MS Project Report

Indoor Navigation Robot

Submitted in partial fulfilment for the degree of
Master of Science (MS) in Mechatronics and

Robotics. by
Abhimanyu Dhawan

To the department of
Mechanical and Aerospace Engineering
(Fall 2018)

TANDON SCHOOL
OF ENGINEERING

NYU

Abstract:

The aim of this project was to develop a prototype solution for indoor navigation using
robots which can help people in guiding humans in complex/large indoor environments.
The need of indoor navigation is very well justified as Global Positioning System’s (GPS)
accuracy is very less inside closed walls. In areas like shopping malls, supermarkets,
airports, museums etc. people have difficulty in deciding on correct path to their
destination and needs assistance. For this purpose, robots can plan the path based on
stored map of environment and goal location specified by the user. This simplifies the
problem as now the human could just follow the robot to reach his destination. He can
concentrate better on the task he has and not worry about an optimal path. This system
is based on highly sophisticated algorithms of path planning and obstacle avoidance
along with a state of the art depth sensing to give feedback to the robot. In addition, the
mobile base is also very rugged and precise in control to ensure maximum reliability of
the robot.

The other aim which was achieved through this robot was making the system most
accessible and viable for the market by making the product modular and based on
commercial off-the shelf products. Several algorithms were tested in both simulation and
real-world scenarios and the results were highly encouraging. Robot was precisely able to
map the surrounding with minor latency and localize itself to correct position. Although, there
was an issue with some drift in odometry readings but that can be compensated as work on
this system matures.

INDEX

Sr. Number Title Page Number

Introduction 4

Il. Hardware 6

Il. Hardware Setup 12

V. Software Setup 14

V. Overall Process 16

VI, Software and Algorithms 17

VII. Conclusion 21

VIII. References 22

Introduction:

Big venues like airports, museums, parking lots, industries, shopping malls and
hypermarkets want to improve their ease of access and navigation for humans indoors.
People are interested in most convenient and user-friendly experience inside these venues.
Many solutions are proposed in this area using technologies like Wifi triangulation, Bluetooth
Beacons, Vision, RFID position and magnetic field positioning solutions by big companies
like apple, google, Philips etc. But the major drawback of these was that they all are based
on an app running on users mobile. These apps are susceptible to many failures like bad
signal reception, limited hardware and software capability of media device they are running
on or simply lack of enough battery to run the application for accurate guidance. And in
many cases the users are not willing to or are able to install the required software being
concerned about their technical abilities to use them. Hence this project was about
developing Indoor navigation solution using an external robot agent which a human can
follow to get guidance.

The basic idea was to implement path planning and obstacle avoidance outside the interface
that user needs to carry along with him to make it more convenient for the task of navigation
to be done easily and precisely.

Here a mobile base of a vacuum cleaning robot called Neato was taken and was interfaced
with the mini-computer: Raspberry pi 3. Using depth sensing and point cloud generation
capability of google tango device, a 3d map of surroundings was created and the whole
indoor area was mapped in 2d based on obstacles around the Robot. This device was
mounted on top of the robot using 3d printed stands and a holder with firm grip. The open
source platform- Robot Operating System (ROS) was used for understanding and
implementing advanced algorithm to localize the Robot based on the map and get it to a
goal position avoiding the obstacle and taking the most optimal path.

Another focus was on system architecture and usability. Using Arcade buttons with
raspberry pi zero placed at various key locations the user called the nearest bot to help him.
He got feedback on robot’s status based on blinking pattern of button’s internal LED and
once the robot reaches him it turns off to get ready for next call. The user interacts with a
touch screen of Google tango device to feed the target location where he wants to reach in
an easy to operate interface. Then he just follows this robot around to reach his destination
in minimal time. Figurel. explains this architecture for an end-user.

In the end the robot is designed to be highly modular using custom 3d printed expandable
stand for mobile and incorporating commercial products like a vacuum cleaner, mobile
phone and power banks. They can be combined with affordable and readily available
controller and open source software to generate superior solutions applicable on large scale
indoor navigation problems. The whole system can work over the local network and does not
require any external processor other than raspberry pi and tango device to do all complex
computation and networking.

N RN /E
el fnpus sl
o kel e e

Flow diagram for en

Hardware:

Following is the list of electronic hardware components that made it possible for the system
to deliver the navigation solution inside a closed space:

1. Mobile base: Neato Botvac D Series D3/D5 Robotic Vacuum

Server computer: Raspberry pi 2

Storage device: Memory Card

Client computer: Raspberry pi zero W

Power source: Power bank and AC source

Haptic sensors with feedback: Arcade buttons

External Laser Sensor, touch screen: Lenovo Phab 2 pro (google tango)

Nooap,rwd

1. Neato Botvac D Series D3/D5 Robotic Vacuum

We required a rugged mobile base with differential drive system and a circular structure
which can easily maneuverer in corners and small spaces. Additionally, this base was
required to be an already commercial product which can be modified for our application.
There were two main candidates which were being used in vacuum cleaning application and
suited our requirement. They were Roomba and neato Botvac D3/D5. Figure2. is the
comparison between two platforms.

iRobot
3 wheels, 1 speaker, 3 lights
Actuators:

Neato R
2 wheels, 1 speaker, 1 light
Actuators:

« 2 independent motors
s Battery power
« Brush

= 2 independent motors
s Battery power

Neato/ iRobot Sensors:

Sensors:

s 2 touch (bump)

« 3 buttons

+ 3 whee-drop sensors

= 4 active IR cliff sensors
« 1 paszsive IR receiver

« 2 wheel encoders

« Botvision

« 1 touch (bump)

= 1 button

« 3 whee-drop sensors
= 2 wheel encoders

RaspberryPi

Figure 2

Although the programming of iRobot is easier and more elaborate in documentation and its

More widely used robot for vacuum cleaning but from technical side it has one major
disadvantage. Neato robots have inbuilt Botvision (laser range finder) which is a cheaper
version of advanced hokuyu laser range finders (Figure3) which iRobots does not have.
Hence using this LIDAR a rough 360 laser scan of the environment has been done which
compliments our actual more sophisticated scan from google tango device. This LIDAR
inside is combination of a laser and a CMOS imager that the Lidar uses to detect distance to
objects. It is a low-priced custom-made Lidar sensor which as of now can only be procured
from inside of this vacuum cleaner (reference 1). It has 1 degree accuracy planar scanning
with 10hz frequency. It has range of atleast 22 cm and operates at 115200 baud rate as
found out experimentally.

Figure 3

Other hardware specifications of Neato Botvac D3 that makes this base a very good choice for this
application are as follows (reference 2):

Botvision™

Robot Top

Info LED

Start Button Battery LED

Drop Sensors

Brush Guard

S/N Label

Charging Contacts

Figure 4: Hardware of Neato Botvac D3

Product Dimensions

Technical

Metric U.S. Standard
Length 336cm 13.2in o
_ Battery Lithium-ion
Width 31.9 cm 126in
Height 10 cm 3.9in
Charger Voltage 1oV, 220V
Weight 34kg 75 Ibs

Figure 5: Technical specification of Neato Botvac D3

The software documentation of this Robot base is as follows (reference 4.):

Table of Robot Application Commands

GeiLD35can
GetLifeStatloz
Gethlotors
GetSchedule
GetSysLog
GeiTime
GetVersion

GreeWarramty

Help

PlaySound
RestoreDefanles
SetDistanceCal
SetFuelGanze
SeelCD
SetLDSE otation
SetLED
Seehlotor
SetSchedule
SeeSystem Mode
SetTime
SeeWallF ollower
Testhlode

Upload

Com mand Dreseription

Clean Starts a cleaning by simuolating press of start batoa.
Execates differsnt test modes, Onee set, press Start batton to engape. (Test modes are mueteally

DagTest exchasive)
Getacce] Get the Accelercmeer readiegs.
GerAnalogSensors Get the AZD readings for the anzlos sepsors
GetBurtons Gt the state of the UL Butons
GerCallnfo Prints out the cal info from the System Contral Block
GetCharger Get the diagmostic data for the charging svstem
GetDigitalSensors et the szate af the dipital semsos
GetErr Get Error Meszagze

Get sear packet from LD3

Get All Life Zaat Loss.

Get the dizzmostic data for the motors

Get the Cleaning Schedule. (14 hoar clock formar)

Get Syzem Lop data

Get Current Schedualer Time.

Get the vemion information for the syste= sofivrars and karduars,
Get the wamanty validation codes.

Without amy arpums ent, thiz prirt a list of all possible emds
With 2 com=and name, it prinss the help for that particolar command

Flay the cpecified sourd in the roboc.

FRestore user serings to default

Ser distance semzor calibration values for min and max distances
SasFual Gaupe Lavel,

Sasg the LCD to the specified display. (Testhiode Orls)

oz L OE rotation om or off. Can culy be rum in Testhiods.

(A

St the specified LED o on,off bliek, or dizz . (Testhlods Oely)

S the specified mator to roe in 2 direction 2t 2 raquested spead, (Testhicde Caly)
Modify Clearing Schedule

ez the operation mods of the robor. (Testddode Only)

Sers the current day, kour, and minate for the scheduler clock.

Enablez Dizakies wall follower

Seas Testhdode on or off. Some commands can oaly be nen in Testhicde

Uplcads new; program 1o the robot

Figure 6: Software Specification of neato

2. Raspberry pi 2

The Rapsberry pi 2 is a credit card sized mini computer designed and developed in United
Kingdom by Raspberry Pi Foundation. It is a highly capable Linux operating system based
single board computer being used with Ubuntu Mate platform on server side(robot) and
Raspbian OS client side (call buttons).

Specifications: 1.2GHz 64-bit quad-core ARMv8 CPU, 802.11n Wireless LAN, 1GB RAM, 4
USB ports, 40 GPIO pins, Full HDMI port, Ethernet port, Combined 3.5mm audio jack and
composite video, Camera interface (CSl), Display interface (DSI), Micro SD card slot (now
push-pull rather than push-push), VideoCore IV 3D graphics core.

This was required to work as a portable Linux machine which can drive the Robot through
serial communication over its USB ports and can easily be programmed with ROS
environment and its libraries.

3. Memory Card

A high-speed class 10, 32 gb memory card was used to ensure good processing speed and
space availability for Raspberry pi's operating system, ROS and scanned maps.

4. Raspberry pi Zero W

Raspberry pi Zero W (Wireless) is a very-small (as compared to Raspberry Pi 3), Ultra-low-
cost single board computer which comes with built in wifi and Bluetooth. This was required to
get signals from call button sensors scattered at key locations and pass it over to ROS
network using native Raspbian OS that it runs on over the wifi. The super-small size of this
device makes it perfect for internet of buttons applications just sending message to
respective robots to call them to their locations.

Specifications: 1GHz, Single-core CPU, 512MB RAM, Mini HDMI and USB On-The-Go
ports, Micro USB power, HAT-compatible 40-pin header, Composite video and reset
headers, CSI camera connector, 802.11n wireless LAN 802.11n wireless LAN

10

wisia

3
@ ARARAAS RERAAS,

A

-

A 5
td k419qdsny-3)
FIPOrt2 11d umlﬂu'

|
ooooooooooooooooooouf
[00000000000000000000

Figure 7: Raspberry pi 2 and Raspberry pi zero

5. Power bank and AC power

To make the system portable but long lasting powerful power sources were used. Power
bank in use had a capacity of 12000 mAh with input of 5V/1A and output of 5v/3.4 A
Max. This was able to support raspberry pi 2 for long durations approximately 8 hours of

operation on continuous use after completely charged up. Raspberry pi zero W was
sourced with AC power at 5V, 2A power supply USB cable.

6. Arcade buttons

For sensing and feedback at call button translucent arcade buttons with LEDs built inside
it were used. They had diameter of 24 mm and thickness of 15 mm. As noted they had
two surface mount LEDs with resistors built in, buried in the button body. Next to the
switch contacts were two additional contacts for powering/controlling the LEDs. The two
LEDs were connected in parallel with ~1K resistors each, so it could be powered by 5V

(say USB) with 10mA draw. It could go down to 3.3V power, only 2mA per button, but
they were dimmer.

11

Figure 8: Arcade button

7. Lenovo Phab 2 pro (Google tango)

Tango is an emerging 3D-sensing computer vision product by google which run on
standalone mobile phones and tablets. Using orientation and position information
combined with vision sensors like RGB camera, fisheye camera and IR camera with IR
emitters this device can generate six degree of freedom information about phone’s
motion and generate 3d scans of environment using it.

The software works by integrating three types of functionality:

e Motion-tracking: using visual features of the environment, in combination
with accelerometer and gyroscope data, to closely track the device's movements in
space

e Area learning: storing environment data in a map that can be re-used later, shared with
other Tango devices, and enhanced with metadata such as notes, instructions, or points
of interest

e Depth perception: detecting distances, sizes, and surfaces in the environment

Applications on mobile devices use Tango's C and Java APIs to access this data in real
time. In addition, an API is also provided for integrating Tango with the Unity game engine;
this enables the rapid conversion or creation of games that allow the user to interact and
navigate in the game space by moving and rotating a Tango device in real space. These
APIs are documented on the Google developer website.[8]

Along with Google tango’s hardware and software this device offers a very big and fluid
screen with size of 6.4 inches which was very suitable in our application for a custom
designed interface for users to interact with. It has a powerful processor and large battery
along with GPU and storage which aids in working of our project.

https://en.wikipedia.org/wiki/Motion_estimation
https://en.wikipedia.org/wiki/Feature_detection_(computer_vision)
https://en.wikipedia.org/wiki/Accelerometer
https://en.wikipedia.org/wiki/Gyroscope
https://en.wikipedia.org/wiki/Depth_perception
https://en.wikipedia.org/wiki/Application_software
https://en.wikipedia.org/wiki/C_(programming_language)
https://en.wikipedia.org/wiki/Java_(programming_language)
https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/Unity_(game_engine)
https://en.wikipedia.org/wiki/Game_engine
https://en.wikipedia.org/wiki/Tango_(platform)#cite_note-8

Phone Stuff
RGB camera ——

LED flash
Microphone
Fingerprint reader

Tango Stuff
Time of flight camera

IR projector

—|— J—- Fisheye motion camera

Figure 9: Lenovo Phab 2 Pro

SPECS AT A GLANCE: LENOVO PHAB 2 PRO

SCREEN 2560x1440 6.4" (459ppi) IPS LCD

0sS Android 6.0

CPU Octa-core Qualcomm
Snapdragon 652 (four 1.8 GHz
Cortex A72 cores and four 1.4
GHz Cortex A53 cores)

RAM 4GB

GPU Adreno 510

STORAGE 64GB

NETWORKING 802.11b/g/n/ac, Bluetooth 4.0,
GPS, NFC

PORTS MicroUSE, 3.5mm headphone
jack

CAMERA 16MP rear camera, 8MP front
camera

SIZE 179.8 x 886 x 11 mm (7.08 x
3.49x043in)

WEIGHT 259g(9.12 0z.)

BATTERY 4050 mAh

STARTING $499

PRICE

OTHER PERKS

2. Hardware Setup

Fingerprint sensor, notification
LED, Tango sensors

Figure 10: Phab 2 hardware specifications

12

Using CAD modelling and 3d printing components were printed to support mobile device on

a stand above the base at the human height. There were 4 t-joints along with a holder to
support the mobile and many aluminium rods with pvc joints were used to achieve the
required height while maintaining centre of mass at the geometric centre of the robot.

Figure 11: CAD of holder and T-joint

Figure 12: Final hardware structure

13

14

3. Software Setup

First step was to configure ubuntu and Raspbian OS in Raspberry pi 2 and Raspberry pi
Zero W respectively. After this ROS kinetic was installed in both.

On server (robot) side following major libraries were installed (reference 3,4):

1.

~

10.

11.
12.

Move Base: The move_base package provides an implementation of an action (see
the actionlib package) that, given a goal in the world, will attempt to reach it with a
mobile base. The move_base node links together a global and local planner to
accomplish its global navigation task.

AMCL: AMCL (adaptive monte-carlo) is a probabilistic localization system for a robot
moving in 2D. It implements the adaptive (or KLD-sampling) Monte Carlo localization
approach (as described by Dieter Fox), which uses a patrticle filter to track the pose
of a robot against a known map.

Gmapping: This package contains a ROS wrapper for OpenSlam's Gmapping. The
gmapping package provides laser-based SLAM (Simultaneous Localization and
Mapping), as a ROS node called slam_gmapping. Using slam_gmapping, you can
create a 2-D occupancy grid map (like a building floorplan) from laser and pose data
collected by a mobile robot.

Lase_scan_matcher: An incremental laser scan matcher, using Andrea Censi's
Canonical Scan Matcher (CSM) implementation.

Nav_core: This package provides common interfaces for navigation specific robot
actions. Currently, this package provides the BaseGlobalPlanner, BaseLocalPlanner,
and RecoveryBehavior interfaces, which can be used to build actions that can easily
swap their planner, local controller, or recovery behavior for new versions adhering to
the same interface.

Map_server: map_server provides the map_server ROS Node, which offers map
data as a ROS Service. It also provides the map_saver command-line utility, which
allows dynamically generated maps to be saved to file.

Global_planner: A path planner library and node.

Base Local_planner: This package provides implementations of the Trajectory
Rollout and Dynamic Window approaches to local robot navigation on a plane. Given
a plan to follow and a costmap, the controller produces velocity commands to send to
a mobile base

Navfn : navfn provides a fast interpolated navigation function that can be used to
create plans for a mobile base. The planner assumes a circular robot and operates
on a costmap to find a minimum cost plan from a start point to an end point in a grid.
Navigation: A 2D navigation stack that takes in information from odometry, sensor
streams, and a goal pose and outputs safe velocity commands that are sent to a
mobile base.

Neato_robot: Metapackage for drivers for the Neato XV-11 robot.
Tango_ros_streamer: This package wraps Tango Ros Streamer application

15

“move_base_simplefgoal®] H
geometry_msgs/PoseStamped Nav “}atlﬂﬂ Stack Setu p
|
move_base l "Imap"
L] nav_msgs/GetMap map_server
amel - global_planner - global_costmap
it ; / sensor tapics
sensor transforms - imternal SENnsor SOUrces
tfftiMessage nav_msgs/Path recovery_behaviors Ssznzgrr_ngss;kgisnet rc'.“i;z g |
Serhlntadl _Doom. = local_planner -—— local_costmap

nav_msgs/Odometry

"crnd_vel” | geometry_msgs/Teist
provided node
optional provided nade

]
base controller platform specific node |

Figure 13: Navigation stack

It was required to make some changes in driver for Neato XV-11 in set motor commands
commands to make it compatible with Neato Botvac D3.

driver.py (foptfros/kinetic/src/neato_robokt/neato_driver/src/neato_driver) - gedit

Open ~

. Ov eIy opmaa. < nean ST e
#first time a @-velocity is sent in, a velocity of 1,1,1 is sent. Then,
#the zero is sent. This effectively causes the robot to stop instantly.
if (int(l) == © and int(r) == 0@ and int(s) == 0):
if (not self.stop_state):
self.stop_state = True

1=1
r=1
s =1

else:

self.stop_state = False
self.port.write("setmotor lwheeldist "+str(int(1))+" rwheeldist "+str(int(r))+" speed "+str(int(s))+"\n")
#self.port.write("setmotor "+str{int(Ll))+" "+str(int(r))+" "+str(int(s))+"\n")

def readResponseAndUpdateState(self):
""" Read neato's response and update self.state dictionary.
Call this function only after sending a command. """
response = self.readResponseString()
for line in response.splitlines():
#print(line)
vals = line.split(",")
if len(vals) == 2 and vals[@].replace('_"', '').isalpha() and vals[1].isdigit():
self.state[vals[0]] = int(vals[1])
#print(vals[@] , vals[1])

def getMotors(self):
""" Update values for motors in the self.state dictionary.
Returns current left, right encoder values. """
self.port.flushInput()
self.port.write("getmotors\n")
self.readResponseAndUpdateState()
return [self.state["LeftWheel PositionInMM"],self.state["RightWheel PositionInMM"]]

def getAnalogSensors(self):

Figure 14: Neato driver changes

16

The updated 3d model of neato with stand was defined in ROS using appropriate transforms
and making changes in sdf files for RVIZ visualisation.

view_frames Result

Recorded at time: 1513070026.342

Average rate: 10000.000 Hz
Most recent transform: 0.000 (1513070026.342 sec old)
Buffer length: 0.000 sec

Broadcaster: /tango_to_base_pc Broadcaster: /tango

Average rate: 10000.000 Hz
Most recent transform: 0.000 (1513070026.342 sec old)
Buffer length: 0.000 sec

Broadcaster: /neato_pi

Average rate: 5.213 Hz

Most recent transform: 1513070026, 186 (0.156 sec old)
Buffer kength: 4.796 sec

Broadcaster: /tango

Average rate: 201.495 Hz

Most recent transform: 1513070026.170 (0.173 sec old)
Buffer length: 4.883 sec

—_—

Broadcaster: /laser_to_base_pc Broadcaster: /tango Broadcaster: /tango Broadcaster: tango Broadcaster: /tango
Hz Average rate: 10000.000 Hz Average rate: 10000.000 Hz Average rate: 10000.000 Hz Average rate: 10000.000 Hz
Most recent transform: 0.000 (1513070026.342 sec old) [Most recent transform: 0.000 (1513070026.342 sec old) \Most recent transform: 0.000 (1513070026.342 sec old) Most recent transform: 0.000 (1513070026.342 sec old)
Broadeaster: /tango

Buffer length: 0.000 sec Buffer length: 0.000 sec Buffer length: 0.000 sec Buffer length: 0.000 sec
Average rate: 10000.000 Hz

[Most recent transform: 0.000 (1513070026.342 sec old)
Buffer length: 0.000 sec

Figure 15: Transform tree

Tango camera

Map

Base-link

Figure 16: Transform Axis

4. Overall Process

Now to achieve the requirements the Robot had to first go around and map the surroundings
using laser scanning and localisation. This was done through teleoperation. This was a very
crucial step as the lesser accuracy in mapping obstacles would have given errors
accumulating forward to make the system ineffective.

17

Next was to store this static map in yaml and pgm file and make it available for future use
with a distinct name and id. Then the complete stored map was loaded back into the tango
device once the robot was ready to navigate humans.

Now the LIDAR inside Neato was also turned on to detect new dynamic obstacles that would
be created as the robot is moving on its calculated path.

The Neato Lidar’s output was given to the local planner which in turn request the global
planner to find new viable paths to destination if some new obstacles arise in the path made
by global planner based on static map stored by the google tango device. Hence the path

will adjust as per the changes in surroundings and google tango will register it in its static
maps.

-~

SLAM
ISLAMFentropy

gmapping

=
Mango/cameraffisheye Licamera_info }
// Mango/reconstruction/occupancy_arid
rango/reconstruction/occupancy_arid_updates
| o]
/| | nengorcameraicalor_1image_rawrcompressed
\ nangarcamera/fisheye_LAimage_raw/compressed
)

Iamappingimag

- O

, . e N —

< Tango tobesepE ‘ Rrangascamera/color_Licamera_info //. \ e it o o

T - / g \\ |/muz,wwcummssemmmmmesmvhuns \
B

\ \ — \
\ angoistatic_occupancy_grid_updates / / / \\ !:[/ \ -
»‘\ 4 \\ iviz_pc_tangofcompressed/parameter_updates [
o / I — !
\ Aangostatic_occupancy_grid [/ \\
AN
Y -
\ -
\ ‘ Rangafioint cloud [——" T
| T |
==
-
S ,//
.
~ /
.

— o

mave_base_simple

mave_baseigoal

Figure 17: Software Architecture

5. Software and Algorithms

In developing this project a number of API’s, opensource libraries and algorithms were tried
and tested to select the one with best results. There were 2 main areas where these libraries
were extensively utilized to get superior outputs:

e Mapping and Localization
e Navigation

1. Mapping and Localization

There are two approaches of doing it: online or offline. If the robot is localising itself as it
moves in the surroundings and simultaneously and mapping its surroundings also its an
online approach called as SLAM. There are various algorithms refered to using SLAM (refer

18

4). Based on results of this paper we found Hector SLAM and Gmapping as most valuable
candidates. The hector slam doesnot require odometry reading which would be
advantageous as our robot’s odometry is very much susceptible to drift over time. On the
other hand gmapping is found to be more robust and with least CPU load which would be
major factor in giving desired outcome within least amount of time and error.

So we utilized the results stated in (refer 4) and experimentally compared the results in our
hardware setup.

Figure 18: Hector Slam output

Figure 19: Gmapping output

19

There was one more approach to mapping using Google Tango’s visual odometry and drift
correction called as area learning. Tango device remembers the visual features of the area it
has visited and uses them to correct errors in its understanding of its position, orientation,
and movement. This memory allows the system to perform drift corrections (also called loop
closures). After trying it out in our experiment the results were even better than gmapping.
So, we decided to use the tango’s approach for mapping and localization.

Measwre * 0Posefatimate © 20MavGoal @ PublishPoint

a &

Figure 20: Tango VOI output

But even doing SLAM online was computationally very expensive that our small
computer raspberry pi could not handle. Hence using map-server we stored the static
maps to allow offline mapping and localisation. Using services and parameters definition
of Tango APl we were able to accomplish the task.

2. Navigation

Using ROS navigation Core library, we were able to do the proper path planning based
on static maps following the local targets efficiently. But as the Robot moved due to
problem of drift in odometry reading of robot and visual odometry of tango device results
were skewed

"move_base_simple/goal” nav_core interfaces
geometry_msgs/PoseStamped -
|

move_base l

¢ global planner -—— global costmap
nav_core.::BaseG!obaJPfanner ¢

internal

nav_msgs/Path ecovery_behaviors

nav_core::RecoveryBehavior

Y

local planner <=—— local costmap

nav_core::BaselocalPlanner

"cmd_vel" |geometry_msgs/Twist

Y

nav_core plugin interface

Figure 21: Navigation block diagram

20

Figure 22: Drift in odometry

More work needs to be done to counter this error by converting visual odometry to base

odometry and hence obtaining simulated precise odometry based on Tango vision and
IMU sensor readings.

VII. Conclusion:

After testing the prototype multiple times, the system seems to function well. It has very
low latency and accurate mapping and localization in static maps. Also it is able to adopt
the planned path based on obstacles coming in real time and has fast rate of response.
Although there are errors occurring due to drift in odometer readings between the base
and sensor but there are many approaches with promising results which are yet to be
applied and would solve this issue. Using highly robust Tango scanning and optimized
mobile GPU and IMU raspberry pi is accurately able to understand its environment and
do the path planning with rugged mobile base of neato. Moreover, the laser scanner of
the neato can detect obstacles at high enough rate and take corrective action in all
directions

21

22

References

1. https://www.sparkfun.com/news/490

2. https://www.neatorobotics.com/robot-vacuum/botvac-connected-series/botvac-d3-
connected/?gclid=Cj0KCQiA38jRBRCQARIsACEgleuv_Qz0A ucGAPPLkzP4vITpVZj35t0j6MxJO
FPUtmztBefig75zRMaAql4EALwW_wcB

3. http://wiki.ros.org

4. https://pdfs.semanticscholar.org/6b9c/afcf9aef5b4c0c338c44a581236d54caddbd.pdf

https://www.sparkfun.com/news/490
https://www.neatorobotics.com/robot-vacuum/botvac-connected-series/botvac-d3-connected/?gclid=Cj0KCQiA38jRBRCQARIsACEqIeuv_Qz0A_ucGAPPLkzP4vITpVZj35tOj6MxJOFPUtmztBefig75zRMaAqI4EALw_wcB
https://www.neatorobotics.com/robot-vacuum/botvac-connected-series/botvac-d3-connected/?gclid=Cj0KCQiA38jRBRCQARIsACEqIeuv_Qz0A_ucGAPPLkzP4vITpVZj35tOj6MxJOFPUtmztBefig75zRMaAqI4EALw_wcB
https://www.neatorobotics.com/robot-vacuum/botvac-connected-series/botvac-d3-connected/?gclid=Cj0KCQiA38jRBRCQARIsACEqIeuv_Qz0A_ucGAPPLkzP4vITpVZj35tOj6MxJOFPUtmztBefig75zRMaAqI4EALw_wcB
http://wiki.ros.org/
https://pdfs.semanticscholar.org/6b9c/afcf9aef5b4c0c338c44a581236d54caddbd.pdf

