

NYU

**TANDON SCHOOL
OF ENGINEERING**

Forget Me Not Walking Stick

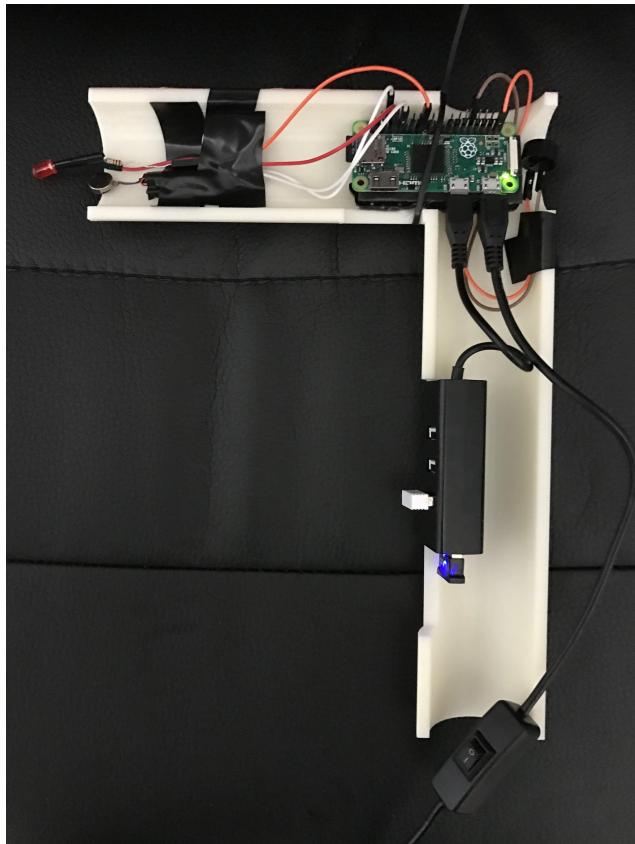
*Final Project Presentation
Robots for Disability*

By

Mitravarun Anand

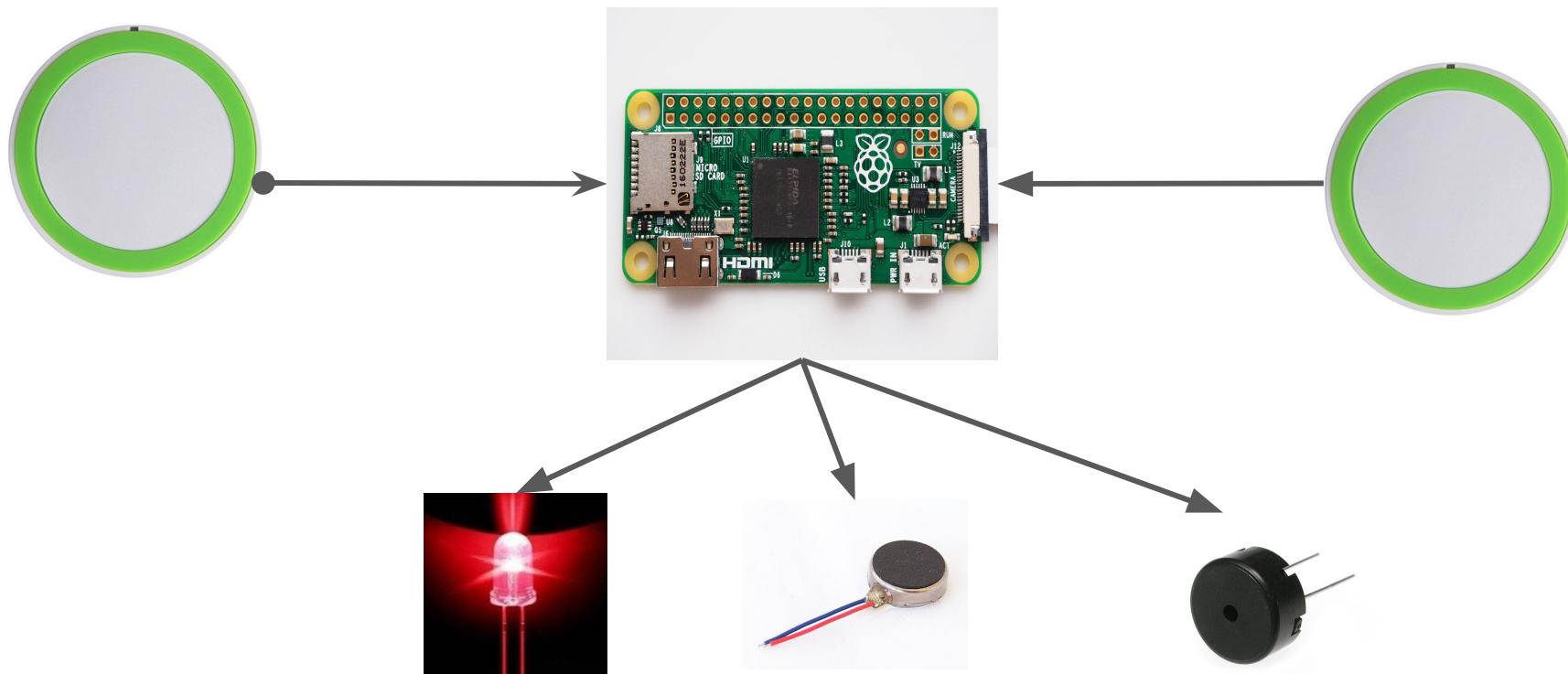
Angad Boralkar

Under the guidance of
Professor Vikram Kapila


Age Related Memory Loss

- Forgetfulness can be a normal part of aging. As people get older, changes occur in all parts of the body, including the brain.
- About 40% of people aged 65 or older have age associated memory impairment—in the United States, about 16 million people.
- Some serious types of memory loss are: Amnestic Mild Cognitive Impairment (MCI),vascular dementia and Alzheimer's disease.
- As a result people tend to lose their valuables like wallet, keys, phones,etc. Some cases of in-house nealect(ed. In kitchen) also causes serious threat to oneself as well as the well being of others living in the house.

What's the Forget Me Not Walking Stick?


- A stand-alone walking stick that reminds/ warns seniors suffering from any form of memory loss about all the important things in their home.
- Uses Raspberry Pi Zero controller to continuously talk to the iBeacons, that are placed on valuables, or inside an area of the house, like living room or kitchen.
- Can be used to remind if the user forgets valuables (mobile, wallet, keys) and safety aspects in the kitchen.
- When the user comes into proximity of the specific beacon and leaves, the Pi activates warning mechanisms to the user in the form of vibrations, light and sound.

Development

- iBeacon BLE setup with Raspberry Pi Zero
- Distance measurement from RSSI signal of the beacons.
- Haptic feedback to the user with vibration motors.
- Visual feedback with LEDs
- Piezo speaker for those with vision issues.

How it works

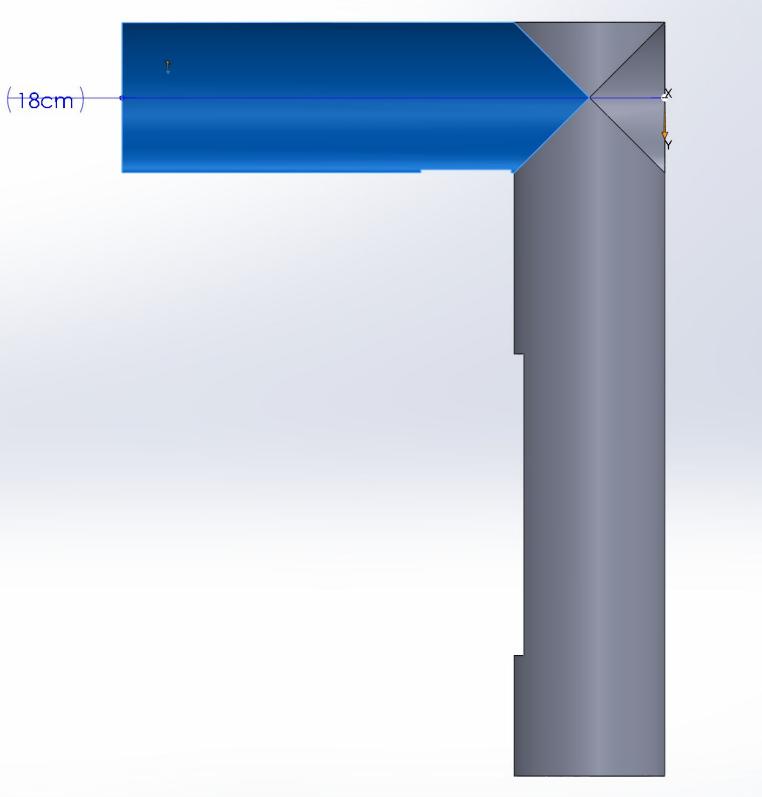
Features

Case 1:

- Stick is closest to the object:
 - LED, buzzer, motor are all off.
No warning is given.

Case 2:

- Stick goes halfway out of the room:
 - LED blinks 2 times, motor vibrates twice, no buzz.


Case 3:

- Stick is almost out of the room:
 - LED blinks thrice, motor vibrates thrice, buzzer gives a short beep.

Case 4:

- Stick is way out of the room:
 - LED blinks once and stays on, motor keeps vibrating, buzzer gives four long buzzes.

Design- Prototype


```
BLE_Function.py
1 # BLE iBeaconScanner based on https://github.com/adamf/BLE/blob/master/ble_scanner.py
2 # JCS 06/07/14
3
4 DEBUG = False
5 # BLE scanner based on https://github.com/adamf/BLE/blob/master/ble_scanner.py
6 # BLE scanner, based on https://code.google.com/p/pybluez/source/browse
7
8 # https://github.com/pauloborges/bluez/blob/master/tools/hciconfig
9 # https://kernel.googlesource.com/pub/scm/bluetooth/bluez/+4.5.0
10 # https://github.com/pauloborges/bluez/blob/master/lib/hci.c#L70
11
12 # performs a simple device inquiry, and returns a list of ble addresses of
13 # discovered device
14
15 # NOTE: Python's struct.pack() will add padding bytes unless you
16 # should be used for BLE. Always start a struct.pack() format string
17 # with a '%s' or '%c' to indicate a null-terminated string.
18
19 import os
20 import sys
21 import struct
22 import bluetooth._bluetooth as bluez
23
24 LE_META_EVENT = 0x3e
25 LE_PUBLIC_ADDRESS=0x00
26 LE_RANDOM_ADDRESS=0x01
27 LE_SET_SCAN_PARAMETERS_CPL_SIZE=7
28 OGF_LE_CTL=0x00
29 OCF_LE_SET_SCAN_PARAMETERS=0x000B
30 OCF_LE_SET_SCAN_ENABLE=0x000C
31 OCF_LE_CREATE_CONN=0x000D
32
33 LE_ROLE_MASTER = 0x00
34 LE_ROLE_SLAVE = 0x01
35
36 # these are actually subevents of LE_META_EVENT
37 EVT_LE_CONN_COMPLETE=0x01
38 EVT_LE_ADVERTISING_REPORT=0x02
39 EVT_LE_CONN_UPDATE_COMPLETE=0x03
40 EVT_LE_READ_REMOTE_USED_FEATURES_COMPLETE=0x04
41
42 # Advertisement event types
43 ADV_IND=0x00
44 ADV_DIRECT=0x01
45 ADV_SCAN_IND=0x02
46 ADV_NONCONN_IND=0x03
47 ADV_SCAN_RSP=0x04
48
49 def returnnumberpacket(pkt):
50     myInteger = 0
51     multiple = 256
52     for c in pkt:
53         myInteger += struct.unpack("B",c)[0] * multiple
54         multiple = 1
55     return myInteger
56
57 def returnstringpacket(pkt):
58     myString = "";
59     for c in pkt:
60         myString += "%02x" % struct.unpack("B",c)[0]
61     return myString
62
63 def printpacket(pkt):
64     for c in pkt:
65         sys.stdout.write("%02x " % struct.unpack("B",c)[0])
66
```

```
 1 # test BLE Scanning software
 2 # jcs 6/8/2014
 3
 4 import blescan
 5 import sys
 6
 7 import RPi.GPIO as GPIO
 8 import time
 9 GPIO.setmode(GPIO.BCM)
10 GPIO.setwarnings(False)
11 GPIO.setup(22,GPIO.OUT)
12 GPIO.setup(4,GPIO.OUT)
13 GPIO.setup(26,GPIO.IN)
14
15 import bluetooth._bluetooth as bluez
16
17 dev_id = 0
18 try:
19     sock = bluez.hci_open_dev(dev_id)
20     print "ble thread started"
21
22 except:
23     print "error accessing bluetooth device..."
24     sys.exit(1)
25
26 blescan.hci_le_set_scan_parameters(sock)
27 blescan.hci_enable_le_scan(sock)
28 try:
29     while True:
30         returnedList = blescan.parse_events(sock, 5)
31         print "-----"
32         for beacon in returnedList:
33             if(beacon[0:17] in ["20:91:48:df:0e:99",
34                                 "00:00:00:00:00:00"]):
35                 print (beacon[0:17] + " " +beacon)
36                 print beacon
37                 a = int(beacon[-2:])
38                 #b = 4*a
39                 #b = int(4 * a)
40                 print a
41                 if (a >= 50 and a < 60):
42                     print "Out of Range"
43                     GPIO.output(22,GPIO.HIGH)
44                     GPIO.output(4,GPIO.HIGH)
45                     time.sleep(0.5)
46                     GPIO.output(22,GPIO.LOW)
47                     GPIO.output(4,GPIO.LOW)
48                     time.sleep(0.5)
49                 elif (a >= 60 and a < 70):
50                     print "Way out of Range"
51                     GPIO.output(22,GPIO.HIGH)
52                     GPIO.output(4,GPIO.HIGH)
53                     time.sleep(0.25)
54                     GPIO.output(22,GPIO.LOW)
55                     GPIO.output(4,GPIO.LOW)
56                     time.sleep(0.25)
57                 elif (a >= 75):
58                     print "Extremely out of
59                     GPIO.output(22,GPIO.HIGH)
60                     GPIO.output(4,GPIO.HIGH)
61                     time.sleep(0.125)
62                     GPIO.output(22,GPIO.LOW)
63                     GPIO.output(4,GPIO.LOW)
64                     time.sleep(0.125)
65                 else:
66                     print "Inside range"
67
68 except KeyboardInterrupt:
69     pass
```

```
button_new.py  x
1  #! test BLE Scanning software
2  # jcs 6/8/2014
3
4  import blescan
5  import sys
6
7  import RPi.GPIO as GPIO
8  import time
9  GPIO.setmode(GPIO.BCM)
10 GPIO.setwarnings(False)
11 GPIO.setup(22,GPIO.OUT)
12 GPIO.setup(4,GPIO.OUT)
13 GPIO.setup(12, GPIO.OUT)
14
15 p = GPIO.PWM(12, 100) # channel=12 frequency=100Hz
16 p.start(0)
17
18 import bluetooth._bluetooth as bluez
19
20 dev_id = 0
21 try:
22     sock = bluez.hci_open_dev(dev_id)
23     print "ble thread started"
24
25 except:
26     print "error accessing bluetooth device..."
27     sys.exit(1)
28
29 blescan.hci_le_set_scan_parameters(sock)
30 blescan.hci_enable_le_scan(sock)
31 try:
32     while True:
33         returnedList = blescan.parse_events(sock, 5)
34         print "-----"
35         for beacon in returnedList:
36             if(beacon[0:17] in ["E8:91:48:df:0e:99","E8:91:48:df:0e:99:00"]):
37                 print (beacon[0:17]+ " "+beacon[17:21])
38                 print beacon
39                 a = int(beacon[-2:])
40                 #b = 4* a
41                 #b = int(4 * a)
42                 print a
43                 if (a >= 50 and a < 55):
44                     print "Out of Range"
45                     for x in range(2):
46                         GPIO.output(22,GPIO.HI)
47                         GPIO.output(4,GPIO.HIG)
48                         time.sleep(0.25)
49                         GPIO.output(22,GPIO.LO)
50                         GPIO.output(4,GPIO.LOW)
51                         time.sleep(0.25)
52                 elif (a >= 55 and a < 65):
53                     print "Way out of Range"
54                     for y in range(3):
55                         GPIO.output(22,GPIO.HI)
56                         GPIO.output(4,GPIO.HIG)
57                         time.sleep(0.25)
58                         GPIO.output(22,GPIO.LO)
59                         GPIO.output(4,GPIO.LOW)
60                         time.sleep(0.25)
61
62             for dc in range(0, 2, 1):
63                 p.ChangeDutyCycle(dc)
64                 time.sleep(0.1)
65             for dc in range(2, -1, -1):
66                 p.ChangeDutyCycle(dc)
```

Cost Analysis

Component	Cost (\$)	Cost for Mass Production (\$)
Raspberry Pi Zero	4.99	2.99
Beacons (x2)	23.99	15.99
3D printing	10.00	3.00
Bluetooth 4.0 Dongle	5.99	3.99
Power Source	12.00	6.00
Vibration motor	4.99	3.99
Miscellaneous	5.00	2.00
Total	66.96	36.96

Advantages

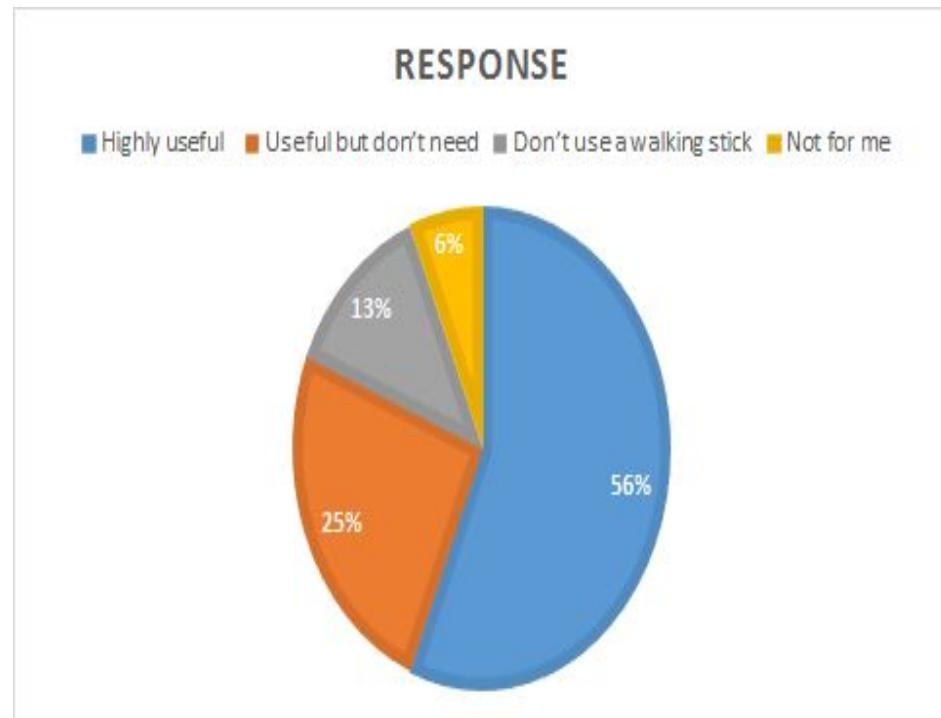
- Extremely easy to use with a very small learning curve.
- No need to have a smartphone.
- Plug and Play operation for use with additional beacons.
- Can be used by a person who is blind.
- Low cost microcontroller and components.
- BLE is highly energy efficient, beacons can go years before replacement.
- Dedicated on/off switch.
- Additional USB ports: charge other electronics.

Disadvantages

- Cheaper iBeacons drops broadcasting signals with too many obstacles.
- Highly accurate beacons are available, but are expensive.
- No audio output

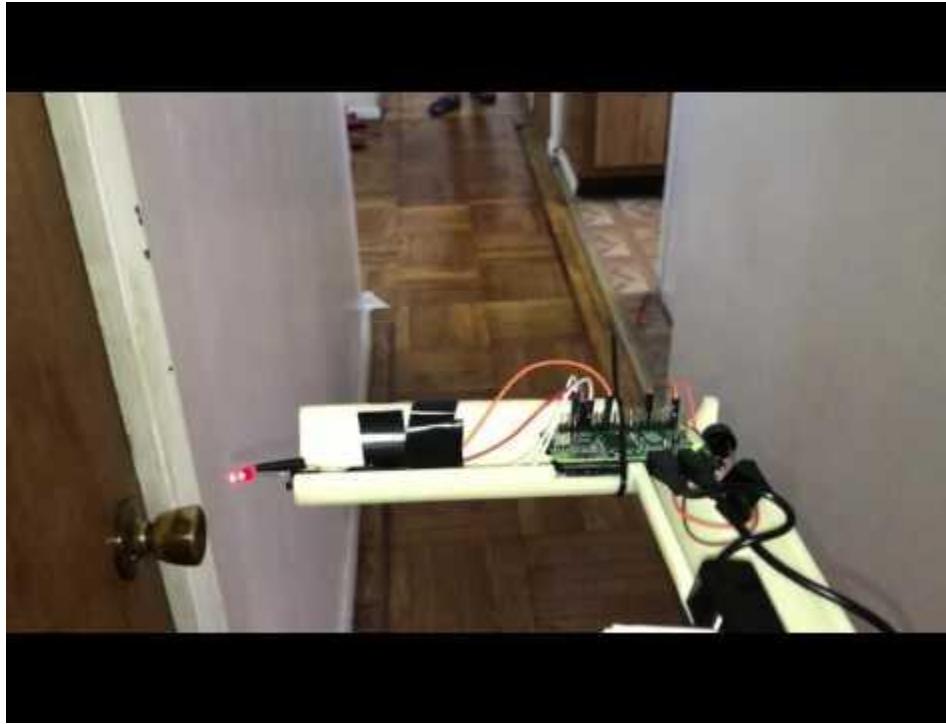
Future Work

- Use better quality beacons.
- Interfacing with home automation systems.
- Interfacing with devices like Amazon Echo to remotely give voice outputs that could assist the users to be mindful of their surroundings.


Validation

Comments:

- Many related to the problem and felt the need for it.
- People are ready to pay upto \$100.
- Different color.
- Not on a walking stick.


Improvements suggested:

- Smaller form factor.
- Speaker instead of buzzer.

Stats based on talking to 16 people aged above 60, at Bayridge Senior Center

Demo

Questions?

