
Facial Recognition-Enabled Lock

Nicholas Franchini · Ryan Gonzalez · Sravani Gandu
NAF345 · RAG580 · SG6176
ME-GY 6933 Raspberry Pi Project

May 14, 2020

ABSTRACT

In this report we detail the design, construction, and application of a locking mechanism that
uses facial recognition to validate the identity of permissible users, in tandem with conventional
analog input. The machine learning algorithms used to perform facial recognition are
implemented on a Raspberry Pi, which uses serial communication to signal an Arduino handling
mechanical actuation. Together they provide multiple means of identity validation, either through
facial recognition, or keypad input.

INTRODUCTION

One of the most prominent fields of machine learning is computer vision, the detection and
recognition of objects and events through photo and video feedback. Relatively recent
developments in the fields of AI and consumer technologies have pushed their degrees of
accessibility to levels never seen before; now anyone from a hobbyist to a data scientist can
claim to have had experience with machine learning, and attempt to develop and experiment
with their own models. The past decade in particular has seen incredible leaps in technology
within the homes of consumers, leading to the Internet of Things. The emergence of companies
such as Ring reflects this.

Despite our limited experience, we too decided to attempt to develop a product, albeit a
prototype, that integrates emergent technologies with a product in the realm of home security.
While a conventional lock system requires passwords, combinations, and physical keys, we
drew inspiration from these emerging technologies and attempted to create a “smart virtual
doorman” - a lock that recognizes user faces, and unlocks a door when queried. This is a robust
approach that relies not upon the classic keypad or key input but rather the unique facial
features of an individual.

Advances not only in hardware but also software make this an application of machine learning
that was impossible five years ago. With the new iterations of microcontrollers and
microcomputers, and the rapid development of lightweight ML libraries like Tensorflow Lite, we
were able to successfully develop a system that recognizes and responds to user input and
recognition. We apply a Haar cascade classifier provided by OpenCV to identify users’ faces in
an image, or a video clip if necessary, to classify users and determine whether they have
access based upon recognition models. The main objective of this project is to create a
mechanical locking system that uses machine learning to identify the faces of users in order to
allow or deny access to the appropriate users.

1

PROJECT DEVELOPMENT

We have chosen to use machine learning to take image data and process it into meaningful
information, effectively determining if a person should be granted access. After preparing the
necessary files for our software, we use a Raspberry Pi to run a Python facial recognition script
which communicates with an Arduino, which handles the mechanical locking mechanism and
mechanical inputs and outputs. This separation of tasks allows for efficient delegation between
the boards, and plays to their respective strengths in computing and actuation.

Many avenues were explored in developing the software architecture for this project, which we
had little to no prior experience with. Though we originally intended to work with tensorflow lite
and a Google Coral Edge TPU, we found that the training and retraining methods for classifying
an individual’s face, in particular our own, was an incredibly intensive and difficult process that
required more computing power and time than we were capable of committing to our project,
though ideally we would have worked in depth with Tensorflow Lite and Google’s new AutoML
API. However, we came across a blog called PyImageSearch that detailed an incredibly
lightweight and effective way of constructing our software and rapidly generating foundational
software we could modify for our own purposes. We credit them at the end of this report.

Raspberry Pi Software

The first step in developing a working facial recognition model was creating a dataset. Shown in
Figure 1 below is the structure of our project folder, including our dataset consisting of
approximately twenty unlabeled photos per person, organized by folder. The names of these
folders were important, as they were used in generating the labels for our recognition software.

$ tree --dirsfirst

.

├── dataset

│ ├── nick_franchini

│ │ ├── IMG_0077.JPG

│ │ └── ...

│ ├── ryan_gonzalez

│ │ ├── ...

│ └── sravani_gandu

│ ├── ...

├── encode_faces.py

├── encodings.pickle

├── haarcascade_frontalface_default.xml

└── pi_face_recognition.py

Figure 1: Software architecture of our project file.

2

This dataset was then input to the ​encode_faces.py file, which processed and encoded
images as a ​.pickles file. In short, this encoding script takes every photo in the dataset, and
performs a process known as deep metric learning to compute for each photo a list of 128
floating point values. These lists are known as 128-d vectors, and quantify the features of each
facial picture. The deep metric learning process is enabled by the ​dlib ​library, which is wrapped
by the ​facial_recognition library, both of which work in tandem with the ​OpenCV library to
provide the functionality of our Python scripts. This file’s structure and usage case is detailed in
Appendix A at the end of the report.

The network trains it’s model on these photos in triplets, using two photos known to be correctly
labelled and the third randomly picked from an incorrect label. By comparing two correct inputs
the machine learning algorithm learns to better correctly identify a specific category (or
individual face), while simultaneously learning when an input is incorrect by comparing against
the third photo. This lends to a model that is ​unusually accurate ​at performing predictions with
datasets that are by normal standards ​incredibly small​, in our case on the order of
approximately 10-20 photos per class, or individual. To put this into perspective, the usual
dataset is usually on the order of hundreds of labelled photos per class.

Once the ​encode_faces.py file has generated the encodings file (named ​encodings.pickle

in this case), we move to the ​pi_facial_recognition.py script which, aptly named, performs
facial recognition. This script is instantiated at the beginning of RPi operation, and needs to run
continuously as an Arduino would to perform facial recognition. Through a camera module
interfaced with the RPi, the script uses the OpenCV library to grab each frame and process the
features with the ​facial_recognition ​library and​ encodings.pickle ​file.

To reduce strain on the Raspberry Pi during operation, we employ a Haar cascade. This form of
detection is capable of recognizing objects at ​multiple scales in real time​. Moreover, our Haar
cascade in particular came pre-trained by OpenCV, and simply needed to have parameters
tweaked by our program during implementation through our encodings file. This framework is
incredibly lightweight; the ​While(True) loop handling the bulk of our face detection was
approximately ​70 lines of code​, and includes extraneous snippets such as whitespace,
commenting, and visualization methods for the developer-end of the project. We skip the
OpenCV visualization methods in our report, as they are mostly unnecessary in our final
product; however, we leave them in for replicability and ease of use.

Another important feature of the ​pi_facial_recognition.py script is handling crosstalk to the
Arduino. Through the ​PySerial ​library, we instantiate a Serial object that enables
communication through the serial port - circumventing the need for any GPIO pins during
prototyping. Whenever the Raspberry Pi detects ​and ​recognizes an individual’s face through the
camera, an integer encoded as bytes is sent to the Arduino,signalling a check for unlock
conditions. An important distinction is that this signalling occurs ​regardless ​of whether the user
is attempting to unlock the mechanism. It has no final say in whether the security system should
disarm; rather, it simply identifies and alerts the Arduino that a person is at the door. Like our

3

encode_faces.py file, the code for our pi_facial_recognition.py file is also detailed with it’s
usage case in Appendix A at the end of the report.

Arduino Software

The ArduinoIDE was used to develop the code for controlling the Arduino. In this we assign pin
constants for a buzzer and the locking mechanism. A keypad has been attached to the Arduino
in order to allow access to users who have not been added to the facial recognition dataset.
There are five functions within the Arduino code for the following processes: buzzer for incorrect
keypad entry, buzzer for correct keypad entry, a function to clear the keypad entry string (Input),
a lock function, and an unlock function. Serial communication is used to transmit data between
the Raspberry Pi and Arduino.

Figure 2: System Access Flowchart

The flowchart above is a visualization of the access process for the system. The Raspberry Pi’s
facial recognition software is always running and taking in images from the camera. If a face is
successfully identified as one of the permitted users, a signal is sent from the Raspberry Pi to
the Arduino. If the “START” button on the keypad is pressed while the Raspberry Pi is sending
this signal, the Arduino then runs the unlock function which unlocks the mechanism. If no
permitted user is identified by the Raspberry Pi, no signal is sent to the Arduino and the
mechanism remains locked. During this time, nothing will happen if the button is pressed
because the recognition confirmation signal is not being sent by the Raspberry Pi. A user has
the option to enter the password on a keypad attached to the Arduino. If the six-digit password

4

is entered correctly, the buzzer sounds three ascending tones and the mechanism is unlocked.
If the password is entered incorrectly, the buzzer plays a different series of tones, three in
descending order, indicating that the password was incorrect and the mechanism remains
locked. If a user has begun entering a password on the keypad, but wants to start over, they
can press the “STOP” key in the bottom right corner, which runs the ​ClearData function to clear
the entry string.

The void loop of the Arduino program has two primary ​if statements. The first monitors the
keypad for button presses and the second monitors the length of the input string. If a button is
pressed, the first loop is entered. If the button pressed is the “START” button, the Arduino
checks the serial monitor and retrieves any available data. If that data matches the established
code for a successful user recognition, “555”, the Arduino initiates the ​UnlockDoor function. If
the “STOP” button is pressed, the arduino initiates the ​ClearData function and if any other
button is pressed, the password input string is appended with that value. The second ​if
statement simply monitors the length of that string and once the string is six characters long, it
compares the entered string to the password string. If they match, the ​BuzzerRightFunction and
UnlockDoor functions are initiated. If the strings do not match, the ​BuzzerWrongFunction and
ClearData​ functions are initiated and the lock remains engaged.

Hardware

The recognition-based locking system is conceptually simple and we have already detailed the
two primary components, the Raspberry Pi and the Arduino, but there are a few additional
components necessary for the mechanical system that are all connected to the Arduino in order
to allocate I/O functions away from the Raspberry Pi. A keypad is used for two purposes. The
“START” button on the keypad is pressed when a permitted user is present and requesting
access. It may be necessary for users who need access but do not have recognition models to
unlock the system. In this case, they can use the keypad to enter the unlock password. A
buzzer is used for audible feedback when entering a password and to determine if the password
was correct or not.

The locking mechanism is represented by a servo motor. Its limits represent the lock and unlock
positions. The specific application of the lock, whether it be a door, a filing cabinet, or some
other container, is beyond the scope of this project so the lock has intentionally not been
designed for a given object.

Pin 10 is connected to the buzzer which uses a 220 Ohm in-line resistor. Pins 2 through 8 are
dedicated to reading the four-row by three-column keypad.

5

Figure 3: Raspberry Pi Camera Module V2 Installed On Board

A Raspberry Pi Camera Module V2 camera is used for video signal input into the Raspberry Pi.
This and a serial communications USB cable are the only devices attached to the Raspberry Pi
in our application.

6

Circuit Diagrams

Figure 4: Electrical Layout of System

The diagram above does not depict the Raspberry Pi Camera Module V2 because the model
was not available in the Fritzing program. The camera plugs directly into the mezzanine
connector on the Raspberry Pi board.

7

CONCLUSION

We were able to successfully design, program, and build a locking system that employs
machine learning to identify faces and validate them against defined permitted user recognition
files. The system utilizes Python on a Raspberry Pi to take video input from a Raspberry Pi
Camera Module and successfully identify users. It also allows users the option to enter a
password to unlock the system, accompanied by audible feedback of the password state. Room
for future improvement would include notifying a master user via WhatsApp text message when
a user tried to gain access to the system and was not recognized or entered an incorrect
password. Additional ability to build new user recognition models via the onboard camera would
constitute a more robust user interface without the need to upload images to a recognition file
on the Raspberry Pi.

BILL OF MATERIALS

Component Qty

Raspberry Pi 1

Arduino UNO 1

Raspberry Pi Camera Module V2 1

USB to USB type B serial comm
cable

1

12-button keypad 1

Piezoelectric buzzer 1

220 Ohm Resistor 1

Standard Servo motor 1

8

Electrical wires 13

9

Appendix A: Raspberry Pi Software

encode_faces.py

USAGE

When encoding on laptop, desktop, ​or​ ​GPU​ (slower, more accurate):
python encode_faces.py --dataset dataset --encodings encodings.pickle

--detection-method cnn

When encoding on Raspberry ​Pi​ (faster, more accurate):
python encode_faces.py --dataset dataset --encodings encodings.pickle

--detection-method hog

import the necessary packages

from imutils ​import​ paths
import​ face_recognition
import​ argparse
import​ pickle
import​ cv2
import​ os

construct the argument parser and parse the arguments

ap = argparse.ArgumentParser()

ap.add_argument(​"-i"​, ​"--dataset"​, required=True,
help=​"path to input directory of faces + images"​)

ap.add_argument(​"-e"​, ​"--encodings"​, required=True,
help=​"path to serialized db of facial encodings"​)

ap.add_argument(​"-d"​, ​"--detection-method"​, type=str, ​default​=​"cnn"​,
help=​"face detection model to use: either `hog` or `cnn`"​)

args = vars(ap.parse_args())

grab the paths to the input images in our dataset

print(​"[INFO] quantifying faces..."​)
imagePaths = ​list​(paths.list_images(args[​"dataset"​]))

initialize the ​list​ of known encodings ​and​ known names
knownEncodings = []

knownNames = []

loop over the image paths

for​ (i, imagePath) in enumerate(imagePaths):

10

extract the person name from the image path

print(​"[INFO] processing image {}/{}"​.format(i + ​1​,
len(imagePaths)))

name = imagePath.split(os.path.sep)[​-2​]

load the input image ​and​ convert it from RGB (OpenCV ordering)
to dlib ordering (RGB)

image = cv2.imread(imagePath)

rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)

detect the (x, y)-coordinates of the bounding boxes

corresponding to each face in the input image

boxes = face_recognition.face_locations(rgb,

model=args[​"detection_method"​])

compute the facial embedding ​for​ the face
encodings = face_recognition.face_encodings(rgb, boxes)

loop over the encodings

for​ encoding in encodings:
add each encoding + name to our ​set​ of known names ​and
encodings

knownEncodings.append(encoding)

knownNames.append(name)

dump the facial encodings + names to disk

print(​"[INFO] serializing encodings..."​)
data = {​"encodings"​: knownEncodings, ​"names"​: knownNames}
f = open(args[​"encodings"​], ​"wb"​)
f.write(pickle.dumps(data))

f.close()

pi_face_recognition:

CREDITS GO TO ADRIAN ROSEBROCK FOR TUTORIAL CODE IN RPI FACE

RECOGNITION SOFTWARE

Tutorial found at:

https:​//www.pyimagesearch.com/2018/06/25/raspberry-pi-face-recognition/

USAGE

11

python pi_face_recognition.py --cascade

haarcascade_frontalface_default.xml --encodings encodings.pickle

import the necessary packages (facial recognition)

from imutils.video ​import​ VideoStream
from imutils.video ​import​ FPS
import​ face_recognition
import​ argparse
import​ imutils
import​ pickle
import​ time
import​ cv2

imports for Arduino-to-RPi communication

import​ serial

instantiate connection to Arduino serial port

ser = serial.Serial(​'/dev/ttyACM0'​,​9600​)
ser.flush()

construct the argument parser ​and​ parse the arguments
forms the ​"constructor"​ ​for​ our python code when we run through command
line

ap = argparse.ArgumentParser()

ap.add_argument(​"-c"​, ​"--cascade"​, required=True,
 help = ​"path to where the face cascade resides"​)
ap.add_argument(​"-e"​, ​"--encodings"​, required=True,
 help=​"path to serialized db of facial encodings"​)
args = vars(ap.parse_args())

load the known faces ​and​ embeddings along with OpenCV's Haar
cascade ​for​ face detection
print(​"[INFO] loading encodings + face detector..."​)
data = pickle.loads(open(args[​"encodings"​], ​"rb"​).read())
detector = cv2.CascadeClassifier(args[​"cascade"​])

initialize the video stream ​and​ allow the camera sensor to warm up
print(​"[INFO] starting video stream..."​)
vs = VideoStream(src=​0​).start()
vs = VideoStream(usePiCamera=True).start()

time.sleep(​2.0​)

12

start the FPS counter

fps = FPS().start()

loop over frames from the video file stream

while​ True:
 # grab the frame from the threaded video stream ​and​ resize it
 # to ​500​px (to speedup processing)
 frame = vs.read()

 frame = imutils.resize(frame, width=​500​)

 # convert the input frame from (​1​) BGR to grayscale (​for​ face
 # detection) ​and​ (​2​) from BGR to RGB (​for​ face recognition)
 gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)

 rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)

 # detect faces in the grayscale frame

 rects = detector.detectMultiScale(gray, scaleFactor=​1.1​,
 minNeighbors=​5​, minSize=(​30​, ​30​),
 flags=cv2.CASCADE_SCALE_IMAGE)

 # OpenCV returns bounding box coordinates in (x, y, w, h) order

 # but we need them in (top, right, bottom, left) order, so we

 # need to ​do​ a bit of reordering
 boxes = [(y, x + w, y + h, x) ​for​ (x, y, w, h) in rects]

 # compute the facial embeddings ​for​ each face bounding box
 encodings = face_recognition.face_encodings(rgb, boxes)

 names = []

 # loop over the facial embeddings

 ​for​ encoding in encodings:
 # attempt to match each face in the input image to our known

 # encodings

 matches = face_recognition.compare_faces(data[​"encodings"​],
 encoding)

 name = ​"Unknown"

 ### THIS IS WHERE WE SEND TO THE ARDUINO###

 # check to see ​if​ we have found a match
 ​if​ True in matches:
 # find the indexes of all matched faces then initialize a

13

 # dictionary to count the total number of times each face

 # was matched

 matchedIdxs = [i ​for​ (i, b) in enumerate(matches) ​if​ b]
 counts = {}

 # loop over the matched indexes ​and​ maintain a count ​for
 # each recognized face face

 ​for​ i in matchedIdxs:
 name = data[​"names"​][i]
 counts[name] = counts.get(name, ​0​) + ​1

 # determine the recognized face with the largest number

 # of votes (note: in the event of an unlikely tie Python

 # will select first entry in the dictionary)

 name = max(counts, key=counts.get)

 # update the ​list​ of names
 names.append(name)

 # Sends ​'555'​ as a ​string​ converted to byted when Raspberry Pi
 # detects a face.

 ​if​ True in matches:
 ser.write(str(​"555\n"​).encode())

 # loop over the recognized faces

 ​for​ ((top, right, bottom, left), name) in zip(boxes, names):
 # draw the predicted face name on the image

 cv2.rectangle(frame, (left, top), (right, bottom),

 (​0​, ​255​, ​0​), ​2​)
 y = top - ​15​ ​if​ top - ​15​ > ​15​ ​else​ top + ​15
 cv2.putText(frame, name, (left, y), cv2.FONT_HERSHEY_SIMPLEX,

 ​0.75​, (​0​, ​255​, ​0​), ​2​)

 # display the image to our screen

 cv2.imshow(​"Frame"​, frame)
 key = cv2.waitKey(​1​) & ​0xFF

 # ​if​ the `q` key was pressed, ​break​ from the loop
 ​if​ key == ord(​"q"​):
 ​break

 # update the FPS counter

14

 fps.update()

stop the timer ​and​ display FPS information
fps.stop()

print(​"[INFO] elasped time: {:.2f}"​.format(fps.elapsed()))
print(​"[INFO] approx. FPS: {:.2f}"​.format(fps.fps()))

​do​ a bit of cleanup
cv2.destroyAllWindows()

vs.stop()

15

Appendix B: Arduino Software

#include ​<Keypad.h>
#include ​<Servo.h>
Servo myServo;

int​ ​const​ ServoPin = ​11​; ​// Servo control ouput pin
int​ ​const​ BuzzPin = ​10​; ​// Buzzer control ouput pin
int​ ​const​ Unlock = ​70​; ​// Servo angle to UNLOCK door
int​ ​const​ Lock = ​130​; ​// Servo angle to LOCK door
int​ ​const​ ROW_NUM = ​4​; ​//four rows
int​ ​const​ COLUMN_NUM = ​3​; ​//three columns
int​ ​const​ Length = ​7​; ​// how long the keypad password can be. 6 digits
plus 1 null = 7

char​ PASSWORD[] = ​"123456"​; ​// correct password
char​ Input[Length];
byte index = ​0​, attempts = ​0​;

char​ keys[ROW_NUM][COLUMN_NUM] = {
 {​'1'​,​'2'​,​'3'​},
 {​'4'​,​'5'​,​'6'​},
 {​'7'​,​'8'​,​'9'​},
 {​'*'​,​'0'​,​'#'​}
};

byte pin_rows[ROW_NUM] = {​8​, ​7​, ​6​, ​5​}; ​//connect to the row pinouts of the
keypad

byte pin_column[COLUMN_NUM] = {​4​, ​3​, ​2​}; ​//connect to the column pinouts of the
keypad

Keypad keypad = Keypad(makeKeymap(keys), pin_rows, pin_column, ROW_NUM,

COLUMN_NUM);

// Define Functions:

int​ ​BuzzerWrongFunction​(){
 tone(BuzzPin, ​1000​);
 delay(​200​);
 tone(BuzzPin, ​700​);
 delay(​200​);
 tone(BuzzPin, ​400​);
 delay(​200​);
 noTone(BuzzPin);

 delay(​50​);
}

16

int​ ​BuzzerRightFunction​(){
 tone(BuzzPin, ​400​);
 delay(​200​);
 tone(BuzzPin, ​700​);
 delay(​200​);
 tone(BuzzPin, ​1000​);
 delay(​200​);
 noTone(BuzzPin);

 delay(​50​);
}

int​ ​ClearData​(){
 ​while​ (index != ​0​){
 Input[index--] = ​0​;
 }

}

int​ ​LockDoor​(){
 myServo.write(Lock);

 delay(​50​);
}

int​ ​UnlockDoor​(){
 myServo.write(Unlock);

 delay(​5000​); ​// five second delay for time to open door
 myServo.write(Lock);

 delay(​50​); ​// lock door at end
}

void​ ​setup​(){

 pinMode(BuzzPin, OUTPUT); ​// Set BuzzerPin as output
 myServo.attach(ServoPin); ​// Assign ServoPin to the servo

 Serial.begin(​9600​);
 myServo.write(Lock); ​// Initial door state is locked

}

void​ ​loop​(){
 ​char​ key = keypad.getKey(); ​// Read input from keypad
 ​if​ (key){
 ​if​ (key == ​'*'​){ ​// If 'START' key on keypad is pressed
 ​if​ (Serial.available() > ​0​) { ​// Check if message is available in serial
com (from Raspberry Pi)

 String data = Serial.readStringUntil(​'\n'​); ​// Classify incoming
message

 ​if​ (data == ​"555"​){ ​// if RPi is sending '555/n'

17

 UnlockDoor();

 delay(​20​);
 }

 }

 }

 ​else​ ​if​ (key == ​'#'​){ ​// If 'STOP' button on keypad is pressed, clear input
string

 ClearData();

 }

 ​else​{ ​// If any other button on the keypad is pressed, append the input
string with that digit

 Input[index] = key;

 index++;

 tone(BuzzPin, ​700​);
 delay(​50​);
 noTone(BuzzPin);

 delay(​50​);
 }

 }

 ​if​ (index == Length​-1​){ ​// If there are 6 entries in the input string
 ​if​ (!​strcmp​(Input,PASSWORD)){ ​//If the input string matches the password
 BuzzerRightFunction(); ​// Success buzzer sound
 UnlockDoor();

 delay(​20​);
 ClearData(); ​// Clear input string data
 }

 ​else​{ ​// If the input string does not match the password
 ClearData();

 BuzzerWrongFunction();

 }

}

delay(​20​);
}

References

Computer Vision Blog:
https://www.pyimagesearch.com/2018/06/25/raspberry-pi-face-recognition/

18

https://www.pyimagesearch.com/2018/06/25/raspberry-pi-face-recognition/

