NYU-POLY

Firefighting Boe-Bot

Mechatronics Integrated Final Report

Carlos Fernandez, David Lopez, Andre Roman

Contents

INEEOAUCTION ..ttt ettt a ettt et e bt et sat e bt et e sbeenbeenteneeenee 2
MEChANICAl DIESIGNevieiiieiiieiiie ettt ettt et s e et e st eebeessaeebeessbeesbeessseensaesaseenseennns 2
EIECHIICAl DESIZN ..eouviiiiiiiieeiieciie ettt ettt et e st e e bt essaeebaeesbeesbeassseensaesnsaenseennns 3
SOTEWATE DESIZNveeiiieiiieiie ettt ettt et stt e et e e st e e sbeessaeesbeeseeenbeeseesnseenseessseenseennseans 7
COSE ANALYSIS ..eeivieiiieeiiieiie ettt ettt e et e e sttt e bt eetbeesbeeesse e seeeaseesseessseenseeenseenseeesseenseesnbeenseeenseenseas 9
SALELY OPETALIONeeievieiieeiieiie ettt ettt e et e st e et e st e ebeessaeesbeessaeenseessseenseessseenseessseenseennns 11
Possible Design IMPIrOVEMENLScc.eiiiieriieiiieiieeie et eteeiee et steesteebeesaeesseesreeseessseesaesnsaens 11
COMCIUSION ...ttt ettt ettt s h e bt sh et e st e s bt e bt eatesbe et e e st e ebeenbeentenbeenseeanens 12
RETETEICES ...ttt ettt ettt ea bt et s b et e e seeenbeennes 13
Ottt ettt h et eh bt et h e bt e a e bt ettt e bt e bt eateshe e teeanen 14

Introduction

During fires in relatively large building, dousing the structure through windows and roof
openings allows for control of the fire but remaining fires within the building may last. This
requires firefighters to enter said structure, which may have become structurally unstable, in
search of surviving fires which may endanger the firefighter due to lack of visibility and
breathable air.

Removal of the human factor in task where the user may experience non-necessary
danger has led to introduction of remote controller vehicles. These devices are capable of doing
as the human user desires through a series of interactions between machine and user. The
possibility for these robots to be controlled remotely allows the user to have eyes and ears in the
field without the need to physically endangering him/herself. Firefighting has become a curious
field where robotics is being applied, to the point where competitions are held for handheld
robots to extinguish randomly positioned fires [1], as well as companies approaching the concept
as an untapped robotic market [2].

The proposed robot design allows for sensing and dousing of small fires through manual
means. The robot will be able to sense a fire from any position within its working range
allowing for manual control of the robot by the user, who in turn is able to ‘interact’ with the
environment as necessary while having constant feedback without the need of a computer screen.

Mechanical Design

The mechanical design of the system calls for a light and small system which will allow
for ease in mobility. The proposed design incorporates components which are relatively simple
to assemble while also being readily available.

Chassis

The working platform of the design will be the Boe-Bot provided by Parallax Inc (Fig. 1). Due to
its simplicity in assembly and being readily available it will provide a sustainable chassis for the
proposed system.

Figure 1 - Boe-Bot Platform

The chassis provided in the kit from Parallax Inc. is made from aluminum. It is specifically
design to hold two continuous servos, which serve as the actuators for movement of the robot.
The back wheel is a free moving rubber ball. The pegs seen in the figure, are mounted on the
chassis, provide support for the Parallax Board of Education, which contains the Basic stamp 2
microcontroller.

Water Tank

The water tank is constructed from Plexiglas box of dimensions 5” x 3.25” x 2”, sealed such as
to avoid leaking of water into the electrical system. The tank is positioned over the electrical
components due to the available supports provided by the Boe-Bot platform as well as the
increased range of having the water being pumped from the highest position available, allowing
for the robot to be farther from the fire.

Water Delivery

The water delivery is achieved using an Edmund Electronic miniature water pump placed inside
the tank. The pumps working range being 1.5-3V allows for proper usage within the system.
Water is sent through a tube whose free end is attached to a servomotor allowing for wider
displacement of water by changing the angular position of the motor.

The following figure (Fig. 2) shows the assembly of the system water system incorporating the
pump, servomotor and glass case as it’s placed in top of the Boe-Bot.

Figure 2 - Water Delivery System

Electrical Design

The electrical system proposed allows for proper interaction with the user through a
tethered system. The user receives feedback from the system in the form of light signals through
light emitting diodes (LEDs) to central hub from which the controller in connected. The overall
system utilizes components available from the mechatronics class kit as well as extra
components acquired to ease the interaction between the user and machine.

A general electrical schematic can be seen in Fig. 3.

£ p1ascK——

D12/MISD
—1—RsT

BICOLOR_LED
D1#MO! Red LED Red LED
—|—AREF " » o
o1 A TA £
L iorer o PHOTCDIODE PHOTQDIODE PHOTODIODE s 5

©
[:'4 o —|—
o
= o8
2
i g 07 ———
" = Ds#
| g o5#
S Y <
04
— a3
arep, D3#/NTA CONTINUOUS CONTINUOUS
o L I——; _ sERvO SERVO)%
P N LEFT WHEEL RIGHT WHEEL /|’
0 (RX) —|—
o
H
&
e 6
STANDARD SERVO T
NN
E g } 10 0hm
Wi Nunchuck PUMP Title
Firefighting Boe-Bot
[E— Author
Carlos Femandez, David Lopez, Andre Roman
NYU Poly
File Document
C:\Wsers\CADocumentsiTinyCadifirebot. dsn
Revision Date Sheets
1.0 12/15/2012 1of1

Figure 3 - Electrical Scheme

Microcontroller

The electrical system will be controlled by the Arduino UNO R3 microcontroller. The
advantages of the Arduino microcontroller are its open source software, which allows for an
extensive library for different interfaces. Due to certain equipment used, the Arduino is favored
over the Basic Stamp 2 used during the class. The Arduino contains 14 digital I/O pins, which
can provide 5 volts. Each pin can source/sink 40mA of current. Also, 6 of the pins have pulse
width modulation (PWM). The Uno has 6 analog input pins, with 10 bit accuracy. These features
provided by the Arduino platform were reasons why the Arduino was chosen over the Basic
Stamp.

Wii Nunchuck

The human interaction component of the design will entail the use of the Wii Nunchuck.
The Nunchuck uses a STMicroelectronics accelerometer to detect changes in position as well as
the addition of a joystick and buttons for interaction.

The purpose of the Nunchuck in this design uses the accelerometer data to move the
servomotor controlling the hose from the pump. The joystick allows for driving of the Boe-bot in
any desired direction and a button is used as a trigger mechanism for the water pump.

Infrared LEDs

The electrical design of the system calls for the application of the duality of diodes as
presented in class. A LED placed in reverse bias can act as a sensor to its expected output. For
this project infrared LEDs will be used, which detect infrared light when a flame is present. The
LEDs are placed in series with a capacitor such as to able to utilize the RCTime command to
acquire a signal strength inversely relating to the distance from the source.

0.01 pF RC Time Results

5 -
b | | | |] | | |
I T T T I T 1 I 1
Distance from flame

(a) (b)

100Q

Wy

Photodiode

3
0
e

Figure 4 - (a) Photodiode in reverse bias, (b) Signal strength in relation to distance

Transistor

The PNP transistor utilized in this system allows for control of the water delivery system.
Depending on the input supplied to the diode the pump will be activated or shut off. The
following diagram graphically represents the above (Fig. 5).

External VVdd
100Q - C NEN
B
AAA
P & wy transistor
E
10Q
1 watt
Pump
Vss

Figure S - Circuit diagram of pump and BJT

Servomotors

The Boe-Bot kit provides two continuous servomotors which are used to drive the vehicle
as desired. An additional standard servomotor is used to position the hose as desired without the
need to reposition the Boe-bot.

Indicators

Three LEDs will act as indicators to monitor the current status of the firefighting robot.
The left and right LEDs are red, which will indicate that the fire is currently to the left or right of
the boe-bot. The center LED is a bi-color LED (red/green), which will display red when the fire
is sensed by the center infrared detector. Once the robot is in position, all three LEDs will be lit.
When the fire is put out, green will be lit.

Figure 6: Indicators

Software Design

The software for the proposed project required a logic based system due to the
implementation of several sensors to feedback into the user the relative position of the fire in
relation to the front of the Boe-Bot. Note that the software accounts for proper allocation of
signals into the following hub, where the controller is connected.

220 ohm 220 ohm
220 ohm %
BICOLOR_LED
Red LED Red LED
2 T V4
5w %
|

Figure 7 - Signal Plant for User Interaction

The following are excerpts of the code which are of interest. Initially it should be noted that there is lack
of the RCTime function within the Arduino system as such the function is defined as follows (Fig. 7). The
function set the pin as initially HIGH such as to allow for discharge of the capacitor into ground, after
which the pin is set as input and defined LOW during which the results is continuously increasing until
the pin physically LOW.

long RCtime(int sensPin){
long result = 0;
pinMode(sensPin, OUTPUT); // make pin OUTPUT
di?'ita1wr"ite(sensp1'n, HIGH); // make pin HIGH to discharge capacitor
delay(10); // wait a_ms to make sure cap is discharged
pinMode(sensPin, INPUT); // turn pin into an input and time till pin goes low
digita1write(senspin, LOW); // turn pullups off - or it won't work
while(digitalrRead(senspPin)){ // wait for pin to go Tow
result++;
) return result; // report results

With the ability to acquire data relating to the fire the following code is a breakdown of the logic used to
tell the user where the fire is, which is done by the flashing of LEDs in a respective manner (recall Fig.6)

The following is a snippet of code that we used to make the boe-bot autonomous. There were problems
implementing autonomous control because the values of RCtime varied greatly with the amount of light
the fire was emitting. Precision was not obtainable with the current setup.

void 1ightLEDs() {
if (leftsensor < 5000 || centerSensor < 5000 || rightSensor < 5000) {
if (leftsensor == min(leftsensor, min(centerSensor, rightSensor))) {
// Fire detected closer to left sensor, light left LED

else if (rightsensor == min(leftsensor, min(centersensor, rightsensor))){
// Fire detected closer to right sensor, light right LED

else {

if (centersensor > 500) {
// Fire in front of Boe-Bot, Bi-color LED (red)

else {
// Fire in front and within pump range, red LEDs 1it, Bi-color LED (red)

¥

else {
} // No fire detected in front, Bi-color LED flashing (green)

¥

Accounting that the user know knows where the fire is s/he may properly react by using the Wii
Nunchuck accordingly. The data is read and set as the right constants to denote direction of travel.

void getbir() {
const int ymax = 220;
const int center = 125;
const int ymin = 30;
spd = map(nunchuk. analogy, ymin, ymax, 1450, 1550);
const int xmax = 227;
const int xcenter = 127;
const int xmin = 27;
turn = map(nunchuk. analogx, xmin, xmax, -15, 15);

The microcontroller then applies the defined system constant for that instant into the respective tires,
applying motion to the Boe-Bot.

void drive(int spd, int turn) {
int rightSpeed = spd;
int le tSqeed = map(spd, 1450, 1550, 1550, 1450);
ri?htwhee .writeMicroseconds(rightspeed + turn);
) Teftwheel.writemicroseconds (leftSpeed + turn);

The following represents the main loop of the system in logical succession; sensors are checked, which
feeds data to the user through LEDs, followed by the checking Nunchuck state, depending the state of the
z-button turn pump on finally moving the Boe-Bot if required by Nunchuck input by defining turning and
speed then applying to servos.

void Toop() {
updateSensors();
TightLEDS();
nunchuk. update();
waterPump. writeMicroseconds (map(nunchuk. accelx, 300, 700, 1275, 1725));
digitalwrite(pumpPin, nunchuk.zButton);
getoir();
3

rive(spd, turn);

Complete code is available at the end of the report.

Final Prototype

Figure 8: Prototype

Cost Analysis

Table 1 - Parts Cost

Item | Description Vendor Part No. Quantity | Price per | Prototype | Production
1 Boe-Bot Robot Kit Parallax Inc. 28132 1 $81.99 $81.99 $65.59

1/16" cotter pin 700-00023

1" tail wheel 700-00009

(4) rubber band tires 721-00002

(2) plastic wheels 721-00001

(8) 3/8" 4-40 pan head screws 700-00002

(2) 4-40 flathead screws 700-00016

(8) 7/8" 4-40 pan head screws 700-00028

(2) 7/8" 4-40 pan head screws 710-00007

(10) 4-40 zinc-plated nuts 700-00003

(4) 1" round 4-40 standoff 700-00060

(2) spacer, 1/2" round 713-00007

13/32" rubber grommet 700-00025

(2) nylon washers (screw size #4) 700-00015

(2) 3-pin headers 451-00303

(2) Parallax continous rotation servos 900-00008

(2) infrared LEDs 350-00003

(2) LED standoffs 350-90000

(2) LED shields for 350-90000 350-90001

Jumper wires (2 bags of 10) 800-00016

Aluminum chassis 700-00022

battery holder with cable and barrel plug 700-00038
2 Arduino Uno R3 SmartProjects 1 $25.00 $25.00 $25.00
3 infrared LEDs Parallax Inc. 350-00003 2 $0.99 $1.98 $1.52
4 | Wii Nunchuk Controller Nintendo 1 $20.00 $20.00 $20.00
5 WiiChuck Adapter Sparkfun Electronics | DEV-09281 1 $1.95 $1.95 $1.56
6 10 pf Capacitors Mouser Electronics 140-500N2- 3 $0.10 $0.30 $0.26

100J-RC

7 Breadboard Sparkfun Electronics | PRT-09567 2 $5.59 $11.18 $9.52
8 Plexiglass Case Proffesional Plastics 1 $20.00 $20.00 $20.00
9 Standard Servo Parallax Inc. 900-00005 1 $12.99 $12.99 $11.69
10 | Pump Lightobject EXP-7L9 1 $8.95 $8.95 $6.70
11 | Resistor Kit-1/4 W Sparkfun Electronics | COM-10969 1 $7.95 $7.95 $6.36
12 | Break Away Headers Sparkfun Electronics | PRT-00116 1 $1.50 $1.50 $1.20
13 | Red LED Parallax Inc. 350-00006 2 $0.50 $1.00 $0.80
14 | Bi-color LED Parallax Inc. 350-00005 1 $0.99 $0.99 $0.79
TOTAL $195.78 $170.99

10

The price of the Firefighting Boe-Bot is finalized at § 195.78 for the prototype with a
mass production price estimated at $ 170.99 acquired by looking into mass production of 100
units at once. A price drop of 12% is expected for mass production, the number might increase if
contact is done with major manufacturers of the major pieces such as Nintendo and
SmartProjects for the Wii Nunchuck and Arduino, respectively.

Safety Operation

The Firefighting Boe-Bot allows for remote extinguishing of fires, placing the user in a
harm free environment. Therefore safety parameters are only applied to the robot and care should
be taken when using it due to its proximity to fire and water.

The signals sent back to the user through the LEDs should be taken seriously when
proximity to the fire is detected, as the infrared sensors lead the Boe-Bot and therefore damage
can be done to them in which case operation should be stopped. The possibility of water damage
during loading is also a real possibility due to the exposed electronics under the tank and any
possible leaks should be addressed. Finally it should also be taken into account that at low water
levels the Boe-Bot may not overcome the sensors under the hose especially while in motion
therefore the tank should be fully filled before operation.

Possible Design Improvements

The design allows for further improvement if desired for expansion into a more complex
system. Improvements can be done in the water delivery system as well as the sensing system of
fires. General improvements could include water proofing of electronics while also fire proofing
certain components.

A particular limitation proposed system is the lack of ability to detect fires not in direct
eye level with the sensors, particularly at a higher level. To overcome such case additional
infrared sensors can be included at different heights allowing for higher range. An addition of a
temperature sensor could also be incorporated to better determine the distance from a fire or heat
source as the current design uses plastic, high heat environments could damage electronics.

The limited water supply due to the dimensions of the tank could be overcame if a
tethered design is preferred in which case a direct line to a greater water source is achieved. An
addition of a designed nozzle can also allow for better water delivery, optimizing the surface area
of water applied.

11

Conclusion

The Firefighting Boe-Bot was successful in putting out fires through the aid of a user
remotely controlling the robot. The robot is able to be maneuvered using a Wii Nunchuck
through tether while also sending signals back to the user to central hub from which the
Nunchuck can be attached or detached as needed. System expansion to improve the design is
possible including the original desire for an autonomous mode when the system is detached from
the tether. Ultimately the project was successful and project guidelines were met.

12

References

[1] - <http://www.trincoll.edu/events/robot/>

[2] - <http://www.wired.com/dangerroom/2012/10/fire-fighting-robots/>

13

Code
Initialization of variables, setup, and main loop

#include <ArduinolNunchuk.h>
#include <Servo.h>
#include <lire.h>

ArduinoNunchuk nunchuk = ArduinoNunchuk();

Servo rightWheel, leftWheel, waterPump:
long leftiensor, centeriensor, rightSensor:
//Pins

int punpPin 7

int leftLED 9;

int centerCathode = 10;

int centerdnode = 11;
int rightLED = 12;

int spd, turn;

void setup() {
Serial.begin(9600);
nunchuk. init();
leftlheel.attach(2);
leftheel.vriteMicroseconds (1500);
rightWheel.attachi3)
rightWheel.writelMicroseconds (1500);
waterPump.attach(8);
waterPunp.writeMicroseconds(1500);
pintode (punpPin, OUTPUT);
digitalllrite (punpPin, LOW);
pintode (leftLED, OUTPUT);
digitalllrite (leftLED, LOW):
pinMode (centerCathode, OUTPUT);
digitalllrite (centerCathode, LOW);
pintiode (centerinode, OUTPUT);
digitalllrite (centerdnode, LOW);
pintode (rightLED, OUTPUT);
digitalllrite (rightLED, LOW);

void loop() {

updateSensorsi);

lightLEDs():

nunchuk.update() ;

if (nunchuk.zButton) {
digitalllrite (punpPin, HIGH):;
delay(200);
digitalllrite (punpPin, LOW);

—

1s

1]
14

{
waterPunp.writelMicroseconds (nap (nunchuk.accelX, 300, 700, 1300, 1700)):
}
getDir();
drive(spd, turn):

14

Update sensors, RCtime:

woid updateSensorsi() {
leftSensor = RCtime(4);
centerSensor = RCtime(5);
rightSensor = RCtime(6);
Serial.print{leftSensor);
Serial.print("\tit");
Serial.print{centeriensor);
Serial.print("yt\t");
Serial.println({rightSensor);

long RCtime(int sensPin){
long result = 0;
pinMode (sensPin, OUTPUT):
digitallrite (sensPin, HIGH):
delay(l0);

SEensors

// obtain wvalues for Infrared

// get RCtime walue for left IR sensor
// get RCtime
/4 get RCtime

/4 Print left

{LED)
(LED)
right IR sensor (LED)
walue to serial monitor

value for center IR sensor
value for
IR RCtime

/4 Print center IR RCtime walue to serial monitor

// Print right IR RCtime walue to serial monitor

/4 make pin OUTPUT
// make pin HIGH to discharge capacitor - study the schematic
// wait a ms to make sure cap is discharged

pinMode (sensPin, INPUT):;
digitallrite (sensPin, LOW);
while (digitalRead(sensPin)) {
result++;
if (result > 5000) {
break;

/4 turn pin into an input and time till pin goes low
/4 turn pullups off - or it won't work
/4 wait for pin to go low

}
r

eturn result;

Light LED indicators

void lightLEDs() {
if {leftSensor < 5000 || centerSensor < 5000 || rightSensor < 5000) {
if {(leftSensor == nin(leftSensor, nin({centerSensor, rightSensor))) {
digitallirite (leftLED, HIGH):
digitalllrite (centerCathode, LOW):
digitalllrite {centerdnode, LOW);
digitalllrite (rightLED, LOW);
}
else if (rightiensor == nin(leftiensor, nin{centerSensor, rightSensor))){
digitalWrite (leftLED, LOW):
digitalllrite (centerCathode, LOW);
digitalllrite (centeranode, LOW);
digitallirite (rightLED, HIGH):
}
else {
if (centerSensor > 350) {
digitalWrite(leftLED, LOW):
digitallirite (centerCathode, HIGH):
digitalllrite (centeranode, LOW);
dilyitalirite (rightLED, LOW):
}
else {
digitallirite (leftLED, HIGH):
digitallirite (centerCathode, HIGH):
digitalllrite (centeranode, LOW);
digitallirite (rightLED, HIGH):

}

else {
digitalWrite(leftLED, LOW):
digitallirite (centerCathode, LOW);
digitallirite (centeranode, HIGH);
digitallrite (rightLED, LOW):

getDir() and drive

void getDir() {
const int ymax = 220;
const int center = 125;
const int ymin = 30;
spd = nap (nunchuk.analog¥, ymin, ymax, 1450, 1550);
const int xmax = 227;
const int xXcenter = 127;
const int xmin = 27;
turn = nap (nunchuk.analogX, xmin, xmax, -15, 15);

void drive(int spd, int turn) {
int rightSpeed = spd;
int leftSpeed = nap(spd, 1450, 1550, 1550, 1450):
rightWheel.vriteMicroseconds (rightSpeed + turn);
leftiheel.writeMicroseconds {leftipeed + turn):

