
AC 2007-1838: DEVELOPMENT OF A MATLAB DATA ACQUISITION AND
CONTROL TOOLBOX FOR PIC MICROCONTROLLERS

Sang-Hoon Lee, Polytechnic University
SANG-HOON LEE was born in Seoul, Korea. He received the B.S. degree in Mechanical
Engineering from Sung Kyun Kwan University, Seoul, Korea, in 1996 and the M.S. degree in
Mechanical Engineering from Polytechnic University, Brooklyn, NY, in 2002. From 1996 to
1997, he worked for Samsung Engineering Co., Ltd. in Korea. He is currently continuing research
at Polytechnic University as a doctoral student. His research interests include linear/nonlinear
control and mechatronics. 

Anshuman Panda, Polytechnic University
ANSHUMAN PANDA was born in New Delhi, India. He is currently pursuing a dual B.S/M.S.
degree in Electrical Engineering and expects to graduate in June 2007. He is a member of Tau
Beta Pi. He has worked as a teaching and research assistant with responsibilities in the area of
mechatronics. 

Vikram Kapila, Polytechnic University
VIKRAM KAPILA is an Associate Professor of Mechanical Engineering at Polytechnic
University, Brooklyn, NY, where he directs an NSF funded Web-Enabled Mechatronics and
Process Control Remote Laboratory, an NSF funded Research Experience for Teachers Site in
Mechatronics that has been featured on WABC-TV and NY1 News, and an NSF funded GK-12
Fellows project. He has held visiting positions with the Air Force Research Laboratories in
Dayton, OH. His research interests are in cooperative control; distributed spacecraft formation
control; linear/nonlinear control with applications to robust control, saturation control, and
time-delay systems; closed-loop input shaping; spacecraft attitude control; mechatronics; and
DSP/PC/microcontroller-based real-time control. He received Polytechnic’s 2002 Jacob’s
Excellence in Education Award and 2003 Distinguished Teacher Award. In 2004, he was selected
for a three-year term as a Senior Faculty Fellow of Polytechnic University’s Othmer Institute for
Interdisciplinary Studies. He has edited one book and published four chapters in edited books, 1
book review, 39 journal articles, and 81 conference papers. He has mentored 67 high school
students, 38 high school teachers, 10 undergraduate summer interns, and seven undergraduate
capstone-design teams. In addition, he has supervised three M.S. projects, two M.S. thesis, and
three Ph.D. dissertations. 

Hong Wong, Polytechnic University
HONG WONG was born in Hong Kong, China. In June of 2000 and 2002, he received the B.S.
and M.S. degrees, respectively, in Mechanical Engineering from Polytechnic University,
Brooklyn, NY. He is a member of Pi Tau Sigma and Tau Beta Pi. He worked for the Air Force
Research Laboratories in Dayton, OH, during the summers of 2000 and 2001. He is currently a
doctoral student at Polytechnic University and expects to graduate in June 2007. His research
interests include control of mechanical and aerospace systems. 

© American Society for Engineering Education, 2007



 

 
 

 
 

Abstract—This paper presents a personal computer (PC)-based data acquisition and control tool 
that uses a Peripheral Interface Controller (PIC) microcontroller, Matlab, and Simulink. 
Specifically, a library of PIC microcontroller functions for Simulink is created. Moreover, the 
PIC microcontroller and Matlab are merged, by exploiting their serial communication capability, 
to produce an inexpensive data acquisition and control platform. Finally, the efficacy of this data 
acquisition and control platform is illustrated by performing angular position control of a DC 

motor. 
 

1. Introduction 

 

Data acquisition and control boards are essential for interfacing sensors/actuators with decision 

making devices such as a PC. Thus, data acquisition and control boards are used in 

monitoring/instrumentation applications involving machinery, process, environment, etc., and in 

automatic control applications. Even though a variety of data acquisition and control boards have 

become widely available in the last 15 years, the systems that target the educational sector and 

provide support for icon-based programming environments, such as LabVIEW1 and Simulink,2 

tend to be quite expensive (over $500 to several thousand dollars). Moreover, instructional labs 

generally may not require the intrinsic high-performance features of many of the commercially 

available data acquisition and control boards (e.g., high sampling rates, high resolution analog to 

digital converters, etc.) for the typical electro-mechanical laboratory experiments. This paper 

proposes a microcontroller-based data acquisition and control system that is particularly suitable 

for educators interested in developing lab experiments that do not require high-cost, high-

performance data acquisition hardware and yet can benefit from the icon-based programming 

environment of Simulink. 

 

Several recent papers have focused on interfacing low-cost microcontrollers (such as Basic 

Stamp 2 (BS2) and PIC) with icon-based programming environments such as LabVIEW and 

Simulink. Specifically, Refs. 3—5 concentrated primarily on endowing microcontrollers with 

graphical user interface (GUI) capability by exploiting the GUI tools of LabVIEW and Simulink. 

However, the methodology of Refs. 3—5 requires manually programming the microcontroller 

for all sensing, control computation, and actuation tasks and for serial communication with the 

GUI running on the PC. To program a PIC microcontroller or a BS2 microcontroller using PIC 

assembly programming language or PBasic programming language, respectively, requires 

knowledge and experience with the syntax of these languages and is often tedious.  

 

This paper proposes a PIC microcontroller based low-cost data acquisition and control system 

that exploits Matlab and Simulink as the key software components for implementing data 

acquisition and control algorithms using a block-diagram format. Specifically, the paper exploits 

a newly developed library of PIC functions for Simulink and the serial communication capability 

Development of a Matlab Data Acquisition and Control Toolbox 

for PIC Microcontrollers 



 

 
 

of both the PIC microcontroller and Matlab to produce a seamless integration between them. The 

framework of this paper completely obviates the need to manually program the PIC 

microcontroller by creating a library of PIC microcontroller functions for Simulink. Specifically, 

the data acquisition and control toolbox of this paper facilitates (i) automatic generation of 

proper PIC assembly codes for a variety of sensors and actuators, (ii) automatic programming of 

the PIC microcontroller, and (iii) data communication between the PIC microcontroller and 

Matlab. In an instructional laboratory, this approach allows instructors and students to focus on 

hardware-in-the-loop implementation, experimental validation, and industry-style rapid control 

prototyping. Finally, this paper is in the spirit of Ref. 6, which provided a Matlab data 

acquisition and control toolbox for the BS2 microcontrollers. However, whereas the BS2 

microcontroller costs over $45 and includes only digital input/output (I/O) functionality, thus 

requiring external  analog to digital converters (ADCs) to interface with analog sensors, the 

PIC16F74 microcontroller, used in this paper, costs under $5 and includes built-in ADC 

functionality. 

 

This paper is organized as follows. Section 2 describes the PIC microcontroller and the related 

development hardware. Section 3 describes the software environment used in this paper. Section 

4 gives details concerning the software integration of Simulink with the PIC microcontroller. 

Section 5 illustrates the functionality and capability of the data acquisition and control hardware 

and software of this paper by performing position control of a DC motor. Finally, Section 6 

provides some concluding remarks.  

 

2. Hardware Environment 

 

The main components of the data acquisition and control hardware of this paper are a PIC 

microcontroller, a PIC-PG2C programmer, and a PIC development board. A DB-9 serial cable is 

used to interface the programmer/development board to a PC which hosts the Matlab data 

acquisition and control toolbox. Specifically, the DB-9 cable allows (i) programming the PIC 

microcontroller from the PC and (ii) data communication between the PIC and the PC. In this 

paper, an IBM-compatible Pentium 4 PC running Microsoft Windows XP operating system is 

used. See Figure 1 for a pictorial representation of the aforementioned hardware environment. 

 

PIC development board

PIC-PG2C programmer

PC

PIC microcontroller

DB-9 serial cable

  
 

Figure 1:  Hardware environment 
 



 

 
 

2.1.Peripheral Interface Controller (PIC) 

 
PIC microcontrollers, developed, manufactured, and marketed by Microchip, Inc.,7 are small, 

inexpensive controllers that include a processor and a variety of peripherals such as memory, 

timers, and I/O functions on an integrated circuit (IC). PIC microcontrollers are widely popular 

among educational, hobby, and industrial users who can select from more than 100 varieties of 

PICs one that suits their application and functional needs. In contrast to many other 

microcontrollers, PICs are quite versatile since their I/O pins can be assigned desired 

functionality (e.g., ADC, USART*) under program control. Moreover, using an appropriate 

crystal oscillator, PIC microcontrollers can be operated at clock speeds of 32 kHz—20 MHz. 

The PIC assembly language, consisting of a 35 single-word instruction set, is used to program 

PIC microcontrollers. See Ref. 8 for more details on hardware and software features of PIC 

microcontrollers. 

 

The data acquisition and control platform of this paper uses a PIC16F74,9 a 40-pin CMOS 

FLASH-based, 8-bit, mid-range (14-bit instruction word length) microcontroller. Pertinent 

specifications of PIC16F74 include: 2—5.5 Volt direct current (VDC) voltage input; 25mA 

current sink/source capability at each I/O pin; 4 Kbytes of FLASH program memory; 192 bytes 

of data memory; and 33 digital I/O pins organized in 5 ports (A—E) of I/Os that can be assigned 

as 8-bit ADCs, Capture/Compare/PWMs† (CCPs), 3-wire Serial Peripheral Interfaces (SPIs), 2-

wire Inter-Integrated Circuit (I2C) buses, USART ports, etc. In this paper, five of the six I/O pins 

of port A and three I/O pins of port E are reserved for eight 8-bit ADCs, eight I/O pins of port B 

are reserved for eight digital inputs, two of the eight I/O pins of port C are reserved for two 

PWM outputs, and eight I/O pins of port D are reserved for eight digital outputs. Finally, an 

external 20 MHz high-speed crystal oscillator is used to supply operating clock cycles to the 

PIC. 

 
2.2. PIC-PG2C Programmer 

 

The user specified PIC program, which is created on a PC, is downloaded from the PC to a 

PIC microcontroller by serial communication. Serial communication between the PC and the PIC 

microcontroller is enabled by using a DB-9 serial connection between the PC and a PIC 

development programmer that hosts the PIC microcontroller. Two widely used PIC development 

programmers are Microchip’s PICSTART Plus and Olimex’s PIC-PG2C.10 In this paper, the 

handy and low-cost PIC-PG2C programmer (see Figure 2) is used. In contrast to other PIC 

programmers, the PIC-PG2C programmer receives power from the PC’s serial port thus 

obviating the need for any additional power supply. Finally, the PIC-PG2C programmer requires 

IC-Prog,11 a freely available software, to download PIC HEX code to the PIC microcontroller. 

Note that the PIC HEX code is obtained from the PIC assembly code by using the MPASM 

assembler,12 also available for free. 

 

 
* Universal synchronous/asynchronous receiver and transmitter. 
† Pulse width modulation. 



 

 
 

 
(a)                          (b) 

Figure 2:  (a) PIC-PG2C and a PIC and (b) PIC-PG2C with a PIC mounted 
 

2.3.PIC Development Board 

 

The PIC development board of this paper is created on a breadboard and consist of (i) a 

PIC16F74 microcontroller; (ii) a 20MHz crystal oscillator to supply operating clock cycles to the 

PIC microcontroller; (iii) the RS232 driver/receiver circuitry for serial data communication with 

the PC; (iv) a DB-9 connector; and (v) a breadboard area for custom circuits and easy 

connectivity between the PIC microcontroller and sensors/actuators. Note that Maxim’s 

MAX232 IC13 with five 1µF capacitors serves as the RS232 driver/receiver to transform voltage 

levels between PC-based logic (±12VDC) and the PIC microcontroller-based logic (0VDC and 

5VDC).  

 

3. Software Environment 

 

The software environment for this paper consists of Matlab version 6.5, Simulink version 5, 

the PIC assembly language, a newly developed Simulink library for the PIC microcontroller, 

MPASM, and IC-Prog. As previously discussed, the PIC assembly language is a primitive 

programming language consisting of an instruction set of 35 single-words. Matlab is an 

interactive technical computing software and Simulink is Matlab’s icon-based programming 

environment. The Matlab toolbox for the PIC microcontroller consists of a Simulink library of 

PIC microcontroller functions such that based on the user selected configuration of individual 

I/O pins of the PIC microcontroller, Simulink automatically produces and downloads the proper 

PIC assembly code to the microcontroller. Moreover, the Matlab toolbox also allows data 

communication between the PIC microcontroller and Matlab. Thus, the Matlab toolbox for the 

PIC microcontroller completely obviates the need to manually program the PIC microcontroller. 

Note that the Matlab toolbox automatically executes the assembler program MPASM and the 

download program IC-Prog, both of which usually require command line execution. See Refs. 12 

and 14 for details on programming the PIC microcontroller in command line via serial 

communication. The Matlab toolbox for the PIC microcontrollers has two main components: (i) 

a Simulink model file named Template.mdl and (ii) a block library named PIC library.  

 
3.1. Template.mdl 

 
The Template.mdl model file (see Figure 3) is a predesigned Simulink model file which must 

be used to design Simulink block diagrams for interaction with the PIC microcontroller. A 



 

 
 

function named TotalCompile has been embedded within the callback parameters of the 

Template.mdl so that the TotalCompile function executes at the beginning of each Simulink 

block diagram cycle, before the block diagram actually runs. Details of various tasks performed 

by the TotalCompile function are provided in a later subsection. Finally, note that renaming the 

Template.mdl file still preserves the callback property embedded in the file, whereas opening a 

new Simulink model file does not.  

 

Template.mdl model properties are modified to call
the function at the beginning of
each Simulink block diagram cycle

TotalCompile

 
 

Figure 3:  Template and model properties 

 
3.2. PIC Library  

 

The PIC Library is a custom library of Simulink blocks (in the form of s-functions) that 

interface with sensors and actuators connected to the PIC microcontroller. The following blocks 

are currently included in the PIC library: ADC, PinStateIn, PWM, and PinStateOut. Moreover, 

the library includes a block labeled IOBlock that is required in all user-designed Simulink 

diagrams to enable serial communication between the PIC microcontroller and Matlab. 

Hardware settings and parameter requirements of each block are detailed below. 

 

ADC Block (see Figure 4) configures the analog to digital conversion module of the PIC 

microcontroller. Note that five of the six I/O pins of port A and three I/O pins of port E of the 

PIC16F74 microcontroller can be configured as eight 8-bit ADCs. Thus, analog sensors can be 

directly interfaced to any of the eight ADC pins and the corresponding pin number can be passed 

as the parameter required by the ADC block.  

 

 
 

Figure 4:  ADC block and parameter 



 

 
 

PinStateIn Block (see Figure 5) configures the I/O pins of port B of the PIC16F74 

microcontroller to serve as digital inputs. Specifically, each of the eight pins of port B can serve 

as a digital input by passing the corresponding pin number as a parameter to the PinStateIn 

block. 

 

 
 

Figure 5:  PinStateIn block and parameter 

 

PWM Block (see Figure 6) configures PWM modules of the PIC microcontroller. Specifically, 

two of the eight I/O pins of port C of the PIC16F74 microcontroller can be configured as PWM 

outputs. Since the PIC16F74 microcontroller does not include a digital to analog converter, in 

this paper, we use the PWM outputs to produce the required analog voltage output by varying 

the duty cycle of the PWM signal. Thus, two analog actuators can be interfaced to the two I/O 

pins of port C that produce PWM outputs and the corresponding pin numbers are passed as the 

parameter required by the PWM block. 

 

 
 

Figure 6:  PWM block and parameter 

 
PinStateOut Block (see Figure 7) configures the I/O pins of port D of the PIC16F74 

microcontroller to serve as digital outputs. Specifically, each of the eight pins of port D can serve 
as a digital output by passing the corresponding pin number as a parameter to the PinStateOut 
block.  

 



 

 
 

 
 

Figure 7:  PinStateOut block and parameter 
 

IOBlock is necessary for every Simulink block diagram that requires interaction with the PIC 

microcontroller. It performs the following tasks: (i) initiate serial communication between 

Matlab and the PIC microcontroller when the Simulink block diagram is initially executed, (ii) 

transmit and receive data between Matlab and the PIC microcontroller while the Simulink block 

diagram is running, and (iii) terminate serial communication between Matlab and the PIC 

microcontroller when the Simulink block diagram is stopped. The callback function properties of 

the IOBlock include start_serial and stop_serial functions that initiate and terminate serial 

communication, respectively. In the Simulink block diagram, the IOBlock is programmed to 

have the first priority for execution. This ensures that all sensor and actuator data in Matlab are 

first received and sent, respectively, which then is used by the corresponding sensor and actuator 

blocks in the Simulink block diagram. 

 

Several Simulink blocks, such as an integrator block, require the knowledge of sampling 

period for their proper use in a given Simulink block diagram. In this paper, the IOBlock is used 

to determine, experimentally, the sampling period of the Simulink block diagram. Here, 

sampling period is defined as the time required to execute one entire cycle of the Simulink block. 

The IOBlock determines the sampling period by averaging the time taken to run a user-specified 

number of cycles of the Simulink block diagram. An averaged sampling period is not expected to 

provide the exact sampling period for each Simulink block cycle and its use is not recommended 

when hard real-time constraints are to be enforced. 

 

 
 

Figure 8:  IOBlock and parameters 



 

 
 

4.Integration of Simulink and PIC 

 
When blocks from the PIC Library are used in the Template.mdl model file, a sequence of 

operations specified by the TotalCompile function are performed before the Simulink block 

diagram begins to run. The main role of the TotalCompile function is to program the PIC 

microcontroller and to facilitate serial communication between Matlab and the PIC 

microcontroller. As seen in Figure 3, the TotalCompile function is set as a “Simulation start 

function” of “Callbacks” option in the “Model properties” of Template.mdl. 

 
The TotalCompile function performs the following sequence of tasks. First, global variables 

are declared and used to share data with Simulink blocks of PIC library. Second, sensor and 

actuator blocks used in the Simulink diagram are matched with the corresponding Simulink 

blocks in the PIC library. Furthermore, each block is categorized as a sensor or an actuator and 

its name is stored in an array of sensor/actuator structures with the specified block properties. 

The sensor/actuator array information is also used when data is serially communicated. Third, 

using the sensor/actuator block information gathered in the previous step, a PIC assembly code is 

generated. This step is facilitated by the fact that for each sensor/actuator block in the PIC 

Library the corresponding PIC assembly code has already been created and saved as an m-file. 

Fourth, a portion of the IOBlock Matlab code is generated to allow serial communication 

between Matlab and the PIC microcontroller. This Matlab code sends and receives the same 

amount of data that the PIC microcontroller receives and sends, respectively. Fifth, the PIC 

microcontroller is programmed in two steps: (i) using the MPASM assembler the PIC assembly 

code, generated in step 3 above, is converted to the corresponding PIC HEX code and (ii) using 

the IC-Prog the PIC HEX code is downloaded to a PIC microcontroller installed on a PIC-PG2C 

programmer. Figure 9 shows a flow diagram of the three steps involved in programming the PIC 

microcontroller.  

 

PIC assembly code is
generated by TotalCompile

PIC assembly code is converted
to by MPASMPIC HEX code

PIC HEX code is downloaded
by IC-Prog via the serial port  

 
Figure 9:  Flow diagram of programming the PIC microcontroller 

 

After the TotalCompile function completes its sequence of tasks, the Simulink block diagram 

begins to execute when the user confirms that the PIC microcontroller has been removed from 

the PIC-PG2C programmer and properly installed onto the PIC development board. At this stage, 

serial communication between the PIC microcontroller and Matlab also begins. If Simulink is 

stopped and needs to be run again, without any changes to the configuration of the PIC 



 

 
 

microcontroller I/O pins, then the PIC microcontroller need not be reprogrammed.  

  
Once the Simulink block diagram begins to execute, the PIC and PC exchange sensory 

feedback and actuator commands via serial data communication. Specifically, special function 8-
bit PIC registers are used for the serial communication of sensor/actuator data.4, 9 The IOBlock 

receives/transmits data from/to the PIC and stores the data in sensor/actuator global variables. 
 

5.Example – DC Motor Control 

 
To illustrate the functionality and capability of the data acquisition and control hardware and 

software of this paper, position control of a DC motor is performed. Specifically, a DC motor 

test-bed is interfaced with a PIC-based data acquisition and control board and a control algorithm 

is implemented using Simulink and the Matlab toolbox for the PIC microcontroller. The DC 

motor test-bed, shown in Figure 10, consists of an armature controlled DC motor, instrumented 

with a continuous rotation potentiometer, and a power module. The potentiometer output is used 

to obtain the necessary feedback signals and to provide a real-time display of the angular 

position of the motor. To control the angular position of the DC motor, the PIC microcontroller 

applies a controlled voltage signal produced by a control algorithm running on Simulink. 

 

Digitized sensor data
from PIC

Control output
from Simulink

Analog sensor data

Analog control output

DC motor and power module PIC development board Simulink block diagram  
 

Figure 10:  Hardware layer schematic 

 

In this paper, a proportional-integral-derivative (PID) controller15 is used for the angular 

position control of the DC motor. The functionality of various Simulink blocks used in Figure 10 

(see Figure 11 for an exploded view) is as follows. The ADC_Pot block serves as an ADC block 

to convert the analog output of the potentiometer into an 8-bit digital data. The PID Controller 

block encapsulates the standard PID control algorithm. The inputs to the PID Controller block 

are (i) the desired angular position of the DC motor and (ii) the potentiometer signal (the 

digitized output of ADC_Pot block). The output of the PID Controller block is a controlled 

voltage signal to be applied to the motor. In Figure 11, the PID Controller block output is 

processed by the PWM_Motor block which serves as a PWM block. Note that the power 

amplifier module of the DC motor shown in Figure 10 requires a ±5VDC to drive the DC motor. 

Accordingly, the PID control algorithm outputs a ±5VDC control signal. However, the PIC 

microcontroller can output only 0—5 VDC using the PWM output. Thus, the ±5VDC output of 

the PID controller is appropriately transformed to command the PWM_Motor block with a 0—5 

VDC command signal. Finally, by processing the PWM output from the PIC microcontroller 



 

 
 

using a simple operational amplifier based circuitry, the 0—5 VDC PWM output is converted 

into a ±5VDC signal for input to the power amplifier module.  

 

 
 

Figure 11:  Simulink block diagram: Exploded view 

 

An analytical model of the DC motor under PID control, yielding a third-order closed-loop 

transfer function,15 is used to determine numerical values of the PID controller gains. 

Specifically, by requiring the closed-loop transfer function to have: (i) a pair of complex-

conjugate poles with a damping ratio and natural frequency of 0.69 and 1.93, respectively, and 

(ii) a third real pole at -80, the PID control gains are computed to be KP=1.43, KI=1.97, and 

KD=0.5. This analog PID controller is implemented using Simulink’s ODE4 (Runge-Kutta) 

algorithm with a sampling period of 0.13 second. For the computed gains, the experimental 

response exhibits an average 2% settling time of 5.9 seconds and a percentage overshoot of 

18.25%. For comparison, the theoretical values for the 2% settling time and the percentage 

overshoot are 3 seconds and 14%, respectively. Figure 12 shows a sample experimental response 

of the DC motor angular position under PID control implemented using the framework of this 

paper. 

 

0 10 20 30 40 50 60 70
10

20

30

40

50

60

70

80

90

100

110

120

130

Time (seconds)

D
C

 M
o
to

r 
P

o
si

ti
o
n
 (

d
eg

re
es

)

Actual DC Motor Position
Desired DC Motor Position

 
 

Figure 12:  DC motor angular position tracking response 



 

 
 

6.Conclusion 

 
This paper provided an overview of a low-cost data acquisition and control toolbox that 

consists of the newly developed Simulink library for PIC microcontrollers. Serial 

communication capabilities of the PIC microcontroller and Matlab allowed programming of the 

PIC microcontroller from Matlab and exchange of sensory data and actuation signals between 

the PIC microcontroller and Matlab. The capabilities of this low-cost data acquisition and 

control system were illustrated through a DC motor angular position control experiment. 

 

Acknowledgements 

 

This work is supported in part by the National Science Foundation under an RET Site grant 
0227479 and a GK—12 Fellows grant 0337668 and the NASA/NY Space Grant Consortium 
under grant 48240-7887. 

 

 

 

 

References 

 
[1] Online: http://www.ni.com/labview/, website of National Instruments Corp., developer and distributor of 

LabVIEW. 

[2] Online: http://www.mathworks.com/, website of MathWorks Inc., developer and distributor of Matlab and 

Simulink. 

[3] C. J. Radcliffe, “The Basic Stamp II and LabVIEW,” http://www.parallax.com/dl/sw/labviewbs2.pdf. 

[4] S.-H. Lee, Y.-F. Li, and V. Kapila, “Development of a Matlab-Based Graphical User Interface for PIC 

Microcontroller Projects,” Proceedings of the American Society of Engineering Education Conference, Salt 

Lake City, UT, Session 2220, 2004. 

[5] Y. F. Li, S. Harari, H. Wong, and V. Kapila, “Matlab-Based Graphical User Interface Development for Basic 

Stamp 2 Microcontroller Projects,” Proceedings of the American Control Conference, Boston, MA, pp. 3233–

3238, 2004. 

[6] A. Panda, H. Wong, V. Kapila, and S.-H. Lee, “Two-Tank Liquid Level Control Using a Basic Stamp 

Microcontroller and a Matlab-Based Data Acquisition and Control Toolbox,” Proceedings of the American 

Society of Engineering Education Conference, Chicago, IL, Session 3520, 2006. 

[7] Online: http://www.microchip.com/, website of Microchip Technology, Inc. 

[8] M. Predko, Programming and Customizing Picmicro® Microcontrollers. McGraw-Hill, New York, NY, 2002.  

[9] Online: http://ww1.microchip.com/downloads/en/DeviceDoc/30325b.pdf, website of Microchip Technology, 

Inc., (access link for PIC16F74 datasheet). 

[10] Online: http://www.olimex.com/dev/pic-pg2.html, website of Olimex Ltd., (access link for PIC-PG2C Serial 

Port Programmer). 

[11] Online: http://www.ic-prog.com/, website of IC-Prog software. 

[12] Online: http://ww1.microchip.com/downloads/en/DeviceDoc/33014J.pdf, website of MPLAB Integrated 

Development Environment for the PIC microcontroller programming (access link for the MPASM assembler 

user’s guide for PIC microcontrollers). 

[13] Online: http://pdfserv.maxim-ic.com/en/ds/MAX220-MAX249.pdf, website of Maxim Integrated Products, 

(access link for MAX232 datasheet). 

[14] Online: http://www.ic-prog.com/cmdline.txt, website of IC-Prog software (access link for the command line 

programming for PIC microcontrollers). 

[15] R. C. Dorf and R. H. Bishop, Modern Control Systems. Addison Wesley, Menlo Park, CA, 2005. 


