ ​6​ ​(5x5x16​ ​->​ ​400)
● Fully​ ​Connected​ ​Layer​ ​2:Input​ ​=​ ​145.​ ​Output​ ​=​ ​84.
● Fully​ ​Connected​ ​Layer​ ​3:Input​ ​=​ ​84.​ ​Output​ ​=​ ​4.

Test​ ​Set​ ​Accuracy​ ​=​ ​0.927

3.2.1.3.​ ​Training​ ​the​ ​Model:
Adam​ ​optimizer​ ​was​ ​used​ ​to​ ​train​ ​the​ ​model​ ​[6]​ ​.​ ​The​ ​final​ ​settings​ ​used​ ​were:

● batch​ ​size:​ ​100
● epochs:​ ​60
● learning​ ​rate:​ ​0.0009
● mu:​ ​0
● sigma:​ ​0.1
● dropout​ ​keep​ ​probability:​ ​0.5

3.2.1.4.​ ​Test​ ​a​ ​Model​ ​on​ ​New​ ​Images:

Some of the images taken by me appear to be more easily distinguishable than quite a few
images from the original dataset. I noticed that the images tend to be quite a bit brighter and
might occupy a different range in the color space, possibly a range that the model was not trained
on. In addition, the GTSRB dataset [13] states that the images "contain a border of 10 % around
the actual traffic sign (at least 5 pixels) to allow for edge-based approaches" and the images that I
used​ ​do​ ​not​ ​all​ ​include​ ​such​ ​a​ ​border.​ ​This​ ​could​ ​be​ ​another​ ​source​ ​of​ ​confusion​ ​for​ ​the​ ​model.
The model appears to have predicted the new signs perfectly for the four images to be used for
testing in real time, with 100% accuracy. This is a good sign that the model performs well on
real-world data. And while it's reasonable to assume that the accuracy would not remain so high
given more data points, judging by the low fidelity of a number of images in the training dataset
it's also reasonable to assume that if the real-world data were all as easily distinguishable as the
four​ ​images​ ​chosen​ ​that​ ​the​ ​accuracy​ ​would​ ​remain​ ​very​ ​high,​ ​as​ ​shown​ ​below:

Input Prediction Probability Action

0.72 Go
Straight

0.82 Take​ ​Left

0.77 Turn​ ​Right

0.98 Stop

A​ ​video​ ​of​ ​the​ ​trained​ ​CNN​ ​used​ ​to​ ​detect​ ​different​ ​signs​ ​in​ ​real​ ​time​ ​is​ ​linked​ ​below.

Video​ ​Link:​ ​https://www.youtube.com/watch?v=5GonZgJXca0&feature=youtu.be

3.2.2.​ ​CNN​ ​for​ ​Behavioral​ ​Cloning

The objective of this project is to apply deep learning principles to effectively teach the robot to
drive autonomously in a static environment to perform repetitive functions. The robot is trained
by driving either manually or using hardcoding to collect input images that record the features in
the environment. In training mode, user-generated driving data is collected in the form of
simulated robot dashboard camera images and control data (steering angle, throttle, brake,
speed). Using the Keras deep learning framework, a convolutional neural network (CNN) model
is produced using the collected driving data and saved as model.json. Using the saved model,
drive.py starts up a local server to control the robot in autonomous mode. The model weights are
retrieved​ ​using​ ​the​ ​same​ ​name​ ​but​ ​with​ ​the​ ​extension​ ​.h5.

The challenge of this project involved not only developing a CNN model able to drive the robot
around the test track without leaving the track boundary, but also feeding training data to the
CNN in a way that allows the model to generalize well enough to drive in an environment it has
not​ ​yet​ ​encountered,i.e​ ​with​ ​minor​ ​changes​ ​in​ ​the​ ​same​ ​environment.

3.2.2.1.​ ​Base​ ​Model​ ​and​ ​Adjustments

The diagram below is a depiction of the nVidia model architecture [6] which I have made use of,
using​ ​a​ ​few​ ​modifications​ ​that​ ​are​ ​explained​ ​in​ ​the​ ​coming​ ​topics.

Figure​ ​7:​ ​NVIDIA​ ​Architecture​ ​[11]

First I reproduced this model as depicted in the image - including image normalization using a
Keras Lambda function, with three 5x5 convolution layers, two 3x3 convolution layers, and three
fully-connected layers - and as described in the paper text - including converting from RGB to
YUV color space, and 2x2 striding on the 5x5 convolutional layers. The paper [6] does not
mention any sort of activation function or means of mitigating overfitting, so tanh activation
functions was used on each fully-connected layer, and dropout (with a keep probability of 0.5)
between the two sets of convolutional layers and after the first fully-connected layer. The Adam
optimizer was chosen with default parameters and the chosen loss function was mean squared
error​ ​(MSE).​ ​The​ ​final​ ​layer​ ​is​ ​a​ ​fully-connected​ ​layer​ ​with​ ​a​ ​single​ ​neuron.

3.2.2.2.​ ​Loading​ ​and​ ​Preprocessing

In training mode, the robot produces one images per frame while recording corresponding to
center-mounted camera. This produces a csv file which includes file paths for each of these
images for each frame. The algorithm loads the file paths for the camera views for each frame,
along​ ​with​ ​the​ ​angle,​ ​into​ ​two​ ​numpy​ ​arrays​ ​image_paths​ ​and​ ​angles.

Images produced by the robot in training mode are 320x160, and therefore require preprocessing
prior to being fed to the CNN because it expects input images to be size 200x66. To achieve this,
the bottom 20 pixels and the top 35 pixels are cropped from the image and it is then resized to
200x66. A subtle Gaussian blur is also applied and the color space is converted from RGB to
YUV. Because the code uses the same CNN model to predict steering angles in real time, it
requires​ ​the​ ​same​ ​image​ ​preprocessing.

3.2.2.3.​ ​Further​ ​Model​ ​Adjustments

Some other strategies implemented to combat overfitting and otherwise attempt to get the robot
to​ ​drive​ ​more​ ​smoothly​ ​are:

● Removing dropout layers and adding L2 regularization (lambda of 0.001) to all model
layers​ ​-​ ​convolutional​ ​and​ ​fully-connected

● Removing tanh activations on fully-connected layers and adding RELU activations to all
model​ ​layers​ ​-​ ​convolutional​ ​and​ ​fully-connected

● Adjust​ ​learning​ ​rate​ ​of​ ​Adam​ ​optimizer​ ​to​ ​0.0001​ ​(rather​ ​than​ ​the​ ​default​ ​of​ ​0.001)

These strategies did, indeed, result in less bouncing back and forth between the sides of the track,
particularly​ ​on​ ​the​ ​test​ ​track​ ​where​ ​the​ ​model​ ​was​ ​most​ ​likely​ ​to​ ​overfit​ ​to​ ​the​ ​recovery​ ​data.

3.2.2.6.​ ​Results

These strategies resulted in a model that performed well on both test and challenge tracks. The
final dataset included a total of 59,664 data points. From these, only 17,350 remained after
distribution flattening, and this set was further split into a training set of 16,482 (95%) data
points and a test set of 868 (5%) data points. The validation data for the model is pulled from the
training set, but doesn't undergo any jitter. The model architecture is described in the paragraphs
above,​ ​but​ ​reiterated​ ​in​ ​the​ ​image​ ​below:

Figure​ ​8:​ ​The​ ​Final​ ​Architecture

3.3.​ ​Packages​ ​Used:

The​ ​model​ ​depends​ ​on​ ​a​ ​number​ ​of​ ​packages​ ​that​ ​must​ ​be​ ​installed.​ ​They​ ​are:

● Pickle:​ ​Used​ ​to​ ​import​ ​and​ ​export​ ​pickled​ ​file​ ​that​ ​compresses​ ​the​ ​image​ ​database.
● Random:​ ​Used​ ​to​ ​generate​ ​random​ ​values​ ​for​ ​data​ ​augmentation.
● Os:​ ​​ ​Controls​ ​the​ ​operating​ ​system​ ​of​ ​the​ ​raspberry​ ​pi.
● Numpy: Used as an efficient multi-dimensional container of generic data to integrate with

a​ ​wide​ ​variety​ ​of​ ​databases.

● TensorFlow: An open-source software library for building and training neural networks
to​ ​detect​ ​and​ ​decipher​ ​patterns​ ​and​ ​correlations.

● Time:​ ​Used​ ​for​ ​giving​ ​appropriate​ ​delays​ ​in​ ​the​ ​program.
● Csv:​ ​Used​ ​to​ ​import​ ​.csv​ ​type​ ​files​ ​in​ ​the​ ​database.
● Donkey:​ ​Gives​ ​server​ ​and​ ​control​ ​access​ ​to​ ​the​ ​raspberry​ ​pi​ ​from​ ​the​ ​host​ ​computer.
● Scipy:​ ​A​ ​scientific​ ​python​ ​library​ ​used​ ​to​ ​train​ ​the​ ​neural​ ​networks​ ​efficiently.
● Adafruit_PWM: Used to control the servo motors of the robot using PWM values from

the​ ​raspberry​ ​pi.

3.4.​ ​Components:

3.4.1.​ ​Raspberry​ ​Pi​ ​3​ ​Model​ ​B:

The Raspberry Pi 3 is a pocket size micro computer that has functions for manipulating the input
and​ ​output​ ​pins.

Figure​ ​9:​ ​The​ ​Raspberry​ ​Pi​ ​3​ ​B

The​ ​specifications​ ​of​ ​the​ ​model​ ​are:

● Quad​ ​Core​ ​1.2GHz​ ​Broadcom​ ​BCM2837​ ​64​ ​bit​ ​CPU
● 1GB​ ​RAM
● 40-pin​ ​extended​ ​GPIO
● CSI​ ​camera​ ​port​ ​for​ ​connecting​ ​a​ ​Raspberry​ ​Pi​ ​camera
● Micro​ ​SD​ ​port​ ​for​ ​loading​ ​your​ ​operating​ ​system​ ​and​ ​storing​ ​data
● Micro​ ​USB​ ​power​ ​source​ ​up​ ​to​ ​2.5A

3.4.2.​ ​Raspberry​ ​Pi​ ​Camera​ ​Module​ ​V2:

The Camera Module can be used to take high-definition video, as well as stills photographs. The
v2 Camera Module has a Sony IMX219 8-megapixel sensor (compared to the 5-megapixel
OmniVision​ ​OV5647​ ​sensor​ ​of​ ​the​ ​original​ ​camera).

It’s a leap forward in image quality, colour fidelity, and low-light performance. It supports
1080p30, 720p60 and VGA90 video modes, as well as still capture. It attaches via a 15 cm
ribbon cable to the CSI port on the Raspberry Pi. The project utilizes the camera as an input as
well​ ​as​ ​a​ ​feedback​ ​device,​ ​to​ ​train​ ​the​ ​model​ ​as​ ​well​ ​as​ ​during​ ​real​ ​time​ ​testing.

Figure​ ​10:​ ​The​ ​Raspberry​ ​Pi​ ​Camera​ ​V2

3.4.3.​ ​Redcat​ ​Racing​ ​RC​ ​Car:

The mobile robot platform consists of the Redcat Racing RC Car that can be hacked using a
simple​ ​PWM​ ​controller​ ​connected​ ​from​ ​the​ ​raspberry​ ​pi.​ ​It​ ​has​ ​:

● Electric​ ​Brushed​ ​27T​ ​540​ ​Motor,​ ​Four​ ​Wheel​ ​Drive,​ ​High​ ​Torque​ ​Servo
● Polycarbonate​ ​Body,​ ​Aluminum​ ​Capped​ ​Oil​ ​Filled​ ​Shocks
● Transmission​ ​Forward​ ​and​ ​Reverse.​ ​7.2v​ ​2000mAh​ ​NiMh​ ​Battery

Figure​ ​11:​ ​Redcat​ ​RC​ ​Car

This gives an opportunity to use an affordable platform as a test bed for evaluating the results of
the​ ​project,​ ​at​ ​the​ ​same​ ​time,​ ​not​ ​compromising​ ​on​ ​performance.

3.4.4.​ ​Sunfounder​ ​PCA​ ​9685​ ​Servo​ ​Controller:

The controller communicates with the raspberry pi through an I2C interface and directly controls
the​ ​servo​ ​motors​ ​on​ ​the​ ​platform​ ​through​ ​Pulse​ ​Width​ ​Modulation.

Figure​ ​12:​ ​PCA​ ​9685​ ​Controller

● Contains an I2C-controlled PWM driver with a built-in clock. It means, unlike the

TLC5940, you do not need to continuously send it signals tying up your microcontroller;
it's​ ​completely​ ​free​ ​running.

● Support​ ​using​ ​only​ ​two​ ​pins​ ​to​ ​control​ ​16​ ​free-running​ ​PWM​ ​outputs.
● 12-bit resolution for each output - for servos, that means about 4us resolution at 60Hz

update​ ​rate.

3.4.5.​ ​Anker​ ​Battery​ ​Pack:

The battery pack is used to give power to the raspberry pi, the camera module as well as the
servo​ ​controller.

Figure​ ​13:​ ​Anker​ ​Power​ ​Bank

It has a total capacity of 10,000mAh, making it capable of delivering the required power to the

unit​ ​for​ ​more​ ​than​ ​20​ ​hours​ ​with​ ​a​ ​single​ ​charge.

3.4.6.​ ​Alienware​ ​15​ ​Laptop:
The computer is used for training the neural networks as well as for wireless communication to
the raspberry pi through a SSH connection established through the command line of the
computer.​ ​The​ ​specifications​ ​of​ ​the​ ​laptop​ ​are:

● CPU: 2.9​ ​GHz​ ​Intel​ ​Core​ ​i5-4210​ ​CPU
● Operating​ ​System: Ubuntu​ ​16.04
● RAM: 16GB
● Hard​ ​Drive​ ​Size: 128GB​ ​SSD
● Hard​ ​Drive​ ​Type: M.2​ ​SSD
● Display​ ​Size: 15.6
● Native​ ​Resolution: 1920x1080
● Graphics​ ​Card: Nvidia​ ​GeForce​ ​GTX​ ​970M​ ​with​ ​3GB​ ​GDDR5
● Video​ ​Memory: 3GB
● Wi-Fi​ ​Model: Killer​ ​1525​ ​802.11ac
● Bluetooth: Bluetooth​ ​4.1

3.5.​ ​Electrical​ ​Connection:

Fritzing [12] wiring software is used to visually illustrate the circuit connections between the
raspberry pi, the camera module, the servo controller and the servo motors of the platform
vehicle​ ​is​ ​shown​ ​below:

Figure​ ​14.​ ​The​ ​Electrical​ ​Connection​ ​for​ ​Behavioral​ ​Cloning

Figure​ ​15:​ ​The​ ​Electrical​ ​Connection​ ​for​ ​Sign​ ​Based​ ​Navigation

The raspberry pi receives input images(or videos) from the camera module and distance
measurements from Ping sensor. It then does the computation required and sends the required
PWM values to the steering and throttle servo motors through the PCA9685 module. ​The various
sorts​ ​of​ ​communication​ ​happening​ ​within​ ​the​ ​modules​ ​are​ ​shown​ ​below:

Figure​ ​16:​ ​Schematic​ ​for​ ​Communication

4.​ ​Evaluation

4.1.​ ​Behavioral​ ​Cloning​ ​Module
A test layout was created to manually drive the robot around and capture around 15,000 images.
A simple circular path was followed by the robot in order to facilitate training. The model was
tested by adding a green line boundary to simulate a change in the environment to test for the
accuracy of the model when there are minor changes to the environment. The test layout is
shown​ ​below:

Figure​ ​17.​ ​Testing​ ​Layout​ ​1

The​ ​aim​ ​for​ ​evaluating​ ​the​ ​module​ ​was​ ​as​ ​follows:

● Load​ ​an​ ​object​ ​at​ ​“Plant​ ​A”​ ​(see​ ​next​ ​figure).
● Start the module and test if it can reach “Plant B” where the object is unloaded and a new

object​ ​is​ ​loaded.
● The​ ​robot​ ​then​ ​brings​ ​the​ ​new​ ​object​ ​back​ ​to​ ​“Plant​ ​A.”

Figure​ ​18.​ ​Training​ ​Layout​ ​1

This loop is repeated for a sufficient number of start positions to (1) verify if it can stay within
the boundary (marked by green and blue tapes) and (2) match the steering values that it was
expected​ ​to​ ​give,​ ​which​ ​is​ ​evaluated​ ​in​ ​the​ ​coming​ ​sections.

A more complex track was built to train and test the same module to test for repeatability. This
module was trained in a rectangular track for 20 laps, and then the layout was modified for the
last 8 laps to see if the model was able to learn and make the robot drive in the new track. A
diagram​ ​of​ ​how​ ​these​ ​two​ ​layouts​ ​looks​ ​is​ ​shown​ ​below.

​ ​
Figure​ ​19.​ ​Training​ ​Layout​ ​2

​ ​
Figure​ ​20.​ ​Testing​ ​Layout​ ​2

The​ ​pictures​ ​taken​ ​during​ ​testing​ ​are​ ​shown​ ​below:

Figure​ ​21.​ ​Testing​ ​Track​ ​2-​ ​Image​ ​1

Figure​ ​22.​ ​Testing​ ​Track​ ​2-​ ​Image​ ​2

Figure​ ​23.​ ​Testing​ ​Track​ ​2-​ ​Image​ ​3

4.1.1.​ ​Comparison​ ​of​ ​Steering​ ​Angles:

Since the model involved training by driving around the track in a circular path, the PWM values
are expected to be constant for the steering motor. However, in a practical world, there will be a
few discrepancies, owing to change in lighting conditions, minor changes in the environment,
etc.​ ​The​ ​following​ ​table​ ​plots​ ​expected​ ​and​ ​actual​ ​PWM​ ​values​ ​for​ ​20​ ​trials:

Trail Expected​ ​Steering​ ​PWM​ ​Value Actual​ ​Steering​ ​PWM​ ​Value

1 550 551

2 550 550

3 550 550

4 550 550

5 550 550

6 550 550

7 550 551

8 550 551

9 550 551

10 550 550

11 550 550

12 550 550

13 550 550

14 550 550

15 550 552

16 550 551

17 550 550

18 550 550

19 550 549

20 550 550

As can be observed from the table, the model’s predictions are almost equal to the expected
values and varies only in the error range of 2, which is perfectly acceptable, since it does not
cause​ ​drastic​ ​changes​ ​in​ ​the​ ​path​ ​of​ ​the​ ​robot.

Video​ ​Link:​ ​​https://www.youtube.com/watch?v=euSkEnNLKf8&feature=youtu.be
Video​ ​Link​ ​2:​ ​​https://www.youtube.com/watch?v=0V-GQOhfABw&feature=youtu.be

For module 2, the results were different and are shown in the form of line graphs for three
different​ ​batch​ ​sizes​ ​below:

https://www.youtube.com/watch?v=euSkEnNLKf8&feature=youtu.be
https://www.youtube.com/watch?v=0V-GQOhfABw&feature=youtu.be

Figure​ ​24.​ ​Steering​ ​Comparison

Figure​ ​25.​ ​Steering​ ​Comparison

Figure​ ​26.​ ​Steering​ ​Comparison

4.1.2.​ ​Boundary​ ​limits

The next part of evaluation is to observe if the model can keep the robot within the track at all
times for different starting positions (Plant A and Plant B) when performed for 5 trials each.
These​ ​results​ ​are​ ​tabulated​ ​below:

Start​ ​Point Trial Touch Outer
Boundary?

Touch Inner
Boundary?

Plant​ ​A 1 No No

2 No No

3 No No

4 Yes No

5 No No

Plant​ ​B 1 No No

2 No No

3 No No

4 No No

5 No No

As can be observed from the table, the model performed exceptionally well, only touching the
outer​ ​boundary​ ​once​ ​out​ ​of​ ​10​ ​trials.

For​ ​the​ ​second​ ​track,​ ​the​ ​results​ ​are​ ​tabulated​ ​as​ ​follows.

Start​ ​Point Trial Touch Outer
Boundary?

Touch Inner
Boundary?

Start​ ​A 1 No No

2 No No

3 Yes No

4 Yes No

5 No No

6 No No

7 No Yes

8 No No

9 No No

10 No No

The model performed well considering the complex setup of the track and the hardware
limitations​ ​of​ ​the​ ​robot,​ ​only​ ​touching​ ​the​ ​boundary​ ​four​ ​times​ ​out​ ​of​ ​10​ ​trials.

4.2.​ ​Traffic​ ​Sign​ ​Module

The goal of the traffic sign module is for the robot to be able to navigate based on only the signs
it​ ​encounters​ ​in​ ​the​ ​environment.​ ​The​ ​general​ ​working​ ​of​ ​this​ ​module​ ​is​ ​as​ ​follows:

● Wait​ ​for​ ​material​ ​loading​ ​and​ ​start​ ​program​ ​by​ ​the​ ​user.
● Go straight until encountering a sign (sliding window search and template matching) and

avoid​ ​obstacles.
● Preprocess the images and feed it to the trained network – outputting one of the four

classes.
● Navigate​ ​based​ ​on​ ​the​ ​obtained​ ​output​ ​and​ ​continue​ ​straight.
● Repeat​ ​the​ ​process​ ​until​ ​the​ ​stop​ ​sign​ ​is​ ​detected.

4.2.1.​ ​Individual​ ​Testing

To test the functioning of model in real time, each traffic sign was tested individually. The
following​ ​table​ ​shows​ ​how​ ​the​ ​model​ ​reacted​ ​to​ ​the​ ​signs​ ​for​ ​each​ ​of​ ​the​ ​5​ ​trials:

Traffic​ ​Sign Trial Success​ ​of​ ​Detection

Right​ ​turn 1 Yes

2 Yes

3 No

4 Yes

5 Yes

Left​ ​turn 1 Yes

2 Yes

3 Yes

4 No

5 Yes

Stop 1 Yes

2 Yes

3 Yes

4 No

5 Yes

Straight 1 Yes

2 Yes

3 Yes

4 Yes

5 Yes

Video​ ​Link​ ​1:​ ​https://www.youtube.com/watch?v=IXC2TxQnW8o
Video​ ​Link​ ​2:​ ​https://www.youtube.com/watch?v=pFbWb_RIWvY

4.2.2.​ ​Testing​ ​Entire​ ​System:

To test the detection of signs in real time, all of the traffic signs being used was tested together in
a​ ​track​ ​layout​ ​as​ ​shown​ ​below:

Figure​ ​27.​ ​Testing​ ​Layout

The​ ​following​ ​table​ ​shows​ ​how​ ​the​ ​model​ ​reacted​ ​to​ ​the​ ​signs​ ​done​ ​for​ ​10​ ​trials:

Trail Detection Total​ ​Time​ ​(s)

1 All 32

2 Right,​ ​Left,​ ​Stop 32

3 All 33

4 All 32

5 Right,​ ​Stop 32

6 All 33

7 All 32

8 All 34

9 All 35

10 All 34

Average 32.9

4.2.3.​ ​Delay​ ​Time:

The​ ​time​ ​taken​ ​for​ ​detecting​ ​each​ ​of​ ​the​ ​signs​ ​for​ ​5​ ​trials​ ​is​ ​documented​ ​below:

Traffic​ ​Sign Trial Time​ ​for​ ​Detection​ ​(s)

Right​ ​turn 1 2

2 2.1

3 2.1

4 2

5 2.1

Average 2.06

Left​ ​turn 1 2.2

2 2.2

3 2.2

4 2.1

5 2.1

Average 2.16

Stop 1 2.2

2 2.1

3 2.1

4 2.0

5 2.0

Average 2.125

Straight 1 2.1

2 2.1

3 2.1

4 2.0

5 2.0

Average 2.06

4.2.4.​ ​Boundary​ ​limit:

The next part of the evaluation is to observe if the model can keep the robot within the track at
all​ ​times​ ​for​ ​different​ ​starting​ ​positions​ ​for​ ​5​ ​trials​ ​each.​ ​These​ ​results​ ​are​ ​tabulated​ ​below:

Trial Boundary​ ​exceeded?

1 Yes

2 No

3 Yes

4 No

5 No

It can be said that the system needs to be more accurate to not go beyond the lines, which might
be a major hassle in an industrial setup, but this issue mainly arises because the robot platform
has​ ​limited​ ​steering​ ​capabilities.

Subjective​ ​Evaluation

An experiment was designed to test the effectiveness of the system in a simulated factory
environment. It involved one person loading the material to be transferred and start the robot,
while the other person waits for the material and unloads it off of the robot as shown in the
pictures​ ​below:

Figure​ ​28:​ ​Loading​ ​the​ ​material

Figure​ ​29:​ ​Robot​ ​Navigating​ ​to​ ​the​ ​location

Figure​ ​30:​ ​Unloading​ ​the​ ​material

This was repeated for 22 test subjects. A survey was conducted with questions concerning safety,
effectiveness,​ ​time​ ​taken,​ ​etc.,​ ​and​ ​the​ ​results​ ​were​ ​summarized​ ​below:

Figure​ ​31:​ ​Subjective​ ​Evaluation​ ​1

Figure​ ​32:​ ​Subjective​ ​Evaluation​ ​2

Figure​ ​33:​ ​Subjective​ ​Evaluation​ ​3

Figure​ ​34:​ ​Subjective​ ​Evaluation​ ​4

Figure​ ​35:​ ​Subjective​ ​Evaluation​ ​5

Figure​ ​36:​ ​Subjective​ ​Evaluation​ ​6

Figure​ ​37:​ ​Subjective​ ​Evaluation​ ​7

Figure​ ​38:​ ​Subjective​ ​Evaluation​ ​8

Figure​ ​39:​ ​Subjective​ ​Evaluation​ ​9

Figure​ ​40​ ​:Subjective​ ​Evaluation​ ​10

Figure​ ​41​ ​Subjective​ ​Evaluation​ ​41

Figure​ ​42:​ ​Subjective​ ​Evaluation​ ​42

Figure​ ​43:​ ​Subjective​ ​Evaluation​ ​43

As can be seen from the results above, the robot performs exceedingly well in all of the
important measures, except the motion’s quality. This was an expected attribute since the robot
has​ ​now​ ​been​ ​programmed​ ​to​ ​go​ ​one​ ​step​ ​at​ ​a​ ​time​ ​to​ ​make​ ​sure​ ​that​ ​each​ ​sign​ ​is​ ​detected.

5.​ ​Conclusion​ ​and​ ​Discussion

This project ​presents two novel approaches for navigating an industrial material transfer
robot/vehicle – namely, behavioral cloning and traffic sign based, autonomous navigation. There
were numerous challenges faced during the development of the robot, including the following:
creating an elaborate and efficient dataset to train the CNN model, performing various model
adjustments and data augmentation, and making the system work in real time using a low cost
computing platform like raspberry pi. Even though there was an average of 2.1 seconds delay in
recognizing the sign, it can be considered negligible, considering the entire cost of the project
was​ ​less​ ​than​ ​$350.

An opportunity to improve the overall efficiency of the system exists, and future work on this
project may take into account a few of the following improvements in order to create an even
better​ ​industrial​ ​material​ ​transfer​ ​robot:

● A different build platform to control the robot more efficiently. This is due to the fact that
the Redcat Racing RC platform cannot be efficiently controlled to steer at right angles
(maximum steering angle is 55 degrees) [9] and has an inefficient and flawed battery
system.

● Make use of a dedicated controller where neural networks can be trained locally. This
eliminates the use of a stand-alone computer, making the system more portable, as well
as​ ​giving​ ​extra​ ​computational​ ​power​ ​to​ ​the​ ​microcontroller.

● Incorporate mapping and localization techniques. This is to give the user a choice of
using a pre-built map for navigating the industrial environment in a static environment
which is faster, or to use the navigation module based on traffic sign recognition and
behavioral​ ​cloning.

● A better sliding window search algorithm. This will detect traffic signs and match them
to a virtual bounding box, which may increase the accuracy of the CNN in real-time
detection.

● Use a LiDAR. To replace the unreliable ultrasonic sensor in a dynamic environment to
implement collision avoidance – making it safer, as well as facilitating the
implementation​ ​of​ ​SLAM​ ​or​ ​other​ ​localization​ ​techniques.

6.​ ​Acknowledgement

First, I acknowledge Prof. Vikram Kapila of the Department of Mechanical and Aerospace
Engineering, Tandon School of Engineering, New York University, Brooklyn, NY for kindly
accepting me to work in his laboratory and providing me with all the necessary resources for this
project. Next, I thank Dr. Mizanoor Rahman of the Department of Mechanical and Aerospace
Engineering, Tandon School of Engineering, New York University, Brooklyn, NY for his
instructions and guidelines for carrying out the project activities and preparing this report. I also
appreciate Mr. Ashwin Raj Kumar and Mr. Saiprasanth Krishnamoorthy of the Department of
Mechanical and Aerospace Engineering, Tandon School of Engineering, New York University,
Brooklyn, NY for their technical support. I would also like to acknowledge Angad Boralkar,
Tanaya Bhave and Abhideeptha for their valuable input and for recording videos. Finally, I am
grateful the IGNITE Fellowship grant for AWS, which helped me train the networks in a small
amount​ ​of​ ​time.

7.​ ​References:

[1]​ ​Issues​ ​with​ ​Industrial​ ​Robots:​ ​​https://www.iso.org/obp/ui/#iso:std:iso:8373:ed-2:v1:en

[2]​ ​Otto​ ​Robot:​ ​​https://www.ottomotors.com/otto1500

[3]​ ​MIR​ ​Robot:​ ​​ ​​http://www.mobile-industrial-robots.com/

[4]​ ​3D​ ​Design​ ​files:​ ​​https://www.thingiverse.com/thing:2260575

[5] “Traffic Sign Recognition with Multi-Scale Convolutional Networks.” Pierre Sermanet and
Yann​ ​LeCun,​ ​Courant​ ​Institute​ ​of​ ​Mathematical​ ​Sciences,​ ​New​ ​York​ ​University.

[6] “End to End Learning for Self-Driving Cars.” 2016. Mariusz Bojarski, Davide Del Testa,
Daniel Dworakowski, Bernhard Firner, Beat Flepp, Prasoon Goyal, Lawrence D. Jackel, Mathew
Monfort,​ ​Urs​ ​Muller,​ ​Jiakai​ ​Zhang,​ ​Xin​ ​Zhang,​ ​Jake​ ​Zhao,​ ​Karol​ ​Zieba.

[7] What is the best multi-stage architecture for object recognition, In International Conference
on Computer Vision,​K. Jarrett, K. Kavukcuoglu, M. A. Ranzato, and Y. LeCun​, pages
2146–2153.​ ​IEEE,​ ​2009

[8] “CNN Features off-the-shelf: An Astounding Baseline for Recognition.” ​Ali Sharif Razavian,
Hossein​ ​Azizpour,​ ​Josephine​ ​Sullivan,​ ​Stefan​ ​Carlsson”

[9]​ ​Issues​ ​with​ ​hardware:​ ​​ ​​http://www.redcatracing.com/FAQ

[10]​ ​Image​ ​Reference:
https://medium.com/udacity/udacity-self-driving-car-nanodegree-project-3-behavioral-cloning-4
46461b7c7f9

[11​ ​Image​ ​Reference:​ ​​ ​​http://jokla.me/robotics/traffic-signs/

[12]Fritzing​ ​Wiring​ ​Library​ ​Software,​ ​​ ​​http://fritzing.org/home/

[13]​ ​German​ ​Traffic​ ​Sign​ ​Database,​ ​​http://benchmark.ini.rub.de/

http://fritzing.org/home/
http://www.redcatracing.com/FAQ
https://www.iso.org/obp/ui/#iso:std:iso:8373:ed-2:v1:en
https://www.ottomotors.com/otto1500
http://www.mobile-industrial-robots.com/
http://benchmark.ini.rub.de/
http://jokla.me/robotics/traffic-signs/
https://medium.com/udacity/udacity-self-driving-car-nanodegree-project-3-behavioral-cloning-446461b7c7f9
https://medium.com/udacity/udacity-self-driving-car-nanodegree-project-3-behavioral-cloning-446461b7c7f9
https://www.thingiverse.com/thing:2260575

