

Mechatronics Term Project

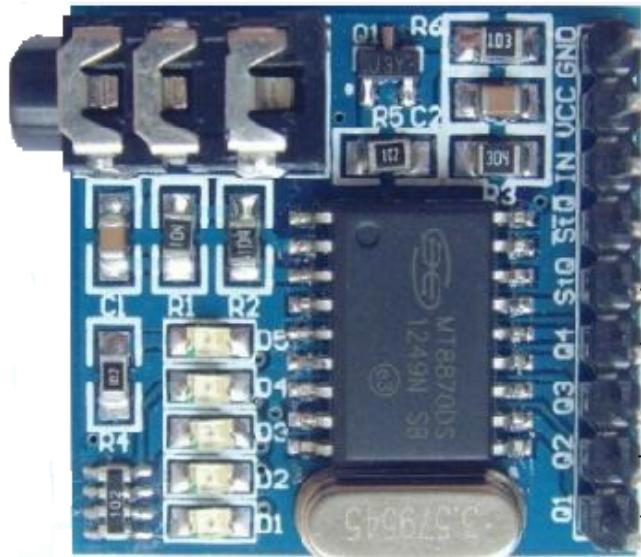
12/14/2015

Group 5
Wenjie Chen
John Giamarino
Krishnan Ganesh

Summary

- ▶ DTMF enables use of mobile phone as controller
- ▶ Wirelessly control robot
- ▶ Use sensors to detect
 - High temperatures
 - Gas leaks
- ▶ Use Ultrasonic sensor to avoid collisions

DTMF Theory

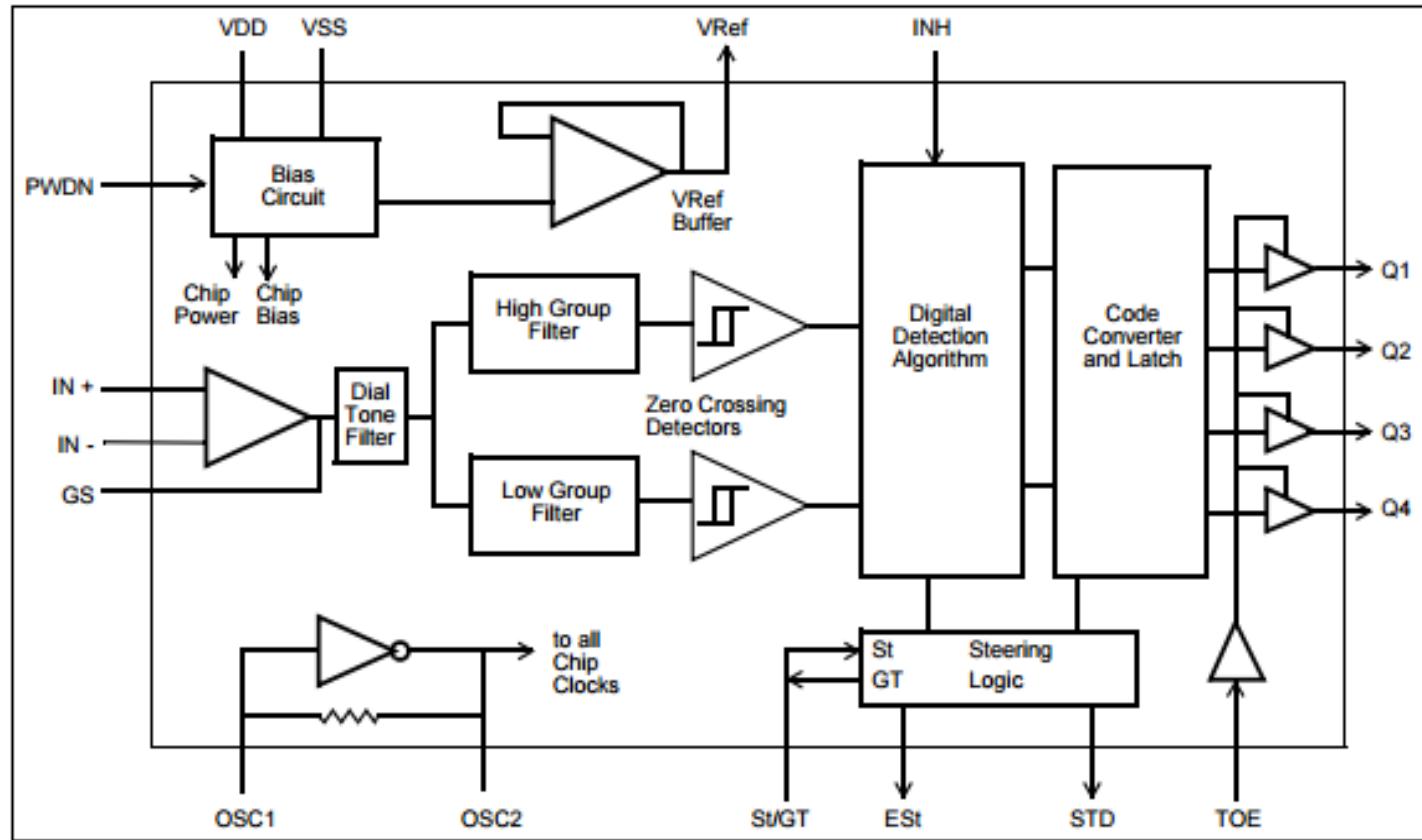

- ▶ Dual Tone – Multi Frequency
- ▶ Frequencies correspond to row and column of button
- ▶ Each button generates two corresponding frequencies
- ▶ No buttons generate the same combination of frequencies

1	2	3	697 Hz
4	5	6	770 Hz
7	8	9	852 Hz
*	0	#	941 Hz
1209 Hz	1336 Hz	1477 Hz	

Simultaneously generated frequencies for each corresponding key

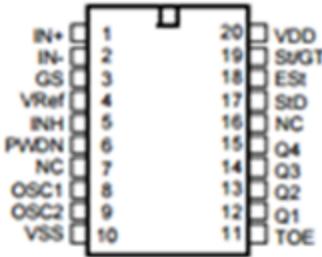
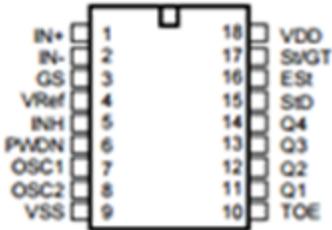
DTMF Theory

- ▶ When dialing phone number, generated frequency from each key press instruct system to connect your call to correct destination
- ▶ Dual Tone signals generated are converted into 4-bit binary representation
- ▶ Distinct outputs can be used to control device


DTMF MT8870DS Decoder module

Sensor and IC Technical Data

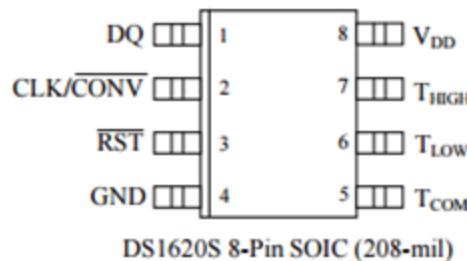
- ▶ **MT8870DS DTFM Decoder**
- ▶ Uses 7 Pins and 3.5mm male to male cable
- ▶ 2 Pins for Power and Ground
- ▶ 3.5mm jack for input
- ▶ 5 Pins for output
 - STQ indicates if button is pressed
 - Q1, Q2, Q3, Q4 represents input signal in binary



Sensor and IC Technical Data

▶ MT8870DS DTFM Decoder Block Diagram

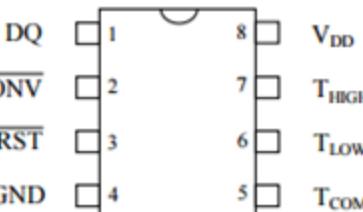
Sensor and IC Technical Data

▶ MT8870DS DTFM Decoder Pin Descriptions


Pin Description

Pin #		Name	Description
18	20		
1	1	IN+	Non-Inverting Op-Amp (Input).
2	2	IN-	Inverting Op-Amp (Input).
3	3	GS	Gain Select. Gives access to output of front end differential amplifier for connection of feedback resistor.
4	4	V _{Ref}	Reference Voltage (Output). Nominally V _{DD} /2 is used to bias inputs at mid-rail (see Fig. 6 and Fig. 10).
5	5	INH	Inhibit (Input). Logic high inhibits the detection of tones representing characters A, B, C and D. This pin input is internally pulled down.
6	6	PWDN	Power Down (Input). Active high. Powers down the device and inhibits the oscillator. This pin input is internally pulled down.
7	8	OSC1	Clock (Input).
8	9	OSC2	Clock (Output). A 3.579545 MHz crystal connected between pins OSC1 and OSC2 completes the internal oscillator circuit.
9	10	V _{SS}	Ground (Input). 0 V typical.
10	11	TOE	Three State Output Enable (Input). Logic high enables the outputs Q1-Q4. This pin is pulled up internally.
11-14	12-15	Q1-Q4	Three State Data (Output). When enabled by TOE, provide the code corresponding to the last valid tone-pair received (see Table 1). When TOE is logic low, the data outputs are high impedance.
15	17	StD	Delayed Steering (Output). Presents a logic high when a received tone-pair has been registered and the output latch updated; returns to logic low when the voltage on S/GT falls below V _{TG} .
16	18	EST	Early Steering (Output). Presents a logic high once the digital algorithm has detected a valid tone pair (signal condition). Any momentary loss of signal condition will cause EST to return to a logic low.

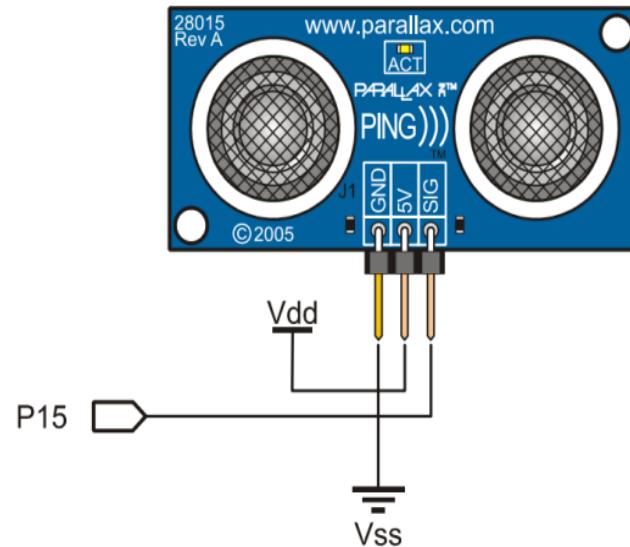
Sensor and IC Technical Data


- ▶ DS1620 Temperature Sensor
- ▶ Measures temperature of surroundings
- ▶ Measurement range (-55°C, 125°C)
- ▶ 0.5°C resolution

PIN ASSIGNMENT

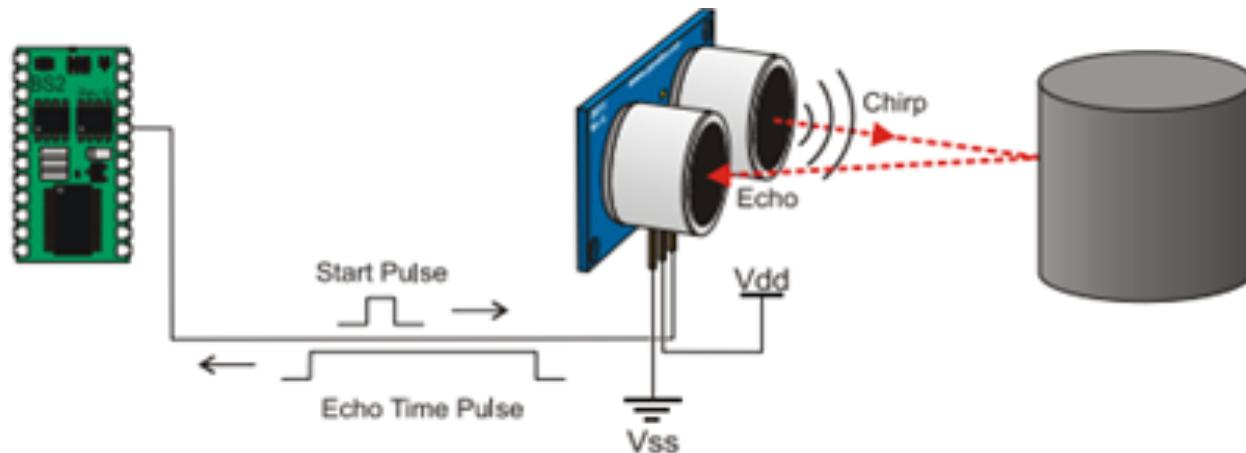
PIN DESCRIPTION

DQ	- 3-Wire Input/Output
CLK/CONV	- 3-Wire Clock Input and Stand-alone Convert Input
RST	- 3-Wire Reset Input
GND	- Ground
T _{HIGH}	- High Temperature Trigger
T _{LOW}	- Low Temperature Trigger
T _{COM}	- High/Low Combination Trigger
V _{DD}	- Power Supply Voltage (3V - 5V)


Sensor and IC Technical Data

- ▶ **DS1620 Temperature Sensor**
- ▶ Provides 9-bit temperature readings
- ▶ MSB represents (+,-)
- ▶ 8-bits represents temperature value
 - 1bit = 0.5°C

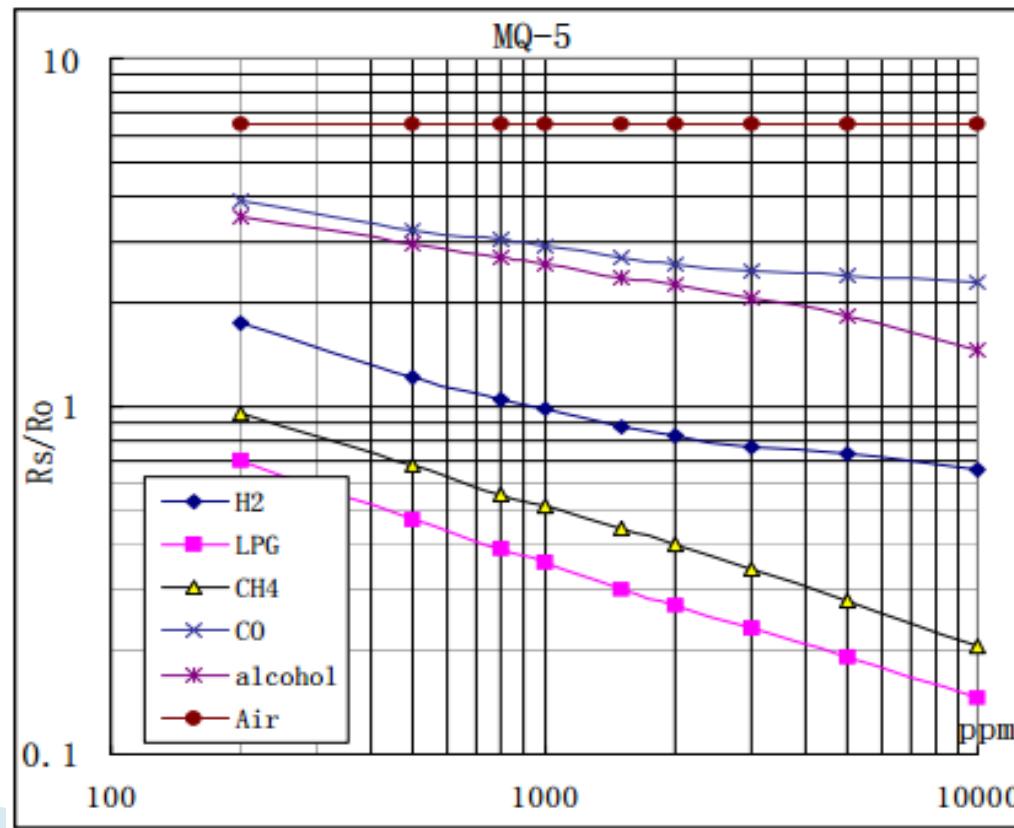
TEMP	DIGITAL OUTPUT (Binary)	DIGITAL OUTPUT (Hex)
+125°C	0 11111010	00FA
+25°C	0 00110010	0032h
+½°C	0 00000001	0001h
+0°C	0 00000000	0000h
-½°C	1 11111111	01FFh
-25°C	1 11001110	01CEh
-55°C	1 10010010	0192h


Sensor and IC Technical Data

- ▶ Parallax Ping)))
- ▶ Uses ultrasonic pulse to determine distance between robot and obstacle
- ▶ Ensures safety of robot, prevents from crashing into wall

Sensor and IC Technical Data

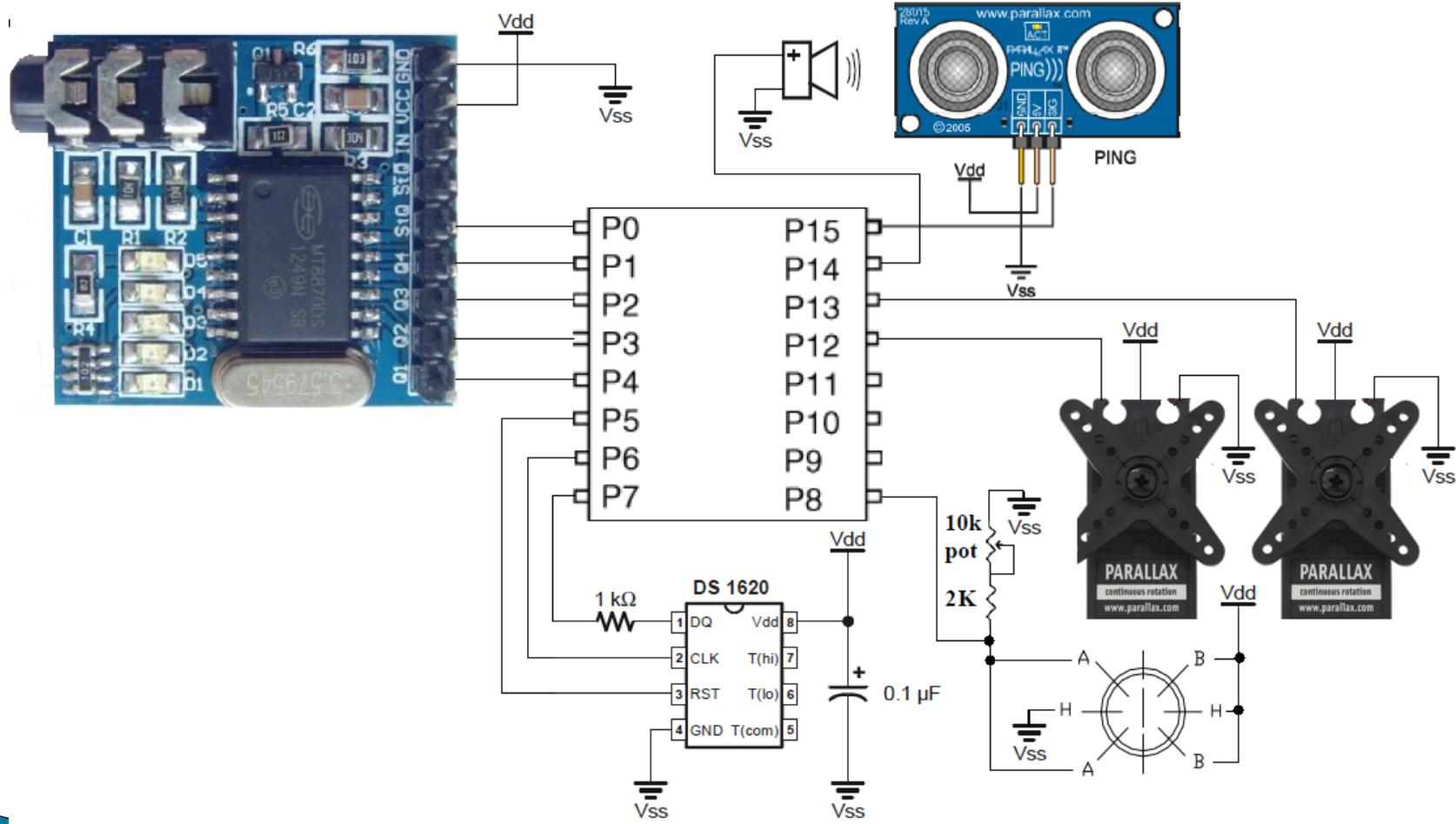
- ▶ Parallax Ping)))
- ▶ Sends out series of chirps and measure time taken for signal to return
- ▶ If speed of sound is known, Distance between sensor and obstacle can be determined


Sensor and IC Technical Data

- ▶ **MQ-5 (Gas Sensor)**
- ▶ Detects presence of Liquefied Petroleum Gas, butane and other gases
- ▶ Sensor resistance changes in the presence of certain gases
- ▶ For fixed load resistance, voltage output will vary in presence of gas

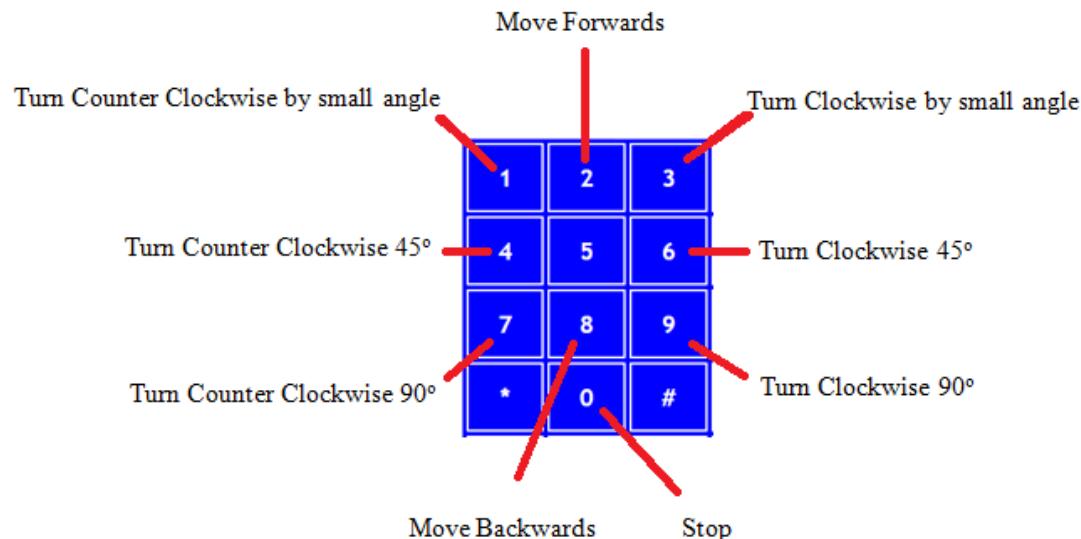
Sensor and IC Technical Data

- ▶ MQ-5 (Gas Sensor)
- ▶ Sensitivity to various gases


Justification of Material

- ▶ Boe-Bot selected as main system
 - Financially ideal choice
 - Low cost package
 - Controllers, actuators, basic electronic equipments included in purchase
- ▶ Basic Stamp 2
 - Simple programming
 - Integrated breadboard
 - Allows rapid prototyping

Justification of Material


- ▶ MT8870DS DTMF
 - Cost effective for its functionality
 - Sends signals through keypad of mobile phone
- ▶ MQ-5
 - Capable of detecting variety of gases

Circuit Schematic

Code Rundown

- ▶ Read Temperature sensor
 - Waits for stable temperature
 - If too high, output piezo transducer
- ▶ Reads output from gas sensor
 - If reading is HIGH, output piezo transducer
- ▶ Read distance from object
 - If too close, disable servos forward motion
- ▶ Waits for input to DTFM

Code

```
' {$STAMP BS2}
' {$PBASIC 2.5}

'Variables for DTMF
DTMFread VAR Byte 'read 4-bit signal from DTMF
counter VAR Word 'General purpose variable for increments
STQ PIN 0 'Pin indicates whether DTMF detects a signal from input device
Q1  PIN 4 '2^0 position in binary
Q2  PIN 3 '2^1 position in binary
Q3  PIN 2 '2^2 position in binary
Q4  PIN 1 '2^3 position in binary

'Variables for Ultrasonic Sensor
ultsonic PIN 15 'Pin used to interface Ultrasonic sensor
time VAR Word 'Time of flight measurement [2 microsecond units]
cmDist VAR Word 'Stores distance [cm] between Ultrasonic and object
'D[cm] = (1/2)*(100*344.8)*(T*2*10^-6)
'D[cm] = T*0.03448, multiply high *65536
'D[cm] = T[s]**2260
cmConst CON 2260

'Variables for Gas sensor MQ-5
Gasread PIN 8 'Used to read gas sensor voltage
```

Code

```
'Variables for DS1620
RST PIN 5 'Activate DS1620 conversion
CLK PIN 6 'Clock
DQ PIN 7 'Receive data bytes
ds VAR Byte 'stores temperature measurement
degC VAR Byte 'temperature measurement in degrees celsius
waiting VAR Nib 'variable used to avoid chatter
waiting = 0
OUTS=%0000000000000000 'initialize all pin as low
HIGH RST 'start conversion sequence
SHIFTOUT DQ, CLK, LSBFIRST, [238] 'Command to convert temperature into digital code
LOW RST 'end conversion sequence

DO
'Temperature measurement using DS1620
HIGH RST 'start conversion sequence
SHIFTOUT DQ, CLK, LSBFIRST, [170] 'Command to send temperature reading to bs2
SHIFTIN DQ, CLK, LSBPRE, [ds] 'Stores measurement in variable ds
LOW RST 'end conversion sequence
degC = ds / 2 'Convert DS1620 reading to degrees celsius
IF ds>=55 THEN
  IF waiting<15 THEN
    waiting = waiting + 1 'waits for temperature reading to stabilize above threshold
  ENDIF
ELSE
  IF waiting>0 THEN
    waiting = waiting - 1 'waits for temperature reading to stabilize below threshold
  ENDIF
ENDIF
IF waiting>=10 THEN
  FREQOUT 14, 50, 1900 'Buzzes piezo transducer when temperature reading above threshold
ENDIF
PAUSE 5
```

Code

```
IF Gasread = 1 THEN
  'if gas is sensed, Gasread goes high
  FREQOUT 14, 50, 1900
ENDIF

'Distance measurement using Ultrasonic
PULSOUT ultsonic, 5 'send out pulse for 10 microseconds
PULSIN ultsonic, 1, time 'record time taken for signal to return [2 microseconds]
cmDist=time**cmConst 'calculates distance [cm] using time and conversion factor
PAUSE 5

'Read signal from DTMF
IF STQ=1 THEN 'if keytone is pressed
  DTMFread = 0
  'converts binary returned by DTMF to decimal
  IF Q1=1 THEN
    DTMFread = DTMFread + 1
  ENDIF
  IF Q2=1 THEN
    DTMFread = DTMFread + 2
  ENDIF
  IF Q3=1 THEN
    DTMFread = DTMFread + 4
  ENDIF
  IF Q4=1 THEN
    DTMFread = DTMFread + 8
  ENDIF

  IF (DTMFread = 1) THEN
    'Rotates counterclockwise for as long as 1 is pressed
    PULSOUT 12, 650
    PULSOUT 13, 650
    PAUSE 20
  ENDIF
```

Code

```
IF (DTMFread = 4) THEN
    PAUSE 20
    'Rotates counterclockwise 45 degrees
    FOR counter = 1 TO 8
        PULSOUT 12, 850
        PULSOUT 13, 850
        PAUSE 20
    NEXT
ENDIF

IF (DTMFread = 7) THEN
    PAUSE 20
    'Rotates counterclockwise 90 degrees
    FOR counter = 1 TO 19
        PULSOUT 12, 650
        PULSOUT 13, 650
        PAUSE 20
    NEXT
ENDIF

IF (DTMFread = 3) THEN
    'Rotates clockwise for as long as 3 is pressed
    PULSOUT 12, 850
    PULSOUT 13, 850
    PAUSE 20
ENDIF

IF (DTMFread = 6) THEN
    PAUSE 20
    'Rotates clockwise 45 degrees
    FOR counter = 1 TO 8
        PULSOUT 12, 850
        PULSOUT 13, 850
        PAUSE 20
    NEXT
ENDIF

IF (DTMFread = 9) THEN
    PAUSE 20
    'Rotates clockwise 90 degrees
    FOR counter = 1 TO 19
        PULSOUT 12, 850
        PULSOUT 13, 850
        PAUSE 20
    NEXT
ENDIF

ENDIF

IF cmDist>20 THEN
    'as long as robot is greater than 20cm away from object
    IF (DTMFread = 2) THEN
        'moves forward
        PULSOUT 12, 850
        PULSOUT 13, 650
        PAUSE 20
    ENDIF
ENDIF

IF (DTMFread = 8) THEN
    'moves backwards
    PULSOUT 12, 650
    PULSOUT 13, 850
    PAUSE 20
ENDIF

LOOP
```

Advantages/Disadvantages

► Advantage

- Cost
- Ease of use
- Long range use capacity (within mobile range)
- Adaptability
- Availability

► Disadvantages

- Needs to be within line of sight
- Limited by mobile range
- Only use 4-bits
- Security (accessible to anyone)
- Gas sensor not accurate after long duration
- Cannot climb
- Cannot detect wall approaching from an angle

Cost analysis

- ▶ Components came along with Boe-Bot Kit (\$280)
- ▶ DTFM Decoder very low cost (\$10)
- ▶ Other sensors are of negligible cost
- ▶ Mass production can further decrease price

Further Developments

- ▶ Implement line following capabilities
- ▶ Improve accuracy of Gas sensors even in long duration of use
- ▶ If gas leak detected, make specific call using DTMOUT functionality in BS2

References

- ▶ MT8870D. Microsemi Corporation, n.d. Web.
[<http://www.microsemi.com/products/telephony/dtmf-receivers/mt8870d#docs-amp-specs>](http://www.microsemi.com/products/telephony/dtmf-receivers/mt8870d#docs-amp-specs)
- ▶ "DTMF Format." *Genave*. Genave Electronics, n.d. Web.
[<http://www.genave.com/dtmf.htm>](http://www.genave.com/dtmf.htm)
- ▶ E. "DS1620 Digital Thermometer and Thermostat." *DS1620* (n.d.): n. pag. *Data Sheets*. Maximintegrated. Web.
[<http://datasheets.maximintegrated.com/en/ds/DS1620.pdf>](http://datasheets.maximintegrated.com/en/ds/DS1620.pdf)
- ▶ Tajan, V., Paul Gonnard, and M. Troccaz. "Elaboration of PZT Thick Films by Screen Printing." *3rd International Conference on Intelligent Materials and 3rd European Conference on Smart Structures and Materials* (1996): n. pag. Web.
[<https://www.parallax.com/sites/default/files/downloads/28029-Smart-Sensors-Text-v1.0.pdf>](https://www.parallax.com/sites/default/files/downloads/28029-Smart-Sensors-Text-v1.0.pdf)
- ▶ "Technical Manuals." *MQ-5 GAS SENSOR* (n.d.): n. pag. *Parallax*. HANWEI ELECTRONICS CO.,LTD. Web.
[<https://www.parallax.com/sites/default/files/downloads/605-00009-MQ-5-Datasheet.pdf>](https://www.parallax.com/sites/default/files/downloads/605-00009-MQ-5-Datasheet.pdf)