ADVACNED MECHATRONICS - ME-GY 6933

Hands Free Li-fi based Multi-Door
Automation

PROJECT -3 REPORT

PROJECT TEAM MEMBERS

e Adarsh Shanmugam - AS13065

* Rebanta Roy — RR3659

* Vaikunth Naarayan Shankar - VNS249

NEW YORK UNIVERSITY




»
=12
5]

O 00 N O U

Table of Contents

Contents
Introduction
. Li-fi
. Wearable Tech
Design Schematic
Bill of Materials
Key Components

. Arduino Nano

. Propeller Activity Board
. LEDs and Photo-resistors
. MPU-6050

. Servo Motor

. Pulse Sensor

. Display

Prototype Working
Design Aspects
Advantages
Disadvantages

Future Scope
Appendix

Page No.

(Y

W W NN -

O 00 00 N N OO Ln W

S S S =
N N R

(e
W N




Figure No.
1

O O NO UL b WN

[y
o

[ T T G S Y
U D W N -

List of Figures

Figure
Design Schematic
Arduino Nano
Arduino Nano Pin diagram
Propeller Activity Board WX
Propeller Pin Diagram
LED
Photo-resistor
MPU-6050

Servo Motor

Pulse Sensor

Display

Breadboard model of the wearable
Door Setup

Planned Design for the watch

Door Design

Page No.

N

O OO0 0O N Noo Ul Ll W

N
[EEG SN




ABSTRACT

The novel Corona virus outbreak has instilled a great sense of fear in all of us.
Despite washing our hands frequently, coming into contact with various objects
from our day to day lives poses a great level of risk. One such object is a door
handle, realizing that door handles are potential breeding grounds for a variety of
infections in hospitals and SCM based warehouses. We propose a solution that
allows patients, essential, and healthcare workers to open multiple doors using a
smart band. This smart band contains an Arduino Nano along with an inertial
measurement unit. The door automation system will run on top of the Propeller
Activity Board utilizing its multi-cog functionality. As our previous project, the
means of communication between these two microcontrollers would be using
Light Fidelity or Li-fi. However, this time we are planning to increase the amount
of security using 8-bit data. We are also aiming to increase the response time with
quicker operation as this was an issue last time. The Li-fi module can be triggered
by either placing the hand in a particular orientation or using a button. We feel
amongst the pandemic situation, a hands-free multi-door unlocking system would
serve a great deal of purpose.

INTRODUCTION

Li-fi

It is a well known fact that light comes with an immense speed that makes it by far
the fastest thing known to man. Hence using it for communication means very high
speeds of data transmission, given the right equipments are setup to harness the
best out of it. One such technology which uses the above mentioned is Li-fi. Li-Fi
Is a light based communication system that is capable of transmitting data at high
speeds over the visible light, ultraviolet, and infrared spectrums. In its present
state, only LED lamps can be used for the transmission of visible light. Using light
In communication as medium to transmit data allows Li-Fi to put forward a
plethora advantages over the well known established forms of communication like
Wi-fi etc. Some of the advantages of Li-fi are:

» Increased bandwidth: Visible Light, Ultraviolet, and Infrared.




= The capability to safely operate in areas otherwise prone to electromagnetic
disturbances like the inside of aircraft cabins, hospitals, military etc.
= Higher transmission speeds.

Wearable Technology/Smart Watch

Wearable technology refers to smart electronic devices with micro-controllers that
can be integrated into attire or worn on the body as an accessory. Wearable devices
such as activity trackers are an example of the Internet of Things (loT), since
"things" such as electronics, software, sensors, and connectivity are effectors that
enable objects to exchange data through the internet with a manufacturer, operator,
and/or other connected devices, without requiring human intervention and without
any loss in the quality of data being transmitted. Wearable technology has a variety
of applications which grows as the field itself expands. One such popular example
for a wearable technology/device that is very prominent with regards to a variety of
aspects and applications is the smart watch.

DESIGN SCHEMATIC

Wearable Door Setup
F
—
—
< Li-Fi
Push .
Button Display | | IMU Servo | Servo | Servo
y \ y

Figure 1: Desigh Schematic




BILL OF MATERIALS

S.No | Component Quantity | Cost (in $)
1 Arduino Nano 1 22.00
2 Propeller Activity Board WX 1 79.00
3 MPU-6050 1 4.99
4 Parallax Servo Motors 3 30.49
5 Pulse Sensor 1 24.99
6 Photo-resistors 30 4.15
7 LEDs 10 5.00
8 SSD 1306 —128x32 OLED Display 12C 1 8.00
9 Capacitors Kit (10pF-100nF) 300 15.99
10 Resistors Kit (220Q-10kQ) 150 7.89
11 Push Buttons 2 3.00
12 Jumper Wires Pack 1 5.99

Key Components

Total: $211.49

e Arduino Nano

Figure 2: Arduino Nano




ARDUINO NANO PINOUT

9799923222

0@ &0

i B
EEEREEEREIREEE

uuuuuu

g

Figure 3: Arduino Nano Pin Diagram

Arduino Nano is a microcontroller board. The microcontroller used in the Arduino
Nano is Atmega328. It has a wide range of applications and is a major
microcontroller board because of its small size and flexibility. It has 22
input/output pins in total. Out of the 22 1/O pins 14 are digital pins and 8 are
analog pins. Amongst the 14 digital 1/0O pins, 6 are PWM compatible. It has an on-
board oscillator of 16MHz. The Arduino Nano’s operating voltage varies from 5V
to 12V. It also supports different communications protocols like Serial Protocol,

I2C Protocol, SPI Protocol. It comes with a mini USB Pin which is used to upload
code.

Memory Specs: Arduino Nano

It has below memories embedded in it which are used for different purposes and
are as follows:

o Flash memory of Arduino Nano is 32Kb.
« It has a preinstalled boot loader on it, which takes a flash memory of 2kb.
o SRAM memory of this Microcontroller board is 8kb.

o It has an EEPROM memory of 1kb.

The compact design and small size along with its memory specs make it an ideal
choice in a variety of robotics and mechatronics applications.




e Propeller Activity Board WX

Propeller m

Activity Boara

JTAG or
3 Digital Inputs

(€©) TCK or Input
(M) TMS or Input
(1) TDI or Input
(© TDO

UART or 1/O

@ TXD or 1/O
® RXD or 1/O

Figure 5: Propeller Pin Diagram

)

TE07 22-01
ENY) 3
- O V ;J

ﬂ
el ~

SAMSUNG

©000000000000000000.8
- S

The Propeller Activity Board WX features the 8-core Propeller microcontroller pre-
wired to a host of popular peripherals for fast computing and processing. Each of
the eight 32-bit cores also called cogs has a central processing unit (CPU) which
has access to 512 32-bit long words (2 KB) of instructions and data. Each cog also
has access to two dedicated hardware counters and a special video generator for
use in generating timing signals. The timing hardware can be used to implement
various pulse-width modulation timing signals. Of the 40 available pins, 32 are
used for 1/0O, four for power and ground pins, two for an external crystal, one to
enable power outage and brownout detection, and one for reset. All eight cores
can access the 32-bit port simultaneously. A special control mechanism is used to

5




avoid 1/O conflicts if one core attempts to use an I/O pin as an output while
another tries to use it as input. Any of these pins can be used for the timing or
pulse-width modulation output techniques described above. The Propeller
Activity Board WX features the 8-core Propeller microcontroller pre-wired to a
host of popular peripherals.

e LED and Photo-resistors/ Light dependent Resistors

A light-emitting diode (LED) is asemiconductor light source that emits light
when current flows through it. Electronsin the semiconductor recombine
with electron holes, releasing energy in the form of photons. The color of the light
is determined by the energy required for electrons to cross the band gap of the
semiconductor. On the other hand, a photo-resistor is an active component that
decreases resistance with respect to receiving light on the component's sensitive
surface. The resistance of a photo-resistor decreases with increase in incident
light intensity; in other words, it exhibits photoconductivity. A photo-resistor can
be applied in light-sensitive detector circuits and light-activated and dark-
activated switching circuits acting as a resistance semiconductor.

Epoxy lens/case
Wire band
Reflactive cavity

Semiconductor die

:::til }» Leadframe
Flat spat
Anode [ ﬂ Cathode
{lang) (short)
Figure 6: LED Figure 7: Photo-Resistor




e MPU-6050 (IMU)

+3V t0 +5Ve—p] OVCC: -

Grounde—s OGND|

@

>
=
5
2
w
®
=t
o
g
=
I
(o]
>
o
=
1

MPU-6050 ITG/MP

%
o

Interrupt—» L@ J]\g¥ —e)x

Figure 8: MPU-6050

The MPU-6050 devices combine a 3-axis gyroscope and a 3-axis accelerometer on
the same silicon die, together with an onboard Digital Motion Processor (DMP),
which processes complex 6-axis Motion Fusion algorithms. The device can access
external magnetometers or other sensors through an auxiliary master 12C bus,
allowing the devices to gather a full set of sensor data without intervention from
the system processor. For precision tracking of both fast and slow motions, the
parts feature a user-programmable gyro full-scale range of +250, +500, +1000,
and +2000 °/sec (dps), and a user-programmable accelerometer full-scale range
of +2g, +4g, +8g, and £16g. Additional features include an embedded temperature
sensor and an on-chip oscillator with +1% variation over the operating
temperature range.

e Servo Motor

Figure 9: Parallax Servo Motor

A servomotor is a rotary actuator or linear actuator that allows for precise control
of angular or linear position, velocity and acceleration. It consists of a suitable
motor coupled to a sensor for position feedback. A servomotor is a closed-




loop servomechanism that uses position feedback to control its motion and final
position. The input to its control is a signal (either analogue or digital)
representing the position commanded for the output shaft. In this project the
servo motors are used to actuate the doors to and fro.

e Pulse Sensor

Figure 10: Pulse Sensor

Pulse Sensor is a well-designed plug-and-play heart-rate sensor for Arduino. It can
be used by students, artists, athletes, makers, and game & mobile developers
who want to easily incorporate live heart rate data into their projects. The sensor
clips onto a fingertip or earlobe and plugs right into Arduino with some jumper
cables. The front of the sensor is the pretty side with the Heart logo. This is the
side that makes contact with the skin. On the front you see a small round hole,
which is where the LED shines through from the back, and there is also a little
square just under the LED. This LED is used as a transmitter from the wearable
end in Li-Fi communication.

e Display

o 120 06 oo

S200%g
FEELEL

LT
Figure 11: SSD 1306 — 128 x 32 OLED Displays 12C
These displays are small, only about 1" diagonal, but very readable due to the
high contrast of an OLED display. This display is made of 128x32 individual
white OLED pixels, each one is turned on or off by the controller chip. Because
the display makes its own light, no backlight is required. The driver chip

SSD1306, communicates via I12C only. 3 pins are required to communicate with

8




the chip in the OLED display, two of which are 12C data/clock pins. The OLED
and driver require a 3.3V power supply and 3.3V logic levels for
communication. There is also a logic level converter and voltage regulator, so
this can be operated on 5V which makes it compatible with Arduino. The
power requirements depend a little on how much of the display is lit but on
average the display uses about 20mA from the 3.3V supply. Built into the OLED
driver is a simple switch-cap charge pump that turns 3.3v-5v into a high voltage
drive for the OLEDs.

PROTOTYPE WORKING

W e B 5

Figure 13: Door Setup

The system can be divided into two parts, the wearable and the door setup. The
wearable setup comprises of an Arduino Nano, an IMU, a pulse sensor, an LDR,
and an OLED display. The IMU is used to trigger the LED once the calibrated




gesture is performed, thereby making the whole process completely hands free.
Whereas the door setup on the other hand consists of three pairs of LED-LDR
pairs, Propeller Activity Board WX and servo motors to actuate the doors. The
entire communication happens between the two parts through the LEDs and
LDRs. The communication between the wearable and door setup can be
categorized into the following three parts:

e Indicating the Wearable’s and there on the user’s presence
e Door recognition
e Door specific sequence
The first part involves the Arduino sending 6 bits of data using the LED present in

the pulse sensor. Out of the 6 bits, 4 bits correspond to a sequence for wearable
and one each for the start and stop bits. Since the communication is
asynchronous, the usage of start and stop bits make it easier to synchronize .This
is done to indicate that the wearable and thereby the user is in the vicinity of the
door. Arduino Nano triggers the LED when a clockwise motion of angular velocity
greater than 4.4rad/sec and an anti-clockwise motion of angular velocity lesser
than -4.4rad/sec are recorded by the IMU. This sequence is read by the LDR on
the door setup. Once the LDR readings are sent to the propeller by using an RC
circuit and the wearable’s presence in the vicinity is confirmed, the second part of
the communication starts. The second part, which happens to be the recognition
of the correct door starts with the propeller sending a door specific 10 bit data
using the LED on the door setup, out of which 8 bits corresponds to a sequence
and one each for the start and the stop bits. This sequence is read by the LDR on
the wearable. This LDR data is fed to the Nano and based on the sequence
transmitted, the correct door is identified thereby concluding the second part.
The third part involves the Arduino sending a door specific pass code, this is also
done in the form of 10 bit data with start and stop bits. This sequence is read by
the LDR on the door setup and sent to the propeller. The propeller acts on the
sequence. If the obtained sequence is correct, the servo motor responsible for
actuating the door is actuated. A feedback is also obtained in the wearable’s
display. Additionally the wearable device comprises of a display, this makes it an
ideal choice for the device to serve as a monitoring device. The user’s heart rate,

10




temperature, etc can be monitored and be seen in the display. There are also
push buttons available to navigate through the different interfaces of the display.

DESIGN ASPECTS

<~

Figure 14: Planned Design for the watch

.

Figure 15: Door Design

While designing and fabricating a wearable device, ergonomics is always a key
aspect to keep in mind as this is a device that will after all be used by people. The

following factors are to be considered while designing the case that encloses the
device:

e Comfort

* Intuitive and simple user interface design
» Safety & reliability

* Social acceptance and aesthetics

11




*Note: Due to the prevailing conditions as a result of COVID-19, our access to a
3D-Printer was cut short and the proposed design could not be completed and
hence a bread board model was presented instead.*

ADVANTAGES

e Simple Ul that requires no learning curve.

e High Speed, as light is the medium used for communication.

e Cost effective manufacturing.

e Since it operates over three regions of the electromagnetic spectrum (visible
light, ultraviolet, and infrared) it's immune to the various forms of
disturbances in the spectrum which other forms of communications like Wi-fi
suffer from.

DISADVANTAGES

e No battery level indicator.

e If the sensor (photo resistor) is not calibrated to the scenario in which it is
used, then ambient light affects the sensory data.

e Noise Sensitive.

FUTURE SCOPE

e Battery Level Indicator.

e Haptic feedback, when the push buttons are pressed.

e Using the Display as a source of light rather than a separate LED in order to
simplify the design and reduce the overall size of the watch.

e Use the Nano loT’s on board IMU sensory data to trigger the LED, for a very
compact design.

12




APPENDIX

References:

e https://ieeexplore.ieee.org/abstract/document/8771664

e https://ieeexplore.ieee.org/abstract/document/8269732

e https://ieeexplore.ieee.org/abstract/document/8728476/

e https://www.techworld.com/data/what-is-li-fi-everything-you-need-know-
3632764/

e https://en.wikipedia.org/wiki/Wearable_technology

e https://www.theengineeringprojects.com/2018/06/introduction-to-arduino-
nano.html

e https://www.parallax.com/product/32912

e https://www.generationrobots.com/media/DetecteurDePoulsAmplifie/PulseSe
nsorAmpedGettingStartedGuide.pdf

e https://www.adafruit.com/product/931

e https://invensense.tdk.com/products/motion-tracking/6-axis/mpu-6050/

e https://www.ledsmagazine.com/leds-ssl-
design/materials/article/16701292/what-is-an-led

e https://www.electronics-
notes.com/articles/electronic_components/resistors/light-dependent-resistor-
Idr.php

Arduino Code:

#include <Adafruit_ MPU6050.h>
#include <Adafruit_SSD1306.h>

#include <Adafruit_Sensor.h>

#define USE_ARDUINO_INTERRUPTS true

#include <PulseSensorPlayground.h>

13




int sensorPin = Al;

int sensorValue = 0;

inth=12;
intm=0;

ints=0;

const int OUTPUT_TYPE = SERIAL_PLOTTER;

const int PULSE_INPUT = AQ;

const int PULSE_BLINK =13; //Pin 13 is the on-board LED
const int PULSE_FADE =5;

const int THRESHOLD = 550; // Adjust this number to avoid noise when idle

PulseSensorPlayground pulseSensor;

Adafruit_ MPU6050 mpu;

Adafruit_SSD1306 display = Adafruit_SSD1306(128, 32, &Wire);

void setup() {
Serial.begin(115200);
pulseSensor.analoglnput(PULSE_INPUT);
pulseSensor.blinkOnPulse(PULSE_BLINK);

pulseSensor.fadeOnPulse(PULSE_FADE);

pulseSensor.setSerial(Serial);

14




pulseSensor.setOutputType(OUTPUT_TYPE);
pulseSensor.setThreshold(THRESHOLD);
if (!pulseSensor.begin()) {
for(;;) {
// Flash the led to show things didn't work.
digitalWrite(PULSE_BLINK, LOW);
delay(50);
digitalWrite(PULSE_BLINK, HIGH);
delay(50);
}
}
// while (!Serial)
Serial.printIn("MPU6050 OLED demo");
pinMode(12,0UTPUT);
pinMode(2,INPUT_PULLUP);
pinMode(3,INPUT_PULLUP);
if (!mpu.begin()) {
Serial.printIn("Sensor init failed");
while (1)
yield();

}
Serial.printIn("Found a MPU-6050 sensor");

// SSD1306_SWITCHCAPVCC = generate display voltage from 3.3V internally

if (display.begin(SSD1306_SWITCHCAPVCC, 0x3C)) { // Address 0x3C for 128x32

15




Serial.printIn(F("SSD1306 allocation failed"));
for (;;)
; // Don't proceed, loop forever

}
display.display();
delay(500); // Pause for 2 seconds
display.setTextSize(1);
display.setTextColor(WHITE);

display.setRotation(0);

void loop() {

sensorValue = analogRead(sensorPin);
Serial.printIn(sensorValue);
sensors_event_t a, g, temp;
mpu.getEvent(&a, &g, &temp);
display.clearDisplay();
display.setCursor(0, 0);

s=s+1;

delay(1000);

if (s == 60)

16




if (m == 60)
{
m = 0;
h=h+1;
}
if (h ==13)
{
h=1;
}
homescreen();
floatY = g.gyro.y;
if(Y >= 4.4 || digitalRead(2)==0)
{
display.setCursor(0, 18);
display.print("Triggered!");
display.display();
delay(2000);
start_sequence();
while(true)
{
long int door_byte = sequence_read_8bits();
if(door_byte == 11011001)
{
delay(5);

Sequencel();

17




delay(200);
display.clearDisplay();
display.setCursor(0, 18);
display.print("Unlocked Door 1");
display.display();
delay(1800);
display.clearDisplay();
break;

}

if(door_byte ==11111001)
{

delay(5);

Sequence2();

delay(200);
display.clearDisplay();
display.setCursor(0, 18);
display.print("Unlocked Door 2");
display.display();
delay(1800);
display.clearDisplay();
break;

}

if(door_byte == 10111011)

{
delay(5);

18




Sequence3();
display.clearDisplay();
display.setCursor(0, 18);
display.print("Unlocked Door 3");
display.display();
delay(1800);
display.clearDisplay();
break;
}
}
}
if(digitalRead(3)==0)
{

while(true)
{
sensorValue = analogRead(sensorPin);
heartrate();
digitalWrite(12,HIGH);
if(sensorValue>980) // To check if finger is placed
{
delay(1500);
BPM();
delay(2000);

}
if(digitalRead(2)==0)

19




{
digitalWrite(12,LOW);
break;}

}

}

display.display();

delay(100);

void homescreen()

{

display.clearDisplay();
display.setCursor(0, 0);
display.setTextSize(2);
display.printin(h);
display.setCursor(5, 0);
display.printin(":");
display.setCursor(10, 0);
display.printin(m);
display.setCursor(10, 0);
display.printin("PM");
display.display();

delay(100);

20




void BPM()

{

int beats;

delay(20);
display.clearDisplay();
display.setCursor(0, 0);
display.setTextSize(2);
display.printin("Heart Rate");
display.setCursor(0, 18);
display.setTextSize(2);
pulseSensor.outputSample();
if (pulseSensor.sawStartOfBeat())

{

beats = pulseSensor.getBeatsPerMinute();
}

display.print("BPM: ");
display.print(beats);

display.display();

delay(100);

}

void heartrate()

{

display.clearDisplay();

display.setCursor(0, 0);

21




display.setTextSize(2);
display.printIln("Heart Rate");
display.setCursor(0, 18);
display.print("BPM: ");
display.display();

delay(100);

}

void start_sequence() //1001

{

digitalWrite(12,HIGH); //Start Bit
delay(40);
digitalWrite(12,HIGH); //1
delay(16);
digitalWrite(12,LOW); //0
delay(16);
digitalWrite(12,LOW); //0
delay(16);
digitalWrite(12,HIGH); //1
delay(16);
digitalWrite(12,LOW); //Stop Bit
}

long int sequence_read_8bits()

{

22




long int door_num = 0;
sensorValue = analogRead(sensorPin);
Serial.printIn(sensorValue);
if(sensorValue<650)
{
delay(24);
sensorValue = analogRead(sensorPin);
if(sensorValue <650)
{
Serial.printIn("Entered for loop");
for(int i=0;i<8;i++)
{
sensorValue = analogRead(sensorPin);
if(sensorValue < 650)
{
door_num =door_num + 1;
}

else

{

door_num =door_num + 0;

}

door_num = door_num*10;
delay(20);
}

Serial.printIn("Exited for loop");

23




door_num = door_num/10;
Serial.printin(door_num);

}

}

return door_num;

}

void Sequencel() //11110100
{

digitalWrite(12,HIGH); //Start Bit
delay(40);
digitalWrite(12,HIGH); //1
delay(16);
digitalWrite(12,HIGH); //1
delay(16);
digitalWrite(12,HIGH); //1
delay(16);
digitalWrite(12,HIGH); //1
delay(16);
digitalWrite(12,LOW); //0
delay(16);
digitalWrite(12,HIGH); //1
delay(16);
digitalWrite(12,LOW); //0

delay(16);

24




digitalWrite(12,LOW);//0
delay(16);
digitalWrite(12,LOW); //Stop Bit
}

void Sequence2() //11111000
{

digitalWrite(12,HIGH); //Start Bit
delay(40);
digitalWrite(12,HIGH); //1
delay(16);
digitalWrite(12,HIGH); //1
delay(16);
digitalWrite(12,HIGH); //1
delay(16);
digitalWrite(12,HIGH); //1
delay(16);
digitalWrite(12,HIGH); //1
delay(16);
digitalWrite(12,LOW); //0
delay(16);
digitalWrite(12,LOW); //0
delay(16);
digitalWrite(12,LOW);//0
delay(16);

digitalWrite(12,LOW); //Stop Bit




}
void Sequence3() //11011100

{

digitalWrite(12,HIGH); //Start Bit
delay(40);
digitalWrite(12,HIGH); //1
delay(16);
digitalWrite(12,HIGH); //1
delay(16);
digitalWrite(12,LOW); //0
delay(16);
digitalWrite(12,HIGH); //1
delay(16);
digitalWrite(12,HIGH); //1
delay(16);
digitalWrite(12,HIGH); //1
delay(16);
digitalWrite(12,LOW); //0
delay(16);
digitalWrite(12,LOW);//0
delay(16);
digitalWrite(12,LOW); //Stop Bit
}




Propeller Code:
/*

Blank Simple Project.c

http://learn.parallax.com/propeller-c-tutorials
*/
#include "simpletools.h" // Include simple tools
#include "servo.h"
void door_two(void *par); //Function to start scanning for Door 2
void door_three(void *par); //Function to start scanning for Door 3

int analogread(int);

int read_4bits(int,int); //Common to all the doors
void send_8bits1(void); //Door no 1

void send_8bits2(void); //Door no 2

void send_8bits3(void); //Door no 3

long int read_8bits(int,int); //Common to all the doors

void open_door2(void);

void close_door2(void);

void open_doorl(void);

void close_doorl(void);

unsigned int stack1[40 + 25]; // Stack vars for cogl
unsigned int stack2[40 + 25]; // Stack vars for cog2
int herel,here2,here3;

int main() // Main function

{
// Add startup code here.

27




int cogl = cogstart(&door_two, NULL, stackl, sizeof(stack1));
int cog2 = cogstart(&door_three, NULL, stack2, sizeof(stack2));
print("First Cog: %d\n", cogl);
print("Second Cog: %d\n", cog2);
while(1)
{
// Add main loop code here.
herel = read_4bits(4,100);
if(herel == 1001)
{
pause(10);
send_8bits1();
while(1)
{
long int pass_byte = read_8bits(4,100);
if(pass_byte ==11110100)
{
open_doorl();
pause(2000);
close_doori1();

break;

}

28




void door_two(void *par)
{
while(1)
{
here2 = read_4bits(2,30);
if(here2 == 1001)
{
pause(10);
send_8bits2();
while(1)
{
long int pass_byte = read_8bits(2,30);
if(pass_byte ==11111000)
{
open_door2();
pause(2000);
close_door2();

break;

}

29




void door_three(void *par)
{
while(1)
{
here3 = read_4bits(6,70);
if(here3 == 1001)
{
pause(10);
send_8bits3();
while(1)
{
long int pass_byte = read_8bits(6,70);
if(pass_byte ==11011100)
{
servo_angle(16, 1800);
pause(2000);
servo_angle(16, 900);
break;

}

30




int read_4bits(int al,int thres)
{
int sensorValue = analogread(al);
int start_byte = 0;
if(sensorValue < thres)
{
pause(34);
sensorValue = analogread(al);

if(sensorValue < thres)

{
for(int i=0;i<4;i++)
{
sensorValue = analogread(al);
if(sensorValue < thres)
{
start_byte = start_byte + 1;
}
else
{
start_byte = start_byte + 0;
}
start_byte = start_byte*10;
pause(20);
}

start_byte = start_byte/10;

31




}
}

return start_byte;

long int read_8bits(int al, int thres)

int password = 0;
int sensorValue = analogread(al);
if(sensorValue < thres)
{
pause(34);
sensorValue = analogread(al);
if(sensorValue < thres)
{
for(int i=0;i<8;i++)
{
sensorValue = analogread(al);
if(sensorValue < thres)

{

password = password + 1;

}

else

password = password + 0;

32




}

password = password*10;
pause(20);
}
password = password/10;
}
}

return password;

}

int analogread(int a)

{

high(a);

int time = rc_time(a,1);
return time;

}

void send_8bits1() //11011001
{

high(8); //Start Bit
pause(30);
high(8); //1
pause(16);
high(8); //1

pause(16);

33




low(8); //0
pause(16);
high(8); //1
pause(16);
high(8); //1
pause(16);
low(8); //0
pause(16);
low(8); //0
pause(16);
high(8); //1
pause(16);
low(8); //Stop Bit
}

void send_8bits2() //11111001

{

high(9); //Start Bit
pause(30);
high(9); //1
pause(16);
high(9); //1
pause(16);
high(9); //1

pause(16);




high(9); //1
pause(16);
high(9); //1
pause(16);
low(9); //0
pause(16);
low(9); //0
pause(16);
high(9); //1
pause(16);
low(9); //Stop Bit
}

void send_8bits3() //10111011
{

high(10); //Start Bit
pause(30);
high(10); //1
pause(16);

low(10); //0
pause(16);
high(10); //1
pause(16);
high(10); //1

pause(16);




high(10); //1
pause(16);
low(10); //0
pause(16);
high(10); //1
pause(16);
high(10); //1
pause(16);
low(10); //Stop Bit

}

void open_door2()

{

for(int i=1;i<20;i++)

{
servo_angle(17,1700);

pause(10);

}
servo_angle(17, 1010); //stop angle

void close_door2()

{

for(int i=1;i<20;i++)

{

36




servo_angle(17, 0);
pause(10);

}

low(12);

servo_angle(17, 1010);

void open_door3()

{
for(int i=1;i<20;i++)

{

servo_angle(12,0);

pause(10);

}

servo_angle(12, 1005); //stop angle
}

void close_door3()

{

for(int i=1;i<20;i++)
{
servo_angle(12, 1700);
pause(10);

}
low(12);

37




}

servo_angle(12, 1005);

38




