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Introduction 

 

Project Overview 

Blind people generally want live normal independent lives and when they are in new              
environment they will need to know where certain products are. We are inspired to make a                
computer vision watch to let them know what the object is and guide their hand to the chosen                  
object. We have developed a mobile watch and armband device for under $250 that can identify                
common objects and guide a users hand to them. 

Component Description 

Bluno Beetle 

The Bluno Beetle is a low cost ATmega328 based microcontroller. Designed for 
wearable technologies, it is small and lightweight at only 29mm x 33mm and 10 grams. There 
are 4 digital IO pins which is exactly what we needed to run the 4 vibrating disc motors. Best of 
all it has a micro USB port for ease of programming and is recognized as an arduino UNO by 
the Arduino IDE. This allows for port manipulation using the same commands as the arduino 
UNO. 

  



 

 
Figure 1. Bluno Beetle Development board  

RaspberryPi 3 

The RaspberryPI 3 is a small, lightweight computer running debian linux and supports             
the python language the Camera CSI port and USB connectivity making this a great option for                
the computer vision component and main processor for the project. The 5V power requirement              
allowed us to power it off of a portable phone charger battery pack, making the entire package                 
small enough to strap onto the arm. Much of the online community is using python libraries for                 
computer vision, so support of this language was crucial. The onboard Videocore 4 GPU was               
not powerful enough to process the image detection code in realtime, only 1 FPS with 3%                
accuracy. To resolve this we connected the Coral Tensor Processing Unit (TPU) UBS             
Accelerator to do the majority of the image processing. Because the Raspberry Pi 3 only               
supports USB 2.0 the full power of the TPU could not be harnessed as it requires USB 3.0.  
 

 
Figure 2. Raspberry Pi 3 

  



 

 

Coral TPU USB Accelerator 

Designed by google to work with their tensorflow library, this tensor processing            
accelerator works with linux based systems like the raspberry pi to enable real time computer               
vision. Python APIs are available from google for easy implementation of computer vision on the               
Raspberry pi. Using this TPU we were able to accomplish image processing speeds for object               
detection up to 10 FPS with 50% accuracy although theoretically the hardware should be able               
to handle upto 30 FPS.    
 
 

 
Figure 3. Google’s Coral TPU Accelerator 

Raspberry Pi Camera V2 

The second generation raspberry pi camera takes 8 Megapixel images and uses the camera 
serial interface found on the raspberry pi for high speed image processing. This small camera 
provides higher resolution than we required but the cable limited the placement of the main 
processor to close proximity.  

  



 

 
Figure 4. Raspberry Pi Camera Module V2 

 

Vibrating Mini Disc Motors 

To give the user haptic feedback we attached small 10mm vibrating disc motors to rings on the 
pinky and thumb fingers as well as embedded into the top and bottom of the ​watch​.  These 3.3V 
motors only require a 120mA max current, but that still required us to build circuitry to isolate the 
current source from the microcontroller.  
 

  



 

 
Figure 5. Vibrating Mini Disc Motor over a quarter to show scale 

 

Custom PCB 

We designed and fabricated a small printed circuit board top mount the bluno beetle, power it 
and isolate the power for the vibrating disc motors. A 3v voltage regulator knocks the voltage 
down to prevent damaging the motors. As seen in Figure 6, there are four 2n2222 NPN 
transistor circuits controlled by the digital IO pins of the bluno beetle switching the 3v circuit to 
the vibrating disc motors. These transistors are capable of supplying up to 800mA of current, 
giving us a healthy factor of safety. We added 1N4007 diodes to the circuit to prevent to the 
transistors due to a back EMF from from the motors. We designed the board in EAGLE cad and 
made the prototype on the Othermill Pro CNC Mill.  
 

  



 

 
Figure 6. EAGLE Schematic of Printed Circuit Board 

 
Figure 7. EAGLE PCB Layout  

  



 

Batteries  

Anker Lithium ion 5v 6700mAh portable charger was used to power the raspberry pi via a micro 
usb cable.  Two 150mAh 3.7v lithium ion battery packs are attached to the PCB to run the Bluno 
beetle at 5V and the vibrating disc motors regulated down to 3V. These batteries would give an 
estimated 6 hrs of image processing and 3 hrs of active guiding.  
 

Cases and Mounting 

Custom enclosures were designed to protect the more delicate electronics, provide a more 
consistent mounting point for the Raspberry Pi Camera  and make the product more 
fashionable.  All pieces were designed in Autodesk Inventor and printed in black ABS on the 
MOJO 3D printer. 
 

 
Figure 8.  Printed enclosures and rings to hold vibrating disc motors, camera and microcontroller 

  



 

Software Description  

Summary of Architecture 

 
 

Figure 12. High Level System Overview  
 

Android Phone App : On-Offline voice recognition 

1.PocketSphinx[0] - Offline Voice Recognition 

There were 2 pros of offline voice recognition and many cons of offline voice recognition. It’s 
good because 1) 4G LTE module is expansive to put on raspberry pi3(Cheapest module $130) 
2) It’s difficult to get wifi connection for the users when place changes with raspberry pi3. Plus, 

  



 

our object detection labels are fixed, offline object detection model works perfect logically and 
we can only update at each user’s home. There were oo categories to implement this. 

1) Set external usb sound card as default.[1] 
2) Change asound.conf file to solve aplay issue.[2] 
3) Create first, pronunciation dictionary, second, language model 
4) Run voice recognition 
5) Remove log file on command by “logfn /dev/null” command 
6) Make raspberry pi3 work asynchronous subprocess”from subprocess import Popen” to 

listen what is printed on command line to pass the voice → text value to object detection 
model. 

However, there were 2 big problems of offline voice recognition models. 
First, it was very slow(One circulation took ~10 seconds from voice → text → object detection → 
actuation) 
Second, the accuracy of the voice recognition model was very low.(Succeeded one circulation 
by telling same command less than 20% since voice → text part was inaccurate)  

2.Google Speech to Text API - On-Offline Voice Recognition 

We opt to make Android app to use google speech to text api which was accurate and fast(~3 
seconds for one circulation when offline) and works both online and offline.  

Processor : Raspberry Pi3 + Coral Edge Tpu 

Processor is connected to same wifi with android phone app.  
1) Test_speech.py : This script is server side of speech recognition. First, load 90 labels 

from coco_labels.txt and gets corpus when a blind person speaks through app. This was 
done by serial communication. If the sentence contains certain data that is in our labels it 
only returns the label. As an example, if the user says “Let’s grab the bottle”, it only looks 
for “bottle” which is the lable in 90 labels in “coco_labels.txt” 

2) serialPass.py : Gets actuation inputs as “u” which is up, “d” which is down, “f” which is 
forward, “l” which is left, “r” which is right. And then encode this haptic direction 
command because we are using python3. After encoding we pass this to arduino(bluno). 

3) engine.py : This is library which is offered from coral edge tpu. According to this 
instruction, we flatten image and follow rules to use tensorflow lite. Coral USB TPU is 
very small compared to other GPU(TX2, Jetson Nano, Coral Dev Board etc.), so it uses 
the lightest model of existing object detection model currently. 

4) Object_detection_ver5.py : 
a) Import mobilenet_ssd_v2_coco_quant_postprocess_edgetpu.flite pretrained 

object detection model and coco_label.txt(90 labels) 
b) Inputs 300, 300 picamera image as input at around 10FPS 
c) Object detection model gets input image and outputs true label, (x, y) coordinates 

of bounding box of objects, scores of objects(probability). 

  



 

d) When the “voice passed label” matches with the true label we only gets bounding 
box of the object 

e) Using this bounding box(x,y) coordinates we calculate center of the object and 
use algorithm(explained below) to decide which direction of actuation to give(5 
actions) 

f) Uses serial communication(ttyACM0) and 115200 baudrate to pass direction 
command to arduino. 

g) Since, latency is the bottom line of our project we opt for the fastest way which is 
usb connection to the actuator and attached directly the picamera value to the 
raspberry pi3. 

h) Even though coral edge tpu USB uses USB3.0, it gets slower since raspberry pi3 
uses USB2.0 

i) The pretrained model of object detection model was around 50%. 
 
 
 
 
 

Arduino Code 

The Setup Loop 

 
The Setup initializes the 4 bluno beetle digital pins available as GPIO, pin from 2 to 5, as                  
outputs, all together using port manipulation. Pins 0 and 1 are not available as GPIO because                
they are RX and TX. Second line of the setup initializes the baud rate of the serial                 
communication. 

  



 

The Main Loop 

 
The main loop consists of a while empty loop that makes the microcontroller wait for the                
command on the serial port, then as soon as the command is written on the serial port, the                  
message gets received and enters a switch statement. Each of the cases of the switch turns                
high a different pin of the bluno beetle that will open the circuit of a motor and make it vibrate for                     
a precise amount of time, “dt” initialized in the beginning. We used port manipulation because               
the “forward” feedback needs two motors to vibrate at the same time with a particular frequency.  

Python Code 

The Main Loop 

1-1) Run script with command below. 
[Command] 
python3 demo/object_detection_ver5.py \ 
  --model test_data/mobilenet_ssd_v2_coco_quant_postprocess_edgetpu.tflite \ 
  --label test_data/coco_labels.txt 
 
2-1) FPS optimization-used parser to organize script 
[Snap of object_detection_ver5.py] 
  parser = argparse.ArgumentParser() 
  parser.add_argument( 
      '--model', help='Path of the detection model.', required=True) 
  parser.add_argument( 
      '--label', help='Path of the labels file.') 
  parser.add_argument( 

  



 

      '--input', help='File path of the input image.') 
  parser.add_argument( 
      '--output', help='File path of the output image.') 
  args = parser.parse_args() 
 
2-2) FPS optimization-use array input 
We chose to input image array to “mobilenet_ssd_v2” directly after flatten the image. We 
previously input image but after changing it to input array, FPS increased by 5~10. Flatten step 
was done because Google TF lite api asked us to put flatten image.  
Plus, in order to get fast FPS you should follow the way we implemented with pi-camera. 
[Snap of object_detection_ver5.py] 
  engine = DetectionEngine(args.model) 
  labels = ReadLabelFile(args.label) if args.label else None 
 
  # Open image. 
  #img = Image.open(args.input) 
  #draw = ImageDraw.Draw(img) 
  # Setup Camera Constants 
  IM_WIDTH = 300 
  IM_HEIGHT = 300 
  camera = PiCamera() 
  camera.resolution = (IM_WIDTH, IM_HEIGHT) 
  camera.rotation = 180 
  camera.framerate = 60 
  raw_capture = PiRGBArray(camera, size=(IM_WIDTH, IM_HEIGHT)) 
  raw_capture.truncate(0) 
  start = time.time() 
  counter = 0 
  for frame1 in camera.capture_continuous(raw_capture, format='bgr', use_video_$ 
    frame = frame1.array.flatten() 
    #time.sleep(0.2) 
    #print(type(frame1)) 
    #frame.setflags(write=1) 
    #frame_expanded = np.expand_dims(frame, axis=0) 
    #print(frame) 
    #frame_expanded = np.array(frame_expanded, np.uint8) 
    #(boxes, scores, classes, num) = sess.run([detection_boxes, detection_score$ 
    #_score = np.squeeze(scores)[0] 
    # Run inference. 
    # print(img.shape) 
    #print("HI") 
    #frame1.seek(0) 
    #im = Image.fromarray(frame) 

  



 

    #ans = engine.DetectWithImage(im, threshold=0.05, keep_aspect_ratio=True,re$ 
    #print(frame.shape) 
    ans = engine.DetectWithInputTensor(frame) 
    raw_capture.truncate(0) 
2-3) FPS optimization-remove display and opencv 
[Snap of object_detection_ver5.py] 
  ''' 
  # Display result. 
  if ans: 
    for obj in ans: 
      print ('-----------------------------------------') 
      if labels: 
        print(labels[obj.label_id]) 
      print ('score = ', obj.score) 
      box = obj.bounding_box.flatten().tolist() 
      print ('box = ', box) 
      # Draw a rectangle. 
      draw.rectangle(box, outline='red') 
    img.save(output_name) 
    if platform.machine() == 'x86_64': 
      # For gLinux, simply show the image. 
      img.show() 
    elif platform.machine() == 'armv7l': 
      # For Raspberry Pi, you need to install 'feh' to display image. 
      subprocess.Popen(['feh', output_name]) 
    else: 
      print ('Please check ', output_name) 
  else: 
    print ('No object detected!') 
  '''  
 
3-1) Communication (Android app <-> Raspberry Pi3) 
[serialPass.py, test_speech.py] 
We use socket serial communication between app and rpi3. App converts voice to text and send 
it to raspberry pi3.  
 
 

  



 

 
3-2) Communication (Arduino <-> Raspberry pi3) 
We use ttyACM0 serial communication. 
 

 
 
4) SSD Object detection model 
Input is [300, 300] image array and we use label, and box (x,y) coordinate output. We use 
pretrained model. 
 

  



 

 

 
 

 
 

  



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 

Cost Analysis 

Bill of Materials 

 

Description Part Number Qty Cost Each TOTAL COST 
Bluno Beetle  1 $13.00 $13.00 

Raspberry Pi 3  1 $35.00 $35.00 

Coral TPU USB Accelerator  1 $74.99 $74.99 

Raspberry Pi Camera V2  1 $29.95 $29.95 

Vibrating mini disc motor  TS-711 4 $2.00 $8.00 

Anker Portable Charger  A1211 1 $24.00 $24.00 

Li ion 3.7v 100mA  battery packs TS-1762 2 $5.99 $11.98 

  



 

3D Printed Parts  1 $9.64 $9.64 

Running Arm Band  1 $8.49 $8.49 

Resistors  4 $0.10 $0.40 

Voltage Regulator  1 $1.10 $1.10 

Diode 1N4007 4 $0.20 $0.80 

NPN transistor 2N2222 4 $0.42 $1.68 

PCB ProtoBoard  1 $1.00 $1.00 

JST connectors JST 6 $1.99 $11.94 

Micro USB Cable  1 1.99 1.99 

TOTAL COST of PROTOTYPE $233.96 

  

  



 

Conclusion 

Product Refinement 

Our initial testing began with just the four haptic feedback vibrating discs in a glove with manual 
input control from an end user in the serial monitor.  We started with nine regions for direction 
which would turn on one to four vibrating motors, four being forward. The regions are depicted 
in Figure 9a​. ​The motors were controlled simultaneously using port manipulation.  These tests 
were unsuccessful at guiding the hand to a mouse because the diagonal instructions vibrating 
two motors overwhelmed the nerves in the hand and which confused these instruction with all of 
the motors being on (the forward instruction).  At first we tried to move the vibrating discs further 
apart, keeping the sides on the edge of the pinky and index finger knuckles and moving the up 
down vibrators to the wrist.  This was an improvement with the actuators but we were not able to 
successfully guide the hand until we adopted a simpler set of 5 haptic instructions as shown in 
Figure 9b.

 
These are merely the directions the user is instructed to move, not to be confused with the 
regions of detection which will be discussed in the Algorithm development section.  
 
The glove would eventually be replaced upon receiving feedback from people with visual 
disabilities who said it had to be fashionable or less apparent, in more than one instance staying 
it should be “like a watch.”  We revised the system to be a double sided watch with the bluno 
beetle microcontroller and PCB on top and the Raspberry Pi camera mounted on the bottom so 
that it can fold flat into the watch when not in use. Vibrating motors were embedded into these 
structures for vertical feedback.  Two different sized rings with vibrating motors glued into them 

  



 

are connected to the watch and to be worn on the pink and index finger/thumb to give horizontal 
feedback.  This not only made it more visually appealing, but gave a more isolated haptic 
stimulation.  
 

  

  



 

 

Algorithm Refinement 

In the first version of the algorithm we divided the image in five regions: forward, up, down, left, 
right. The object detection algorithm can recognize the objects and compute the coordinates of 
the four edges of a bounding box around them. With that information we computed the 
coordinate of the center of the bounding box to decide what type of haptic feedback give to the 
user based on the region in which the center falls. This process is done with a nested if 
statement whose first check is the forward region. We tried different sizes of the forward region 
and as a result we got an unstable haptic feedback, because the scenario is changing too fast 
and the separation between the regions is ambiguous. The bigger the forward region is more 
likely it is that user passes over the object before having received the feedback of a different 
region, on the other hand, the smaller the forward region is less probability you have to hit it and 
the user will keep moving his hand left, right, up and down without going forward and reaching 
the object. Most of the trials done with this algorithm failed and required several minutes for the 
user to get even close to the object. 

 
To simplify the code, since the first statement of the nested if is forward, we modified the 
definition of all the other regions. If the center of the bounding box doesn’t fall inside the forward 
region the decision of which one of the other four feedback to give is took by redefining the 
“search zones” (up, down, left and right) as four equal triangles. The improvement from the 
previous version was little, and this version still suffered from all the same problems as this 
really just made the code more readable.  
 
 
 

  



 

 
To better balance the actuation feedback we improved with version 3 of the algorithm. In this 
version we still checked first if the center of the bounding box is in the forward zone, then, if it 
isn’t we divide the image in two large and clearly distinguished zones with a horizontal line right 
in the middle of it, to decide if the user should move up or down. After this decision is the sent to 
the user, raspberry pi is paused for the necessary time to vibrate the motors (100 milliseconds). 
The same image is then divided vertically into two equally large and well distinguished regions, 
with a vertical line at its middle to decide if the user should move left or right to try to get the 
center of the box in the forward region for the next image to be processed after this second 
haptic feedback is sent. The main difference with this version is that it gives two feedbacks for 
every image, instead of one, and tries to get the object in the forward region every step with a 
combination of left/right and up/down signals. Using this strategy we got better results, and 
successfully grabbed the object in 28 seconds, but the feedback was very confusing and hard to 
understand. The problem with this strategy was that after an  “up” or “down” feedback there was 
always a  “left” or “right”  feedback and the short signal duration of just 100 milliseconds made 
pinpointing the vibration signal very confusing.  

 
 

 
 
 
 
 
 
 
 
 
 
 
 

  



 

As final version of the algorithm we developed a system of feedback that is both clear, 
continuous and easy to follow. As in the previous version the first thing that is done is to look if 
the object is in the forward zone, then, if it is not, we define check if it is either in the up or in the 
down zone, that this time are defined as the zones of the image over and under the forward 
zone, and not with a simple horizontal line splitting the image in half. If the object is found to be 
in one of this two zones than actuation feedback is given and another image is taken, if not then 
the image is slip in two parts with a vertical line to decide the proper feedback between left and 
right. In this way we get stable haptic feedbacks, that are constant if the user doesn’t move, not 
confusing, and clearly distinguishable. This algorithm takes advantage of the previous version, 
by defining the “search zones” in a clear and simple way but still giving a single clear feedback 
for every image. During tests, with this algorithm, the user was capable of successfully grab the 
desired object in 22 seconds. 

 
 
 
 

 

 
 

  



 

Results 

All testing was completed blindfolded in indoor lighting scenarios. The participant was 
blindfolded and then the object placed.  The distance was measured from the user to the object 
to calculate the time it took to grab the object per foot it was away.  The testing through the 
algorithm version showed steady improvement although the 4th version had the quickest time, 
the 5th version felt more natural to the user and produced consistent results.  
 
Algorithm  AVERAGE Seconds to 

grab per foot from object 

VERSION 1 7 

VERSION 2 9 

VERSION 3 5.333333333 

VERSION 4 5.697916667 

 
After the algorithm was refined we tested different objects to see the time they would take to 
grab  all of which were successful except the banana, which we were not able to detect. The 
Bottle was the easiest to detect and move to while the orange mug we used as a cup was very 
difficult to detect and lost numerous times during tracking.  Larger objects like the backpack 
were never lost once the object was detected.  
 

  



 

 
 
There is a noticeable time increase when other objects are placed around the desired object to 
grab as depicted in the “bottle around many”  as compared to the “bottle” alone in the bar chart 
above.  
 

 

Future Work 

Aside from miniaturizing the entire system to fit into a smaller watch size the most important 
future development is to create a feedback signal when the user is close to the item. Also Using 
5G communication we could use a cloud computing platform to use more advanced object 
detection models.  
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