

Music Visualizer using FFT

By

Julian Tang – jt2932

Ameya Phadke – ap6310

Anuj Doshi – ad5092

Abstract: Using the Dynamic Pose-Sensitive Sound Design sensor, as developed in Project 1 for this

course, a visualizer for the Audio thus designed was developed. It included an LED RBG Matrix used to

visualize incoming audio signals based on frequency bands, as well as reacting dynamically to said

frequency bands and signal intensity.

Keywords: FFT, Raspberry Pi, RBG LED Matrix, IMU Tracking

Index

Introduction……..3

Bill of Materials………3

Working and Implementation……………………………………………………………………………………………4

Results…….6

1) Introduction:

This project was born with an idea to develop the Pose-Sensitive Sound Design Sensor

developed as part of Project 1. While the sound is generated dynamically as part of the exhibit,

it is important to include a visual component for the audience to realize and understand their

interactions with the exhibit. The motion of the Sound Design Sensor brings in an element that

keeps in line with the theme of the client’s exhibit, and the audio frequency band visualizer is

used to use this dynamic, unstable nature to represent various different tones and instruments.

These LED subspaces react to such preconfigured parameters, including some light incoming

light intensity, to provide a unique experience to visitors and audience of the exhibit.

2) Bill of Materials

Component Quantity Price

Raspberry Pi 3B+ 1 $35.00

Adafruit RGB Matrix 1 $24.95

Adafruit 16x32 LED panel 1 $24.95

Additionally, all the components used to develop the Pose Sensitive Sound Design Sensor were

also used.

Figure 3: Position Sensor View

Component Quantity

Arduino Nano 33 BLE 1

Maxbotix MB1010 LV-Maxsonar EZ1 1

Tower Pro SG-90 3

9v Battery 2

3) Working and Implementation

Fast Fourier Transform:

In complex notation, the time and frequency domains each contain one signal made up of N

complex points. Each of these complex points is composed of two numbers, the real part and

the imaginary part. For example, when we talk about complex sample X[42], it refers to the

combination of ReX[42] and ImX[42]. In other words, each complex variable holds two numbers.

When two complex variables are multiplied, the four individual components must be combined

to form the two components of the product.

The FFT operates by decomposing an N point time domain signal into N time domain signals

each composed of a single point. The second step is to calculate the N frequency spectra

corresponding to these N time domain signals. Lastly, the N spectra are synthesized into a single

frequency spectrum.

The following figure shows an example of the time domain decomposition used in the FFT. In

this example, a 16-point signal is decomposed through four separate stages. The first stage

breaks the 16-point signal into two signals each consisting of 8 points. The second stage

decomposes the data into four signals of 4 points. This pattern continues until there are N

signals composed of a single point. An interlaced decomposition is used each time a signal is

broken in two, that is, the signal is separated into its even and odd numbered samples. There

are Log2N stages required in this decomposition, i.e., a 16-point signal (24) requires 4 stages, a

512 point signal (27) requires 7 stages, a 4096 point signal (212) requires 12 stages, etc.

The important idea is that the binary numbers are the reversals of each other. For example,

sample 3 (0011) is exchanged with sample number 12 (1100). Likewise, sample number 14

(1110) is swapped with sample number 7 (0111), and so forth. The FFT time domain

decomposition is usually carried out by a bit reversal sorting algorithm. This involves rearranging

the order of the N time domain samples by counting in binary with the bits flipped left-for-right.

The next step in the FFT algorithm is to find the frequency spectra of the 1 point time domain

signals. Nothing could be easier; the frequency spectrum of a 1 point signal is equal to itself. This

means that nothing is required to do this step. Although there is no work involved, don't forget

that each of the 1 point signals is now a frequency spectrum, and not a time domain signal.

The last step in the FFT is to combine the N frequency spectra in the exact reverse order that the

time domain decomposition took place. Unfortunately, the bit reversal shortcut is not

applicable, and we must go back one stage at a time. In the first stage, 16 frequency spectra (1

point each) are synthesized into 8 frequency spectra (2 points each). In the second stage, the 8

frequency spectra (2 points each) are synthesized into 4 frequency spectra (4 points each), and

so on. The last stage results in the output of the FFT, a 16 point frequency spectrum.

Process Flow:

Figure 1: Sensor Process Flow

4) Results

Python Code:

import pyaudio

import numpy as np

import audioop

import sys

import math

import struct

from rgbmatrix import RGBMatrix, RGBMatrixOptions,graphics

em1=0.5

em2=0.2

em3=0.05

em4=0.5

em5=0.5

em6=0.8

em7=0.1

em8=0.1

em9=0.1

emc=0.04

Rprev=0

Gprev=0

Bprev=0

LL1=0

LL2=0

LL3=0

LL4=0

LL5=0

LL6=0

LL7=0

LL8=0

Lmeanprev=0

Mmeanprev=0

Hmeanprev=0

options=RGBMatrixOptions()

options.rows=16

options.cols=32

options.chain_length=1

options.parallel=1

options.hardware_mapping='adafruit-hat'

Dmatrix=RGBMatrix(options=options)

Dmatrix.Clear()

chunk=4096

scale=50

exponent=5

samplerate=44100

power = []

device=2

p=pyaudio.PyAudio()

stream=p.open(format =

pyaudio.paInt16,channels=1L,rate=44100,input=True,frames_per_buffer=chunk,input_device_in

dex=device)

msize=64

matrix = [0] * msize

def calculate_levels(data,chunk,samplerate):

 fmt="%dh"%(len(data)/2)

 data2=struct.unpack(fmt,data)

 data2=np.array(data2,dtype='h')

 fourier2=np.fft.fft(data2)+0.000001

 power=np.log10(np.abs(fourier2))**4

 power=np.reshape(power,(msize,msize),-1)

 matrix=np.int_(np.average(power,axis=0))

 return matrix

cyc=0

shif=1

while True:

 try:

 data = stream.read(chunk,exception_on_overflow = False)

 matrix=calculate_levels(data,chunk,samplerate)

 matrix=matrix[0:32]

 matrix-=6

 matrix/=24

 matrix-=5

 matrix[matrix<0]=0

 LL=matrix[1]

 LL-=6

 LL/=1

 LL**4

 LL=max(0,LL)

 LM=matrix[2]

 LH=matrix[3]

 Lmean=(LL+LM+LH)/3

 Lmeanema=Lmean*em3+(1-em3)*Lmeanprev

 Lmeanprev=Lmeanema

 LL1=em1*LL+(1-em6)*LL1

 LL2=em1*LL1+(1-em1)*LL2

 LL3=em1*LL2+(1-em1)*LL3

 LL4=em1*LL3+(1-em1)*LL4

 LL5=em1*LL4+(1-em1)*LL5

 LL6=em1*LL5+(1-em1)*LL6

 LL7=em1*LL6+(1-em1)*LL7

 LL8=em1*LL7+(1-em1)*LL8

 #print(LL8)

 ML=matrix[5]

 ML-=3

 ML**2

 ML=max(ML,0)

 MM=matrix[6]

 MM-=3

 MM**2

 MM=max(MM,0)

 MH=matrix[8]

 MH-=3

 MH**2

 MH=max(MH,0)

 Mmean=(ML+MM+MH)/3

 Mmeanema=Mmean*em4+Mmeanprev

 Mmeanprev=Mmeanema

 H1=matrix[9]

 H2=matrix[13]

 H3=matrix[18]

 H4=8*matrix[24]

 H5=24*matrix[30]

 Hmean=(H1+H2+H3+H4+H5)/5

 Hmeanema=Hmean*em5+Hmeanprev

 Hmeanprev=Hmeanema

 B=Lmean/8

 B=emc*B+(1-emc)*Bprev

 Bprev=B

 #print(B)

 B=max(B,0)

 B=min(B,1.2)

 R=1.4-B

 R=max(R,0)

 R=min(R,1.2)

 G=1.7-R-B

 G=max(G,0)

 G=min(G,1.2)

 B=B*0.8

 MB=Mmean+0.2*Mmeanema

 HB=Hmean+0.2*Hmeanema

 Mmatrixema=Mmeanema*np.ones((16, 6))

 Hmatrixema=Hmeanema*np.ones((16, 10))

 LL*=0.7

Lmatrix=np.array([[LL5,LL5*0.8,LL5*0.7,LL5*0.6,LL6*0.5,LL6*0.4,LL6*0.3,LL6*0.3,LL7*0.3,LL7*0.

3,LL7*0.2,LL7*0.2,LL8*0.2,LL8*0.2,LL8*0.1,LL8*0.1],

 [LL5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],

[LL4*0.4,LL4*0.4,LL3*0.9,LL3*0.9,LL2*0.9,LL2*0.9,LL1*0.9,LL1*0.9,LL*0.8,LL*0.9,LL,LL,LL,LL,LL,LL

],

[LL4*0.4,LL4*0.4,LL3*0.9,LL3*0.9,LL2*0.9,LL2*0.9,LL1*0.9,LL1*0.9,LL*0.8,LL*0.9,LL,LL,LL,LL,LL,LL

],

[LL4*0.4,LL4*0.4,LL3*0.9,LL3*0.9,LL2*0.9,LL2*0.9,LL1*0.9,LL1*0.9,LL*0.8,LL*0.9,LL,LL,LL,LL,LL,LL

],

[LL4*0.4,LL4*0.4,LL3*0.9,LL3*0.9,LL2*0.9,LL2*0.9,LL1*0.9,LL1*0.9,LL*0.8,LL*0.9,LL,LL,LL,LL,LL,LL

],

[LL4*0.4,LL4*0.4,LL3*0.9,LL3*0.9,LL2*0.9,LL2*0.9,LL1*0.9,LL1*0.9,LL*0.8,LL*0.9,LL,0,0,0,0,0],

[LL4*0.4,LL4*0.4,LL3*0.9,LL3*0.9,LL2*0.9,LL2*0.9,LL1*0.9,LL1*0.9,LL*0.8,0,0,0,0,0,0,0],

 [LL4*0.4,LL4*0.4,LL3*0.9,LL3*0.9,LL2*0.9,LL2*0.6,0,0,0,0,0,0,0,0,0,0],

 [LL4*0.4,LL4*0.4,LL3*0.9,LL3*0.9,0,0,0,0,0,0,0,0,0,0,0,0],

 [LL4*0.4,LL4*0.4,LL3*0.6,0,0,0,0,0,0,0,0,0,0,0,0,0],

 [LL4*0.4,LL4*0.4,0,0,0,0,0,0,0,0,0,0,0,0,0,0],

 [LL4*0.4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],

 [LL4*0.4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],

[LL5,LL5*0.8,LL5*0.7,LL5*0.6,LL6*0.5,LL6*0.4,LL6*0.3,LL6*0.3,0,0,0,0,0,0,0,0],

[LL5,LL5*0.8,LL5*0.7,LL5*0.6,LL6*0.5,LL6*0.4,LL6*0.3,LL6*0.3,LL7*0.3,LL7*0.3,LL7*0.2,LL7*0.2,

LL8*0.2,LL8*0.2,LL8*0.1,LL8*0.1]])

 Mmatrix=np.array([[0,0,0,0,0,0],

 [ML*0.1,ML*0.1,0,0,0,0],

 [ML*0.4,ML*0.4,0,0,0,0],

 [ML*0.8,ML*0.8,0,0,0,0],

 [ML,ML,0,0,0,0],

 [ML,ML,0,0,0,0],

 [ML*0.8,ML*0.8,MM*0.2,MM*0.2,0,0],

 [ML*0.4,ML*0.4,MM*0.4,MM*0.4,0,0],

 [ML*0.1,ML*0.1,MM*0.8,MM*0.8,0,0],

 [0,0,MM,MM,MH*0.2,MM*0.2],

 [0,0,MM,MM,MH*0.4,MM*0.4],

 [0,0,MM*0.8,MM*0.8,MH*0.8,MM*0.8],

 [0,0,MM*0.4,MM*0.4,MH,MH],

 [0,0,MM*0.2,MM*0.2,MH,MH],

 [0,0,0,0,MH*0.3,MM*0.3],

 [0,0,0,0,MH*0.1,MM*0.1],])

 Hmatrix=np.array([[H5*0.8,H5,H5,H5*0.8,H5*0.6,H5*0.4,H5*0.2,H5*0.1,0,0],

 [0,0,0,0,0,0,H4*0.5,H4,H4,H4*0.5],

 [0,0,0,0,0,0,H4*0.5,H4,H4,H4*0.5],

 [0,0,H2*0.5,H2,H2,H2*0.5,0,0,0,0],

 [0,0,0,0,0,0,H3*0.7,H3,H3,H3*0.7],

 [H1,H1*0.8,0,0,0,0,H3*0.7,H3,H3,H3*0.7],

 [H1,H1*0.8,0,0,0,0,0,0,0,0],

 [0,0,0,0,0,0,0,0,0,0],

 [0,0,0,0,0,0,0,0,0,0],

 [H1,H1*0.8,0,0,0,0,0,0,0,0],

 [H1,H1*0.8,0,0,0,0,H3*0.7,H3,H3,H3*0.7],

 [0,0,0,0,0,0,H3*0.7,H3,H3,H3*0.7],

 [0,0,H2*0.5,H2,H2,H2*0.5,0,0,0,0],

 [0,0,0,0,0,0,H4*0.5,H4,H4,H4*0.5],

 [0,0,0,0,0,0,H4*0.5,H4,H4,H4*0.5],

 [H5*0.8,H5,H5,H5*0.8,H5*0.6,H5*0.4,H5*0.2,H5*0.1,0,0]])

 Fmatrix=np.hstack((Lmatrix,Mmatrix,Hmatrix))

 Dmatrix.Clear()

 for y in range(0,32):

 for x in range(0,16):

 I=20*Fmatrix[x][y]

 Rint=int(round(R*I))

 Rint=min(242,Rint)

 Rint=max(0,Rint)

 Gint=int(round(G*I))

 Gint=min(242,Gint)

 Gint=max(0,Gint)

 Bint=int(round(B*I))

 Bint=min(242,Bint)

 Bint=max(0,Bint)

 Dmatrix.SetPixel(y,x,Rint,Gint,Bint)

 except ZeroDivisionError as err:

 print('Handling run-time error:', err)

Arduino Code:

#include <ArduinoBLE.h>

#include <Arduino_LSM9DS1.h>

byte midiData[] = {0x80, 0x80, 0x00, 0x00, 0x00};

BLEService midiService("03B80E5A-EDE8-4B33-A751-6CE34EC4C700");

BLECharacteristic midiCharacteristic("7772E5DB-3868-4112-A1A9-F2669D106BF3",

 BLEWrite | BLEWriteWithoutResponse |

 BLENotify | BLERead, sizeof(midiData));

///EMA///

float emaalpha=0.5;

///EMA///

///US///

const int trigPin =9;

const int echoPin =10;

float duration, distance;

const int trigPin2 =5;

const int echoPin2 =6;

float duration2, distance2;

///US///

//Interpretation//

int mpdown;

int mpup;

int mrright;

int mrleft;

int myaw;

int mus1;

int mus2;

int mpd;

int mgx;

int mgy;

int mgz;

int macx;

int macy;

int macz;

//Interpretation//

 int marray[14]= {mpdown, mpup, mrright, mrleft, myaw, mus1, mus2, mpd, mgx, mgy, mgz,

macx, macy, macz};

 int channel[14]={69,70,71,72,73,75,76,77,78,79,80,81,82,83};

 int lastmarray[14]={0};

 int lastmarray2[14]={0};

void setup() {

 // initialize serial communication

 Serial.begin(9600);

 pinMode(LED_BUILTIN, OUTPUT);

 if (!BLE.begin()) {

 Serial.println("starting BLE failed!");

 while (true);

 }

 BLE.setLocalName("N33_BLE");

 BLE.setAdvertisedService(midiService);

 midiService.addCharacteristic(midiCharacteristic);

 BLE.addService(midiService);

 BLE.advertise();

 ///US///

 pinMode(trigPin, OUTPUT);

 pinMode(echoPin, INPUT);

 pinMode(trigPin2, OUTPUT);

 pinMode(echoPin2, INPUT);

 ///US///

 IMU.begin();

}

void loop() {

 // wait for a BLE central

 BLEDevice central = BLE.central();

 if (central) {

 digitalWrite(LED_BUILTIN, HIGH);

 /////// AUS1 /////////

 distance = analogRead(A0);

 /////// IR1 /////////

 distance2 = 127*digitalRead(12);

 float x, y, z; //accelerometer

 float mx, my, mz; //magnetometer

 float gx, gy, gz; //gyroscope

 IMU.readAcceleration(x, y, z);

 IMU.readMagneticField(mx,my,mz);

 IMU.readGyroscope(gx, gy, gz);

 double xb = float(x);

 double yb = float(y);

 double zb = float(z);

 double roll = atan2(yb,zb)*57.3;

 double pitch = atan2((-xb),sqrt(yb*yb+zb*zb))*57.3;

 //MAGNETOMETER IS TOO SENSITIVE TO MY DEVICES, FLOORED

 double yaw = 0;

 ///////// Sensor2MIDI interpretation //////////

 mpdown=Cmap(pitch,10 ,80 ,0);

 mpup=Cmap(pitch,-10 ,-80 ,0);

 mrright=Cmap(roll,10 ,80 ,0);

 mrleft=Cmap(roll,-10 ,-80 ,0);

 myaw=Cmap(yaw,0 ,360 ,0);

 mus1=Cmap(distance,20 ,100 ,0);

 mus2=Cmap(distance2,1 ,16 ,0);

 delay(50);

 mpd=0;

 mgx=Cmap(gx,0 ,25 ,0);

 mgy=Cmap(gy,0 ,25 ,0);

 mgz=Cmap(gz,0 ,25 ,0);

 mpd=0;

 macx=Cmap(xb,0 ,1 ,0);

 macy=Cmap(yb,0 ,1 ,0);

 macz=Cmap(zb,0 ,1 ,0);

 delay(50);

 marray[0]= {mpdown};

 marray[1]= {mpup};

 marray[2]= {mrright};

 marray[3]= {mrleft};

 marray[4]= {myaw};

 marray[5]= {mus1};

 marray[6]= {mus2};

 delay(12);

 marray[7]= {mgx};

 marray[8]= {mgy};

 marray[9]= {mgz};

 marray[10]= {mpd};

 delay(12);

 marray[11]= {macx};

 marray[12]= {macy};

 marray[13]= {0};

 ///EMA///

 for (int i=0; i<14; i++) {

 marray[i]=(emaalpha*marray[i]+(1-emaalpha)*lastmarray[i]);

 lastmarray[i]=marray[i];

 delay(1);

 }

 ///EMA///

 ///////// SendMIDI, only on significant change from last/////////

 for (int i=0; i<8; i++){

 if(abs(marray[i]-lastmarray2[i])>6){

 midiCommand(0xB0,channel[i],marray[i]);

 lastmarray2[i]=marray[i];

 delay(1);

 }

 }

 for (int i=8; i<11; i++){

 if(abs(marray[i]-lastmarray2[i])>24){

 midiCommand(0xB0,channel[i],marray[i]);

 lastmarray2[i]=marray[i];

 delay(1);

 }

 }

 for (int i=11; i<14; i++){

 if(abs(marray[i]-lastmarray2[i])>6){

 midiCommand(0xB0,channel[i],marray[i]);

 lastmarray2[i]=marray[i];

 delay(1);

 }

 }

 ///////// SendMIDI, only on significant change from last/////////

 }

 digitalWrite(LED_BUILTIN, LOW);

}

void midiCommand(byte cmd, byte data1, byte data2) {

 midiData[2] = cmd;

 midiData[3] = data1;

 midiData[4] = data2;

 midiCharacteristic.setValue(midiData, sizeof(midiData));

}

int Cmap(double input,float minin,float maxin,int invert){

int output;

if(invert==1){

input = constrain(input,minin,maxin);

output = map(input,minin,maxin,127,0);

}

else{

input = constrain(input,minin,maxin);

output = map(input,minin,maxin,0,127);

}

return output;

}

/////// DUAL SIDE US SENSORS REPLACED BY IR SENSOR, REDUCING SIZE AND INCREASES

RESPONSE RATE BY >20x /////////

//float PulseIn2(const byte pin, const byte state, const unsigned long timeout = 1000000L);

//

//

//#define WAIT_FOR_PIN_STATE(state) \

// while (digitalRead(pin) != (state)) { \

// if (micros() - timestamp > timeout) { \

// return 0; \

// } \

// }

//

//float PulseIn2(const byte pin, const byte state, const unsigned long timeout) {

// unsigned long timestamp = micros();

// WAIT_FOR_PIN_STATE(!state);

// WAIT_FOR_PIN_STATE(state);

// timestamp = micros();

// WAIT_FOR_PIN_STATE(!state);

// return micros() - timestamp;

//}

