INVESTIGATION OF NOVEL CUTINASES FOR BIOTRANSFORMATIONS

Peter James Baker & Jin Kim Montclare Department of Chemical & Biological Sciences Polytechnic Institute of New York University August 19th 2009

Conventional Petrochemical Thermo Plastics

$$\begin{pmatrix} -CH_2 - CH_2 - \end{pmatrix}_{n} \\ Polyethylene (PE) \\ \begin{pmatrix} -CH_2 - CH - \end{pmatrix}_{n} \\ CH_3 \\ \begin{pmatrix} -CH_2 - CH - \end{pmatrix}_{n} \\ Polypropylene (PVC) \\ Polypropylene (PP) \\ \hline \\ Polystyrene (PS) \\ Polystyrene (PS) \\ \end{pmatrix}$$

Pavia DL., et.al., Introduction to Organic Labrotory Techniques. 3rd Ed. **1988** Shah AA., et. al. Biotechnology Advances. **2008**, 246-65

Biodegradable Plastics

Shah AA., *et. al. Biotechnology Advances*. **2008**, 246-65 Tokiwa Y., *et. al. Biotechnol. Lett.* **2004**, 1181-9 Azios, T., The Christian Science Monitor. **2007**.

Hydrolytic Enzymes Employed in Organic Chemistry

Purdy RE., *et.al.*, *Biochemistry*, **1975**, 2832-40 Longhi, S., *et al.*, *J.Mol. Biol.*, **1997**, 779-99 Nicholas, A.,*et.al.*, *Biochemistry*, **1996**, 398-410 Pdb code: 1cex

- Proteases, cellulases, lipases, amylases, and cutinases
- •Cutinases member of serine hydrolase family
- •Cutinases have a more exposed active site opening up different potential applications
- •Catalytic triad composed of Ser, His and a carboxyl group
- •Oxyanion hole Ser, Gln; which stabilize the transition state

Fusarium solani Cutinase (FsC)

Examples of Biotransformations using Cutinase

Searching the Natural Diversity

AbC	MMNLNLLLSKPCQA-STTRNE <mark>L</mark> ET <mark>G</mark> SSDA <mark>C</mark> PRTIFIF <mark>AR</mark> G <mark>STE</mark>
AfC	MKFALLSLAAMAVASPVAIDVRQT-AITGDE <mark>L</mark> RT <mark>G</mark> P <mark>C</mark> EPITFIF <mark>AR</mark> G <mark>STE</mark>
AoC	MHLRNIVIALAATAVASPVDLQDRQLTGGDE <mark>L</mark> RD <mark>G</mark> P <mark>C</mark> KPITFIF <mark>AR</mark> A <mark>STE</mark>
HiC	GAIENG <mark>L</mark> ES <mark>G</mark> SANA <mark>C</mark> PDAILIF <mark>AR</mark> G <mark>STE</mark>
FsC	MKFFALTTLLAATASALPTSNPAQELEARQLGRTTRDD <mark>L</mark> IN <mark>G</mark> NSAS <mark>C</mark> RDVIFIY <mark>AR</mark> G <mark>STE</mark>
	· * * * ·*·**
AbC	AGNMGALVGPFTANALESAYGASNVWV <mark>OGVG</mark> GP <mark>YTA</mark> GLVE <mark>NALP</mark> AGTSOAAIREAORLFN
AfC	PGLLGITTGPGVCNALKLS-RPGOVACOGVGPAYIADLASNFLPOGTSOVAIDEAAGLFK
AoC	PGLLGISTGPAVCNRLKLA-RSGDVACOGVGPRYTADLPSNALPEGTSOAAIAEAOGLFE
HiC	PGNMGITVGPALANGLESHIRNIWIOGVGGPYDAALATNFLPRGTSOANIDEGKRLFA
FsC	TGNLG-TLGPSIASNLESAFGKDGVWIOGVGGAYRATLGDNALPRGTSSAAIREMLGLFO
	* * ** * * * ** * * * * * *
AbC	LAASKCPNTPTTAGGYSOGAAVMSNATPGLSAAVODOTKGVVLFGYTKNLONGGRTPNFP
AfC	LAASKCPDTKIVAGGYSOGAAVMHGAIRNLPSNVONMIKGVVLFGDTRNKODGGRIPNFP
AoC	OAVSKCPDTOTVAGGYSOGTAVMNGATKRLSADVODKTKGVVLFGVTRNAOFRGOTANFP
HiC	LANOKCONTOVVAGGYSOGAALTAAAVSELSGAVKEOVKGVALEGYTONLONRGGIDNYD
FsC	OANTKCPDATI.TAGGYSOGAALAAASTEDLDSATRDKTAGTVLFGYTKNLONRGRIPNYP
100	* *** •• • ****** •• • * •• • * *** *•*
AbC	TORTTY CETCOL VONCTLITTPAHLLY SDEAAVOAPTTRACID SA
AfC	
Anc	
HiC	
FeC	
rsc	

FsC as parental sequence

- 116 potential sequence were identified
- Sequences were eliminated if they were mutants or previously studies
- 4 sequences were selected which showed conservation of catalytic residues

Expression and Cloning of Cutinase

Purification of Cutinase

Column: GE His Trap FF Column Elution Buffer: 50 mM Na Phosphate 500 mM Imidazole, pH 8.0

Secondary Structural Analysis

Biophysical Properties at pH 8.0

UCSF Chimera Pettersen EF., *et.al.*, *J Comput. Chem.*, **2004**, 1605-12 Nyon MP., *et. al.*, *J. Mol. Biol.*, **2009**, 226-35

Biophysical Properties at pH 5.0

	T _m (⁰C)	∆H (kJ/mol)
AbC	50	445.69
AfC	64	675.00
AoC	61	612.34
FsC	53	536.77
HiC	63	563.06

 T_m : HiC > AfC > AoC > FsC > AbC Δ H: AfC > AoC > HiC >FsC > AbC

Biophysical Properties at pH 3.0

	T _m (°C)	∆H (kJ/mol)
AbC	26	425.31
AfC	39	604.42
AoC	35	593.72
FsC	27	314.13
HiC	38	328.50

 T_m : AfC > HiC > AoC > FsC > AbC Δ H: AfC > AoC > AbC > HiC >FsC

Exploration of Aspergillus oryzae

Maeda H., *et. al., Appl. Microbiol Biotechnol.*, **2005**, 778-788 Machida M., *et. al., Nature*, **2005**, 1157-61 Machida M., *et. al., DNA Research*, **2008**, 173-83

Aspergillus oryzae (koji mold)

- Filamentous fungus in the Japanese fermentation industry for the production sake, soy sauce, and miso
- *A. oryzae* is capable of living in broad range of pH and temperatures
- Fungi is capable of using biodegradable polymers as sole carbon source

mo

ya

shi

Comparison of FsC and AoC

Kinetic Comparison of FsC & AoC

R'n

OH

 $Rn = CH_3$ $Rn = C_2H_5$ $Rn = C_4H_9$ $Rn = C_5H_{11}$ *p* nitrophenol abs = 405 nm

Reaction Condtions 14.5 mM Tris, pH 7.5 0.75% Glycerol 25°C

K _m (µM)	pNPA	pNPB	pNPV	рNPH
FsC	0.67 ± 0.23	1.26 ± 0.28	1.48 ± 0.56	1.50 ± 0.19
AoC	4.96 ± 0.11	0.21 ± 0.04	0.04 ± 0.01	0.29 ± 0.09

k _{cat} /K _m	pNPA	pNPB	pNPV	рNPH
FsC	2.53 ± 1.11	0.26 ± 0.06	0.61 ± 0.40	0.14 ± 0.02
AoC	0.07 ± 0.01	3.49 ± 0.51	3.32 ± -0.74	1.34 ± 0.48

AoC has a higher affinity towards the more hydrophobic substrates AoC is more active towards the more hydrophobic substrates

Poly(ε-caprolactone) degradation

Backbone Comparison of FsC & AoC

Superposition of AoC (red) and FsC (grey)

- Crystal structure was determined at 1.75 Å
- Overall rms deviation 1.02Å
- Main chain deviation 0.87Å
- AoC shorter in sequence than FsC
- AoC has one less β-strand than FsC
- An extra disulfide bond between Cys63-Cys76
- Backbone orientation and distances
 between the catalytic residues is similar

Comparison of Groove by Active site for FsC and AoC

- Distinguishable long and deep groove in AoC active site relative to FsC
- Although the sequence of catalytic site is conserved, the geometric arrangements of the hydrophobic regions are different

Conclusion

- Identified, expressed and characterized genetically distinct cutinase species
- Although these species exhibit similar structural similarities, they present different activities, thermostability and thermodynamics as a function of pH
- Cutinase from Aspergillus oryzae demonstates a higher affinity towards more hydrophobic substrates, this increased affinity is correlated to the protein surface of the enzyme
- Cutinase from *Aspergillus oryzae* is capable of degrading bioplastics

Acknowledgements Montclare Lab

- Jin K. Montclare
- Zhiqiang Liu*
- Ching-Yao
- Min Dai
- Jennifer Haghpanah
- Susheel Kumar
- Kinjal Mehta
- Yogesh Tengarai Ganesan
- Carlo Yuvienko
 *Zhejiang University of Technology

DNA 2.0

- Jon Ness
- Jeremy Minshull

Gross Lab

- Richard Gross
- Wenhua Lv
- David Feder

CCNY

- Yuying Gosser
- Grium Alemu
- Ziying Lu
 NYU
- Xiang-Peng Kong
- Huiguang Li
- Glenn Butterfoss

This work was supported in part by NYU-Poly Seed Fund (XPK, YG, RG and JKM), AFOSR DURIP (FA-9550-08-1-0266) (JKM), IUCRC (RG), NSF GK-12 Fellows grant 0741714 (PJB)