Greetings Roboticists,

These days, robotics and intelligent systems are found everywhere— smart cars, smart houses, smart
buildings, smart phones, healthcare technology, internet search engines, automated security systems,
all phases of the shipping industry... intelligent systems are ubiquitous. Students, as future innovators,
need to know to use them.

Robots elicit curiosity from people of all ages; there is something that fascinates people when they see
a robot moving around making decisions on its own. This natural attraction can open up opportunities
for inspiration and enlightenment in both conventional and unconventional ways. In fact, robotics

may be the premier integrator in education today. When students study robotics, they learn about
engineering, electronics, and programming. They gain equally valuable experience in managing
projects, analyzing systems, accessing information, working in teams, and problem solving.

Carnegie Mellon and LEGO are working together to design research-based educational tools that
promote mathematical and engineering competency, as well as technological and scientific literacy
for all generations of students. The Teaching ROBOTC for LEGO MINDSTORMS training CD enables
students to take their first step toward becoming competent programmers, engineers, and innovators.

In these lessons, students are given opportunities to design, build, program and troubleshoot tabletop
robots. These projects require a diverse and well-rounded skillset, from measurement to analysis,
calculation to communication, individual initiative to group collaboration. Engineering is a complex
and multi-faceted discipline, one which reflects the challenges and demands that tomorrow will make
of its citizens.

Today, we are finding that more high schools and colleges are using MINDSTORMS and other robots
to infroduce engineering competencies and control concepts. Programming is an elusive key skill that
unlocks the potential of all these intelligent systems for students and educators. Teaching programming
builds a foundation for the future. Teaching ROBOTC for LEGO MINDSTORMS is a tool that we hope
will help you do that.

Best regards,

Robin Shoop,
Director of Educational Outreach
Carnegie Mellon Robotics Academy

Carnegie Mellon.

ROBOTC

N/

N

ROBOTC Programming quiz

NAME

DATE

N

1. What punctuation mark signals the end of a simple statement?

2, Give an example of paired punctuation.

1. Control structures such as task main or if-else:
a. Issue direct commands to the robot’s motors

b. Are only there for the human programmer’s benefit, and are ignored by the robot
c. Control the “flow” of commands: they choose which commands to run and when

d. Are a form of paired punctuation

/

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

ROBOTC Programming Quiz

ROBOTC
gl BN
o %
e N

Programming in ROBOTC roBOTC Rules

l In this lesson, you will learn the basic rules for writing ROBOTC programs.

ROBOTC is a text-based programming language based on
the standard C programming language.

Commands to the robot are written as text on the screen, processed by the ROBOTC compiler into
a machine language file, and then loaded onto the robot, where they can be run. Text written as
part of a program is called “code”.

e 2
1| task main ()
2| {
3
4 motor [motorC] = 100; [Program Code

) Text written as part of a

5 waitlMsec (3000) ; program is called “code”.
[¢)
/ k} _J

You type code just like normal text, but you must keep in mind that capitalization is important to
the computer. Replacing a lowercase letter with a capital letter or a capital letter with lowercase,
will cause the robot to become confused.

Task kedat Capitalization
Capitalization (paying attention to UPPERCASE

vs. lowercase) is important in ROBOTC.

Capitalizing the ‘T’ in task causes ROBOTC
motor [motorC] = 100; to no longer recognize this command.

waitlMsec (3000) ;

NON O AN —

As you type, ROBOTC will try to help you out by coloring the words it recognizes. If a word appears
in a different color, it means ROBOTC knows it as an important word in the programming language.

1| task a6 Code coloring
9 ROBOTC automatically colors key words
that it recognizes.
3 Compare this correctly-capitalized “task”
4 motor [motorC] = 100; command with the incorrectly-capitalized
5 waitlMsec (3000) ; version in the previous example. The correct one
6 ! is recognized as a command and turns blue.
7 }

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797 ROBOTC Programming ° 1

ROBOTC

a N
NG /
4 N
(] (]
Programming in ROBOTC roBoTC Rules (cont)
And now, we will look at some of the important parts of the program code itself.
The most basic kind of statement in ROBOTC simply gives a command to the robot.
The motor[motorC] ; statement in the sample program you downloaded is a simple
command. It instructs the motor plugged into the Motor C port to turn on at 100% power.
. Simple statement
1| task main() A straightforward command to the robot.
2 This statement tells the robot to turn on
3 the motor attached to motor port C at
4 (motor[motorc] = O;) 100% power.
g Cwalthsec (S000) 7)—‘— Simple statement (2)
6 This is also a simple statement. It tells
7) the robot to wait for 3000 milliseconds
(3 seconds).
Statements are run in order, as quickly as the robot is able to reach them. Running this program
on the robot turns the motor on, then waits for 3000 milliseconds (3 seconds) with the motor still
running, and then ends.
1 task main()
2 { Sequence
3 | Statements run in English reading order
(left-to-right, top-to-bottom). As soon as
4 Ist motor [motorC] = 0; one command is complete, the next runs.
3 2nd waitlMsec (3000); These two statements cause the motors to
6 turn on (1st command), and then the robot
immediately begins a three second wait
7 |} End
(2nd command) while the motors remain on.
End
When the program runs out of statements
and reaches the } symbol in task main, all
motors stop, and the program ends.
- /

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

ROBOTC Programming * 2

ROBOTC

\

N

N

Programming in ROBOTC RoBOTC Rules (cont)

How did ROBOTC know that these were two separate commands?
Was it because they appeared on two different lines?

No. Spaces and line breaks in ROBOTC are only used to separate words from each other in

multi-word commands. Spaces, tabs, and lines don't affect the way a program is interpreted
by the machine.

. Whitespace
task main() Spaces, tabs, and line breaks are generally

{ unimportant to ROBOTC and the robot.

C They are sometimes needed to separate

1
2
3)
— - words in multi-word commands, but are
4 mo?or [motorC] = 0 '@ otherwise ignored by the machine.

5 waitlMsec (3000) ;

H)

7 }

So why ARE they on separate lines? For the programmer. Programming languages are
designed for humans and machines to communicate. Using spaces, tabs, and lines helps
the human programmer to read the code more easily. Making good use of spacing in your
program is a very good habit for your own sake.

. No Whitespace
I task main() {motor[motorC To ROBOTC, this program is the same as

2]=0;waitlMsec (3000);} the last one. To the human programmer,
however, this is close to gibberish.

Whitespace is used to help programs be
readable to humans.

_
N

But what about ROBOTC?2 How DID it know where one statement ended and the other began?
It knew because of the semicolon at the end of each line. Every statement ends with a
semicolon. It's like the period at the end of a sentence.

task main ()

{ —— Semicolons
Like periods in an English sentence,
B semicolons mark the end of every

1
2
3
4 motor [motorC] = @7 ROBOTC statement.
5
6
7

waitlMsec (3000)@—

}

Checkpoint

Statements are commands to the robot. Each statement ends in a semicolon so that ROBOTC
can identify it, but each is also usually written on its own line to make it easier for humans to
read. Statements are run in “reading” order, left to right, top to bottom, and each statement is

run as soon as the previous one is complete. When there are no more statements, the program
will end.

/

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

ROBOTC Programming * 3

ROBOTC
gl BN

N

94
1
Programming in ROBOTC RoBOTC Rules (cont)

ROBOTC uses far more punctuation than English. Punctuation in programming
languages is usually used to separate important areas of code from each other. Most
ROBOTC punctuation comes in pairs.

Punctuation pairs, like the parentheses and square brackets in these two statements, are
used to mark off special areas of code. Every punctuation pair consists of an “opening”
punctuation mark and a “closing” punctuation mark. The punctuation pair designates the
area between them as having special meaning to the command that they are part of.

Punctuation pair: Square brackets []

il task main() The code written between the square
2 { brackets of the motor command indicate
3 what motor the command should use.
4 moton [motorC]| = 100;
5 wailtlMsec 0);
6
7 }
: Punctuation pair: Parentheses ()
j task main() The code written between the parentheses
2 { of the wait1Msec command tell it how
3 many milliseconds to wait.
4 motor [motor = 100;
5 waitlMsedq (3000)
6
7 }
Checkpoint

Paired punctuation marks are always used together, and surround specific important parts of a
statement to set them apart.

Different commands make use of different punctuation. The motor command uses square
brackets and the wait1Msec command uses parentheses. This is just the way the commands are
set up, and you will have to remember to use the right punctuation with the right commands.

_ /

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797 ROBOTC Programming ° 4

ROBOTC

paal BN
- 5%
4 N
(] (]
Programming in ROBOTC roBoTC Rules (cont)
Simple statements do the work in ROBOTC, but Control Structures do the thinking.
These are pieces of code that control the flow of the program’s commands, rather than issue
direct orders to the robot.
Simple statements can only run one after another in order, but control statements allow the
program to choose the order that statements are run. For instance, they may choose
between two different groups of statements and only run one of them, or sometimes they
might repeat a group of statements over and over.
One important structure is the task main. Every ROBOTC program includes a special section
called task main. This control structure determines what code the robot will run as part of the
main program.
e —) i
1| task main () Control structure: task main
21 { (—J The control structure “task main” directs the
program to the main body of the code. When you
3 press “Start” or “Run” on the robot, the program
4 motor [motorC] = 100; immediately goes to task main and runs its code.
. . The left and right curly braces { } belong to the
5 waitlMsec (3000); task main structure. They surround the commands
6 which will be run in the program.
7
U
(.

while (SensorValue (touchSensor) == 0) |—— Control structure preview

{ Another control structure, the while
loop, repeats the code between its

motor [motorC] = 100; curly braces { } as long as certain
motor [motorB] = 100; conditions are met.

} Normally, statements run only
once, but with a while loop, they
can be told to repeat over and
over for as long as you want!

Checkpoint
Control structures like task main decide which lines of code are run, and when. They control
the “flow” of your program, and are vital to your robot’s ability to make decisions and respond
intelligently to its environment.
- /

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797 ROBOTC Programming * 5

ROBOTC

\

N

0 NO~ U AWN

O

11
12
13
14

Programming in ROBOTC RoBOTC Rules (cont)

Programming languages are meant to be readable by both humans and machines.
Sometimes, the programmer needs to leave a note for human readers to help understand what
the code is doing. For this, ROBOTC allows “comments” to be made.

Comments are text that the computer will ignore. A comment can therefore contain notes,
messages, and symbols that may help a human, but would be meaningless to the computer.
ROBOTC will simply skip over them. Comments appear in green in ROBOTC.

1 (// Move motor C forward with 100% power

—— Comments: // Single line

task main ()

{

/*

Motor C forward with 100%

Do this for 3 seconds

*/

power

motor [motorC] = 100;
waliltlMsec (3000) ;

_/
~

Any section of text that follows
a //double slash on a line,

is considered a comment,
although code to the left of the
// is still considered normal.

Comments: /* Any length */

A comment can be created in ROBOTC
using another type of paired punctuation,
which starts with /* and ends with */

This type of comment can span multiple
lines, so be sure to include both the
opening and closing marks!

N

End of Section
What you have just seen are some of the primary features of the ROBOTC language. Code is

entered as text, which builds statements. Statements are used to issue commands to the robots.
Control structures decide which statements to run at what times. Punctuation, both single like
semicolons and paired like parentheses, are used to set apart important parts of commands.

A number of features in ROBOTC code are designed to help the human, rather than the
computer. Comments let programmers leave notes for themselves and others, and whitespace
like tabs and spaces helps to keep your code organized and readable.

/

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

ROBOTC Programming * 6

ROBOTC

Fundamentals

N/
N

Thinking about Programming quiz

NAME DATE

1. What is the role of the programmer?

2, Break the complex behavior “get ready for school in the morning”
into at least five smaller behaviors, and list them below.

_ /

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797 Thinking Programming Quiz

ROBOTC

Fundamentals

N/
N\

Thinking About Programming Programmer & Machine

In this lesson, you will learn about the roles of the programmer and the robot, and how the
two need to work together in order to accomplish their goals.

Robots are made to perform useful tasks. Each one is designed to solve a specific problem,
in a specific way.

Robotic Tractor

Problem:
Drive safely through a field
which may contain obstacles

Solution:

Move towards the destination,
making small detours if any
obstacles are detected

Labyrinth Robot

Problem:
Get through the maze

Solution:
Move along a predetermined
path in fimed segments

N /

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797 Thinking about Programming © 1

ROBOTC

pas BN
\C %
4 N
(] ° ° N
Thinking about Programming programmer & Machine (cont)
Let’s take a closer look at this last robot. How does it do that?2 How does it know to do that?
Problem —) 222222 —) Goal Reached
Creating a successful robot takes a team effort between humans and machines.
ry Role of the Programmer
The human is responsible for
identifying the task, planning out a
17.75" solution, and then explaining to the
robot what it needs to do to reach
i the goal.
<«— 15.25" —>I
58.5" ? I
11"
26"
14" ‘ 1 ,
Y
|<— 1 7”—>|
_ %

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797 Thinking about Programming © 2

undamentals

Thinking about Programming Programmer & Machine (cont.)

Role of the Robot

The machine is responsible for
following the instructions it is given,
and thereby carrying out the plan.

The human and the robot can accomplish the task together by dividing up the responsibilities.
The human programmer must come up with the plan and communicate it to the robot, and
the robot must follow the plan.

Human Robot

r 1 r B
Problem —) Create plan ——) Follow plan ——) Goal Reached
L J L ;|

Because humans and machines dont normally speak the same language, a special language
must be used to translate the necessary instructions from human to robot. There are many such
languages, with ROBOTC being one of them. These human-to-robot languages are called
“programming” languages, and instructions written in them are called “programs”.

Human Robot

r—— — — — — 1 r — — 7 1
Problem —) Create plan — Write program —) Follow program —) Goal Reached
L i

- j

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797 Thinking about Programming * 3

ROBOTC
gl BN

N

_
\
Thinking about Programming pProgrammer & Machine (cont)

End of Section

The human who writes the program is called the programmer. The programmer’s job, therefore, is
to identify the problem that the robot must solve, to create a plan to solve it, and to turn that plan
into a program that the robot can understand. The robot will then run the program, and perform
the task.

Finally, take note: the robot only follows the program, it does not think for itself. Just as it can be no
stronger than it is built, the robot can be no smarter than the program that the human programmer
gave it. You, as programmer, will be responsible for planning and describing to the robot exactly
what it needs to do to accomplish its task.

_ /

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797 Thinking about Programming © 4

ROBOTC

\

/

N

N

iy
Thinking About Programming Planning & Behaviors

In this lesson, you will learn how thinking in terms of “behaviors” can help you to see the
logic behind your robot’s actions, and break a big plan down into practical parts.

“Behaviors” are a very convenient way to talk about what the robot is doing, and what it must do.
Moving forward, stopping, turning, looking for an obstacle... these are all behaviors.

Complex Behavior Basic or Simple Behavior

Some behaviors are big, like “solve the maze.” Some behaviors are small, like “go forward for 3
seconds.” Big behaviors are actually made up of
these smaller ones.

As you begin the task of programming, you should also begin thinking about the robot’s actions
in terms of behaviors. Recall that as programmer, your primary responsibilities are:

* First, to formulate a plan for the robot to reach the goal,
* And then, to translate that plan into a program that the robot can follow.

The plan will simply be the sequence of behaviors that the robot needs to follow, and the program
will just be those behaviors translated into the programming language.

/

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797 Thinking about Programming * 5

ROBOTC

\

N

N

Thinking about Programming Pianning & Behaviors (cont)

1. Examine problem

1

(1) to the goal (2).

To find a solution, start by examining the problem.

Here, the problem is to get from the starting point

2 Follow the Ppath
to reach the goal

. 2 Follow the path
fo .ﬁeach 7«/75900/

Go forward 3 seconds

-

/

6o Forward fopn
3 seconds

Turn on [eft motor

_/
~

2. Broad solution
Try to see what the robot needs to do, at a high
level, to accomplish the goal.

Having the robot follow the path shown on the
left, for example, would solve the problem.

You've just identified the first behavior you need!
Write it down.

3. Break solution into smaller behaviors
Now, start trying to break that behavior down into
smaller parts.

Following this path involves moving forward,
then turning, then moving forward for a different
distance, then turning the other way, and so on.
Each of these smaller actions is also a behavior.

Write them down as well, taking care to keep
them in the correct sequence.

4. Break into even smaller pieces

If you then break down these behaviors into even
smaller pieces, you’ll get smaller and smaller
behaviors, with more and more detail. Keep track
of them as you go.

Eventually, you'll reach commands that you can
express directly in the programming language.

For example, ROBOTC has a command to turn on
one motor. When you reach a behavior that says
to turn on one motor, you can stop breaking it
down, because it's now ready to translate.

/

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Thinking about Programming * 6

ROBOTC
\
\ /
4 N\
(] ° °
Thinking about Programming Pianning & Behaviors (cont)
Large behavior Smaller behaviors ROBOTC-ready behaviors
Follow the patp o forward f,
to reach m/;gm/ 3 secom? Tor 1. Turn on left motor
. L L N l.} 2. Turn on right motor
Go forward 3 se) Turn on Jef ,
fjurn left 90° “oeonds ILI[’V:)(:I:)V’IQII]II]1111::«” 3. WC“T 3 Seconds
VI(-m forward 5 seconds Wait 3 \L‘t‘:vmix o
Go formarg 3 rum OfFlef motor 4. Turn of f left motor
Turn ‘vuI‘ t - seconds M off right motor .
Go forwand 2 secong, -.} 5. Turn off right motor
Tl{/‘ﬂ left 9p°
LR S 6. Reverse left motor
Reverse Jeft motor
Turn on righ¢ otor . |
Step by step War g bt mor ..} 7. Turn on right motor
1’1‘1‘7"\“,, . .
1. Start with a large- ,f['“]”,’\,’f“{;nl;‘ll:w ‘ 8. Wait 0.8 seconds
scale behavior that oot
solves the problem. 9. Turn off left motor
. . o forward for
2. Break it down into 5 seconds 10. Turn off right motor
smaller pieces. Then m
break the smaller A SR
pieces down as well. ,I[.‘lllvf":":l‘:” 1"‘"’{‘1 motor 11. Turn on left motor
ght motor
3. Repeat until you Wait 5 seconds .
have behaviors that PP 12. Turnon r‘lghf motor
are small enough g .
for ROBOTC fo 13. Wait 5 seconds
understand. eoo
When all the pieces have reached a level of detail
that ROBOTC can work with — like the ones in the ; 1_;1’::}‘:)’; 'r“"if““g‘z’;r
“ROBOTC-ready behaviors” list above — take a 3 Wait 3 segonds
look at the list you've made. These behaviors, in the 4. Turn off left motor
order and way that you've specified them, represent B. Turn off right motor
the plan that the robot needs to follow in order to
accomplish the goal. Simple pseudocode
Your list of behaviors to perform in a specific
Because the steps are still written in English, they order are a simple form of pseudocode.
should be relatively easy to understand for the
human programmer. . ‘ .
if (the light sensor sees light)
As the programmer becomes more experienced, +urn on left moor
the organization of the behaviors in English will hold right motor stil
start to include important techniques from the }
programming language itself, like if-else statements
and loops. This hybrid language, halfway between Later pseudocode
English and the programming language, is called As your programming skills grow, your
pseudocode, and is an important tool in helping Ei?tﬁﬁcs%ﬂeszfrivllei?;Lu;icemn;ogsr;c;r:eglfg LZ?;;C'
to keep larger programs understandable. you find and express the necessary robot
behaviors in simple English.
- /

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Thinking about Programming * 7

ROBOTC

N

N

N

Thinking about Programming Pianning & Behaviors (cont)

End of Section

By starting with a very large solution behavior, and breaking it down into smaller and smaller
sub-behaviors, you have a logical way to figure out what the robot needs to do in order to
accomplish its task.

By recording the behaviors in English, you have taken the first steps toward good pseudocoding
practice, allowing you to easily review the behaviors and their organization as you prepare to
translate them to program code.

The only step remaining is to translate your behaviors from English pseudocode to ROBOTC
programming language.

/

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797 Thinking about Programming * 8

ROBOTC

- BN
o w4
4 N
L]

Labyrinth Challenge

Challenge Description

This challenge features a sequence of turns that the robot must perform in order to get to the

“end” of the Labyrinth. The robot must first begin at the starting point, and get to the goal area

by completing turning and forward movement behaviors. The robot must NOT cross any lines.

Materials Needed

* Black electrical tape

* Red electrical tape

* Scissors (or cutting tool)

* Ruler (or straight edge)

Board Specifications

A
17.75"
<«— 15.25" —>I
58.5" ? I
11"
voT
| ®
I<— 17”—>|

@ Robot must begin here, and then maneuver the robot to get to the goal area.

@ Robot must reach this goal area without crossing any black lines (Goal area lines).
- /

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797 Labyrinth Challenge

ROBOTC
- N

N

94
g
Improved Movement quiz

NAME DATE

1. What factor or factors affect the robot’s ability to move in a straight line?
a. Motor manufacturing tolerances
b. Robot weight distribution
c. Frictional forces in the robot’s drive train
d. All the above

2. “Closed-loop” control describes a system:
a. that monitors its own performance and adjusts its output to achieve a desired outcome.
b. whose specifications are kept secret.
c. in which a Loop control structure with matching opening and closing punctuation is used.
d. which is ring-shaped.

3. The command nSyncedTurnRatio=100; would tell the slave motor to turn:
a. at the same rate and in the same direction as the master.
b. at the same rate and in the opposite direction of the master.
c. at 100 degrees per second, in the same direction as the master.
d. ot full power forward.

4. The PID algorithm adjusts:
a. the power level of an individual motor to achieve a target speed.
b. two motors’ powers to keep them together at all times.
c. a motor’s gear ratio to achieve a target power.
d. the amount of friction in a motor to make it run more smoothly.

5. Write the piece of code that would establish a Synchronized relationship between
motors B and C, with C as the master and B as the slave in the space below.

A WN —

_ /

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797 Improved Movement Quiz

Ll ROBOTC

sl ™
ovement

NG 5%

4 N\

Improved Movement Manual Straightening

You know how to make the robot move, and you've made improvements to its performance by
having it brake and maneuver at a slower speed. Even so, you have probably noticed by now that
the robot’s idea of “straight”... isn't.

Off course
This robot has drifted noticeably
to the left while running.

{

Even when you set the motors to go the same speed, the robot turns a little. Recall that a turn
results from two motors moving at different speeds.

1 task main ()
2 |
3
4 motor [motorC] s 4
5 motor [motorB] If(l’;gf?\ fnp:igrs.are set the same,
6 waltlMsec (4000) ; shouldn’t they go the same speed
7 and therefore move straight?
8 motor [motorC] = -50;
9 motor [motorB] = 50;
10 waitlMsec (800) ;

11
12 }

Actually, SPEEDS aren’t set with the motor[] commands. Motor POWER is. However, not all motors
are created equal. Various factors in the robot’s construction, and the manufacturing process for
the motors themselves cause different amounts of energy to be lost to friction in each motor.

This means that even though both motors start with the same power at the plug, the amount of
power that reaches the wheel to move the robot can vary quite a bit. Even with the same POWER
being applied, SPEEDS may differ. And as you know, wheels moving at different speeds make the
robot turn, even if just a little bit. So to fix this situation, let’s do the logical thing, we'll change the
power so the motors end up going the same speed.

_ /

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797 Improved Movement © 1

ROBOTC

ovement

N[

N

Improved Movement manual Straightening (cont.)

In this lesson, you will manually adjust your motor command powers to make your robot go
straight, watching for patterns to make the process smoother in the future.

Lesson Note

The example robot used in this lesson
drifts slightly to the left. If your robot
drifts in the other direction, simply apply
the following steps to the other motor.

e
=

—_—
Y \ .=

1. We can't speed up the slower motor, because it's already going full power. So instead, we'll
have to slow down the faster one. The robot shown in this example has veered left, indicating
that the right motor is going faster than the left.

1 task main()
2
> dify th d
_ - 1a. Modify this code

4 motor[motorC] = oP; Reduce the faster motor’s power by 5%
5 motor [motorB] =(45; in the moving-forward behavior.

File Edit Wiew Window _Help

O 1b. Compile and Download

ECampile Frogranm SelecT Rob01 > Compile cnd
Download Program.

Battery & Pow
1 Construcks Diebugger
Display
1 Motars MET Brick o

2400

1 gzz:?:lrs Platfarm Type 4 g]D atus Fiefresh Rate
Timing Motors and Sensars Setup) — [_—_ 1. [| 1c. Press Start
User Defined | Download Firmware Sto Press the Start button on the
Clear &ll | Clear Log Program Debug menu.

1 =

1d. Observe behavior
Did the robot go straight?
This one curves to the right now.

N

/

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Improved Movement ¢ 2

N ROBOTC
Al N
ovement
N 4
4 N\
Improved Movement Manuadl Straightening (cont)
2. We seem to have overcorrected, and our robot now curves in the opposite direction. So we'll
adjust our guess, and go with something in between the original and our last guess.
1 task main()
2
3 2a. Modify this code
4 motor [motorC] = 50 was too high, and 45 too low.
Choose a value in between, like 48.
5 motor [motorB] =
&) waitlMsec (4000) ;
File Edit View Window Help
O 2b. Compile and Download
1 Batfory & poy, ECOMDIE ProGTam Select Robot > Compile and
 Constructs Diebugger Download Progrom.
1 Display
1 Maokars MAT Brick 3
SBHSDdFS Flatform Type » Refresh H2;t20
?ion:::g Motors and Sensors Setup i — Iul] 2c¢. Press Start
User Defined | Dowrload Fi - Press the Start button on the
D:'moa :Irmware Program Debug menu.
2d. Observe behavior
Did the robot go straight?
It looks a lot better now.
End of Section
This method of manual straightening works, but it's unwieldy. One big problem is that it
requires reprogramming any time something changes. Running on a different table surface,
negotiating a slope, running after the batteries have run down, and even tuning up the robot
will all force you to re-adjust these values.
Worse still, the program values don’t work on every robot. In the example, we had to change
our motor to 48%, but you probably had to do something quite different with yours. Worse
yet, there are obstacles out there that can’t be accounted for by programming your robot
hours or weeks in advance. Manual adjustment to robot power levels can work, but there
must be a better way...
- /

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Improved Movement ¢ 3

ROBOTC

N

N

N

Improved Movement Principles of PID

We found that we could make a robot move straighter by adjusting power levels so that its
wheels move at the same SPEED rather than just being driven with the same power. However,
manual adjustment has severe limitations. What if we could find a way to make those
adjustments automatically?

In this lesson, you will learn how the PID speed control algorithm works.

Using the rotation sensors built into the NXT motors, the robot can be aware of how far each
wheel has moved. By comparing the motor’s current position to its position a split second ago,
the robot can calculate how fast the wheel is moving.

Current
Position

Starting position (1=0) A short time later... (1=0.1s)

The initial position of the wheel as it starts turning. 1/10th of a second later, the wheel has turned slightly.
Since both the change in position and the change in time
are known, the robot can calculate the rate of turn.

Suppose the wheel turned 30 degrees in the 0.1 seconds shown above. The robot would
automatically calculate the speed as:

—» Speed = 30°

= Atime Oisec " Speed = 300°/sec

This speed is translated into a “speed rating” in the NXT firmware so that a speed rating of 100
would correspond to an “ideal motor” running at 100% power.

Since the robot can now tell how fast the wheel is actualy turning, it can use PID to tune the
motor power levels to make sure it is running at the correct speed. If the motor’s actual speed
is lower than it should be, the PID algorithm will increase its power level. If the motor is ahead,
PID will slow it down. On the following page, we'll find out how it works.

/

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797 Improved Movement * 4

] ROBOTC

Al N
ovement

o 5
4 N

Improved Movement Principles of PID (cont)

Desired Motor
Speed ' Power

1. Motor Power

The motor is told to run at a power level that will theoretically

produce the correct speed.

Without PID control, this is the only step used.

Without PID engaged, motor control is an “open loop” process. Motor power is set, but no

mechanism is in place to see whether the desired speed is actually being acheived, and no

corrections can be made.

Desired Motor Measured
Speed ' Power ' Speed

2. Measured Speed

With PID, the robot will also measure the actual speed of the motor, by

measuring the position of the wheel over time (as shown on the previous page).

Real motors very rarely match up perfectly with “ideal” values, therefore the actual speed is

different when given the “theorotical” power.
- /

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Improved Movement © 5

] ROBOTC
\
ovementi
\ S
4 N
Improved Movement Principles of PID (cont)
Desired Motor Measured
Speed ' Power ' Speed
3. Error
The difference between the desired speed and the actual speed Error
is calculated. This difference is called the “error”. A large error
indicates that the motor’s actual speed is significantly different
from the speed it should be maintaining.
How far off is the speed? The “error” term is simply the difference between the
measured speed and the desired speed.
Desired Motor Measured
Speed ' Power ' Speed
4. PID Adjustment
Based on the size of the error,
the PID algorithm proposes an . PID Error
adjustment to the motor power that Adlusi‘meni‘
should get the motor’s actual speed
closer to the desired speed. + 5 4
Based on the size of the error term, and how the error has been changing over
time (has it been getting bigger or smaller?), the PID algorithm calculates an
adjustment to the motor power that should help the motor’s actual speed to get
closer to the desired speed.
_ %

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Improved Movement * 6

ROBOTC
paal BN
N %
4 N\

Improved Movement Principles of PID (cont)
Desired Motor Measured
Speed ' Power ' Speed

5. Apply Adjustment

The PID Adjustement factor is PID Error

applied to the robot’s motor o

power (50 + 5 = 55). Adjustment «

The new motor power is calculated by adding the PID adjustment factor to the original power.
Desired Motor Measured
Speed ' Power ' Speed

6. Repeat Cycle

The motor runs with the new

power, and the cycle repeats. . PID Error

The robot measures the new Ad|usimeni

speed, calculates a new error,

and a new adjustment. This

process of self-adjustment 2 3

continues as long as the + -

program keeps running.

The adjustment is applied to the motor power. The speed is measured again. The error is

recalculated (hopefully it is now smaller!). A new adjustment factor is determined. The cycle

continues forever, always ready to catch and compensate for any factor that may make the

robot go at the wrong speed.

- /

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Improved Movement * 7

Ll ROBOTC

J

ovement

N[

N

N

Improved Movement Principles of PID (cont)

End of Section

This setup, where the robot monitors and adjusts its speed based on measurements it takes
itself, is called “closed loop” control. The term refers to the “loop” relationship formed by
output (motor power) and feedback (speed measurement, error, and PID adjustment factor).

PID gives your robot the ability to intelligently self-adjust its motor power levels to the correct
values to maintain a desired speed. The closed-loop system monitors the “error” difference
between how fast the robot is going and how fast it should be, and makes adjustments to the
motor’s power level accordingly.

/

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797 Improved Movement * 8

ROBOTC

Movement

N/
N

Improved Movement pip Programming

ROBOTC includes a PID algorithm already built into the firmware. In order to take advantage of
PID speed control, you must first enable it in your program.

In this lesson, you will learn how to enable PID speed control for your robot’s motors, using
ROBOTC'’s built-in motor control features.

-
.

Start with your moving-and-turning Labyrinth program. Save your program with a new
name: “LabyrinthPID".

RobotC - Labyrinth.c *
Views Robob \Window Help
Chrl+M ‘1?

Ta. Save program As...
Select File > Save As... to save your
program under a new name.

Openjand Compile

T maini)
Open|Sample Program

Ctrl+-3

tor [motorC] =50;
tor[motorBl =50: ,b. Browse to an

Print... CHpFF

Prinkt Preview ritiliseci2000) appropriate folder

Pag| Browse to or create an appropriately
. named folder within your program

Saveind(| 3 programs) v OF e m- folder to save your program.

___2_ ri:] Labwyrinth. c
My Recent
Documents
(4
D
Tc. Rename program
Give this program the
new name “LabyrinthPID”.
File name: (LabwrinthPID]) hd | ([Save 1d. Save
Save as type: C Files [*.rec”.c.cpp nge:.h:".ngh) v | [Cancel Click Save.

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797 Improved Movement * 9

ROBOTC

Movement
N >
4 N
Improved Movement PID Programming (cont)
2. PID control must be enabled for each motor on the robot.
1 task main ()
B 2a. Add this code
3 | Enable PID control on both
_ . motors by setting their
4 nMotorPIDSpeedCtrl [motorC] = mtrSpeedReg; nMotorPIDSpeedControl
5 nMotorPIDSpeedCtrl [motorB] = mtrSpeedReg; modes to mtrSpeedReg.
6
7 OGRS [PIEGEC]) = 2b. Modify this code
8 motor [motorB Restore the motor command
9 waitlMsec settings to 50%.
10 2c. Modify this code
11 motor [motorC] = -50; We want enough time
12 motor [motorB] = 50; fo see and fest the
. effects of PID control.
13 walitlMsec (800) ; Change this value to 30
14 seconds (30000 ms).
15 }
3. Download and run. Keep your robot plugged in.
3a. Block up the robot
Place an object under the robot so that
its wheels can’t reach the table. This
lets you run the robot without having
to chase it around.
OE Cormpile : 3b. Download and Compile
Battery .pon REOMPIE Program Click Robot > Download Program.
C Constructs Debugger
Display
Mokors KT Brick ¥ beedCtril[motorC] = mtrSpd
Sensors Platform T N eedltrl[motorB] = mtri3pdg
Sound e
Timing Motors and Sensors Setup Program Debug
Dowrload Firmware 2400
Fefresh Rate
_ : {Slepnle) Luce 3c. Run the program
Click “Start” on the onscreen
St
Dlear Log Program Debug window.
N %

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Improved Movement ¢ 10

L ROBOTC
Pl N
ovement
NS 4
4 N
Improved Movement PID Programming (cont)
4. A window should appear called the “NXT Device Control Display”. If it doesn’t appear...
[:2: Read Walues frorm MNXT
totor] Speed] PID] Mode [Fegulate [Run State] Tach User]Tach Move] Tach
bt S 0 0| OFF[Float] 0 fhiore |dle i]]
bt B 0 0 OFF[Float) 0 nione Idle 0 0 o .
) e : : ——— 4. NXT Device Control Display
i = . A L i i Make sure this window is showing. If nof,
open it through Robot > Debug Windows >
NXT Devices.
0= n Compile and Download Program FS
Battery & For Recompile Pragramm F7
 Constructs Debugger
Display Global Yariables
Mokors Wt 3 py
Sound .
Timing Flatform Type 3 pp—
Lser Defined Motars and Sensars Setup B]=50:
Ly load Ei Qo :
Checkpoint
This debugger window is a troubleshooting tool that can help you see what your robot is doing,
and what it thinks it’s doing. The lines we're interested in are highlighted above: “Speed” and
“PID" for Motors C and B.
The Speed column shows the desired speed for the motor, which we set to be 50%. The PID
column shows the actual amount of power that the robot is giving the motor to make it move at
that speed.
MXT Device Control Display
Fead Values from BT
Adjusted motor power
M ator 5peed| F'ID| M ade | Regulate | Fun The PID algorithm is having to give
this motor 64% power to achieve
A L 0 OFF(Float] 0 Mone ! 50% speed. This is typical, because
B 50 Ed)DN[E[EIkE, Reg] Speed Ru the motor needs additional power to
C A0 67 OM[Brake, Reql Speed | Ru overcome friction.
_ %

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Improved Movement © 11

ROBOTC

Movement

N/
N

Improved Movement PID Programming (cont)

5. Hold one wheel in place and watch the power values on its corresponding motor.

5a. Hold wheel

Grab one of the wheels on the robot
and hold it so it stops. In the picture,
motor C’s wheel is being held.

MNXT Device Control Display

Read “alues from BT

5b. Observe motor power

b otor 5|:1E:E.-d| F'|D| kMode | Requlate | Run The PID clgorifhrrc; will n(j)ﬂc? tIlet the
motor’s measured speed is falling
A 0 0 DFF[F|DEI|:] 0 none | behind where it should be, and will
B] ES OM[Brake. Reql Speed | Ru increase the motor’s power level fo try
50 100 DM(Brake, Fegl Spesd | Fu to bring the speed up.

|D~E'.|"l nrlTur.E |h.-:|_|:|,|:|,e ["u"a]uel F!ad

6. Release the wheel and observe its reaction.

6a. Release the wheel
Let go of the wheel so it can turn

freely again.
MNXT Device Conktrol Display
Fead Yalues froum BT 6b. Observe motor power
Now that the wheel is going too fast,

b ik cr Speed| F'|D| M ode | Fegulate | Rt ?he motor will decrease its power until
2 0 0 OFF(Float] 0 — | it reaches the correct speed.
B Al B2 OM[Brake, Reg]) Speed | Ru
C] 35 OM[Brake, Reg) Speed | Ru

|E:E'.|"l nrlTur.E |h.-:|_|:|,|:|,e ["u"a]uel F!ad

- /

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797 Improved Movement ¢ 12

ROBOTC

Movement

N/
N

Improved Movement PID Programming (cont)

7. End the program and return the timing to what it was before.

1 task main ()

2 {

8

4 nMotorPIDSpeedCtrl [motorC] = mtrSpeedReg;

5 nMotorPIDSpeedCtrl [motorB] = mtrSpeedReg;

6

7 motor [motorC] = 50;

8 motor [motorB] = 50;

1 3 vattitisec (:4 el é-hlrn(;‘i,g;’:i:;iz;‘{)eock to
4000m:s (still at 50% speed).

11 motor [motorC] = -50;

12 motor [motorB] = 50;

13 walitlMsec (800) ;

14

15 }

End of Section

PID control is a great way to make your robot’s movement more consistent. The algorithm
monitors how fast the motors are turning versus how far they should be, and adjusts the motors’
power levels to keep them on track. This allows the robot to automatically adjust for minor
variations both in the environment and in the motors themselves.

_ /

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797 Improved Movement ¢ 13

L ROBOTC

5
J

ovement

W

N T
N

Improved Movement Synchronized Motors

When we started, we said that we wanted the robot to go straight. Its motors should move at the
same speed. PID control gave us that in a roundabout way: by asking both motors to maintain
a target speed, and giving them both the same target, they moved the same speed. Sort of.

If we run into a tough spot like this, how should the robot react?

Stuck

The wheel is being held firmly
in place... what should the
other wheel do?

Using PID, the other motor will keep running at the speed it was set to, and the robot will begin
to spin in a circle as if ordered to turn.

However, if going straight is the priority, then we need to change our perspective slightly. We'll
need to enforce identical speeds on the two motors as our first priority, not just tell both motors
to seek the same target independently. The sameness of the values is more important than
the exact speed.

ROBOTC includes a feature called Motor Synchronization, which allows you to pair two motors
together, and define their speeds relative to each other. If you tell them that their goal is to stay
exactly together with one another as they move, then they will, even if it means the faster one
has to stop and wait. The goal of keeping both motors together takes precedence over reaching
the “ideal” speed.

_ /

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797 Improved Movement ¢ 14

ROBOTC

Movement

N/
N

Improved Movement synchronized Motors (cont)

In this lesson, you will learn how to use Motor Synchronization to ensure that both motors run
at the same speed, even if something unexpected happens to one of them.

1. Open ROBOTC and start a new program.

Edit Wiew Robot Window Help

1. Create new program
Compile Select File > New to create a

Open Sample Program blank new program.

Save Cirl+S

Save As..,

Brint... Cirl+P
Print Preyiew
Page Setup...
Print Setup...

2. Add the basic framework for a program.

1| task main ()

2| {

3 2. Add this code

4 Add a task main() {}.
ol 1

3. Engage Motor Synchronization on the robot, with the sync mode set to “synchBC”.
The special term synchBC defines B and C as the motors to be synchronized.

1 task main()

2 {

3

4 (nSyncedMotors = synchBC ;) gnAadz mgocrode

5 Syr?dﬁ'onizaﬁon for
6 } Motors B and C, with

B set as the master.

_ /

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797 Improved Movement ¢ 15

ROBOTC

5
J

ovement

NS b4
4 N\

Improved Movement synchronized Motors (cont)

Checkpoint

The program will now operate motors B and C in Synchronized mode. The order of the

letters BC in “synchBC"” does matter, because the two motors in a synchronized setup are not

completely equal. Of the pair, one of the two motors will take the lead, and the other will

play a more reactive role.

The motor B (the first letter in “synchBC”) is called the Master motor, and C (the second one)

is called the Slave motor. All commands to the motor pair, such as speed or braking

commands, are issued through the Master motor.

The Slave motor, C in this case, doesn’t receive a speed command. Instead, we give it a

ratio command. This ratio is defined as a percentage of the first motor’s position. For

moving forward, you always want the two motors to be at the same position, so we'll set the

Slave motor ratio to be 100% of the Master motor’s.

4. Set the slave motor to run at 100% of the master motor’s speed.

1| task main () ——— 4. Add this code

2 { Set the turn ratio for
the slave motor (C) to

3 be 100%. Slave motor

4 nSyncedMotors = synchBC; C will now attempt fo

; maintain exactly 100%

5 (nSyncedTurnRatlo = 100;) of the master motor B's

6 speed.

/4) Note that the master
motor’s speed has not
been set yet, so the slave
motor B will initially be
running at 100% of O
(i.e. stopped).

5. Set the master motor to a desired speed of 50, and let the robot run for 4 seconds.

1 task main ()

2

8

4 nSyncedMotors = synchBC;

5 nSyncedTurnRatio = 100;

6

/ motor [motorB] = 50 | 5. Add this code

8 waltlMsec (4000) ; J Set a desired speed

9 of 50 for the master
motor. Master motors

10 } are automatically PID
speed regulated.
- /

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797 Improved Movement * 16

Movement

N/

&3 RobotC - SourceCode *

6. Save your program as “LabyrinthSynch”.

Improved Movement synchronized Motors (cont)

View Hobob \Window Help
Mew N | P |
Open and Compile ———
Open $ample Program

vncedTurnBatio

Ctrl+-3
I L‘yncedl‘{otors = synchEC;

= 100

N

6a. Save program As...
Select File > Save As... to save your
program under a new name.

6b. Browse to an

Prink...
Print Previemw

kP

appropriate folder
Browse to or create an appropriately
named folder within your program

Savein: |3 programs v O % == folder to save your program.
[Z] Labyrinth.c
Q E} [Z) LabyrinthPID.c
My Recent
Documents
[
D
6c. Rename program
Give this program the
new name “LabyrinthSynch”.
File narne: LabyrinthSyncH) A | Save 6d. Save
Save as type: C Files [*.ree 6 .cpp;”.nge;™ hi".ngh) 3 | Carcel Click Save.

5. Download and Run.

3 RobotC - LabyrinthSynch.c

File Edit Yiew RIS wWindow Hel

=y =

i Program
[#- Batkery & Po
Construcks Debugger
isplay
Matars MAT Brick

Platfarm Twpe
Mokors and Sensors Setup

2400
Refresh Rate
On

7a. Compile and Download
Click Robot > Compile and
Download Program.

#-User Defined | Download Firmware

- |

||
Clear &1l

| —

N

7b. Run the program
Click “Start” on the onscreen
Program Debug window.

/

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Improved Movement ¢ 17

ROBOTC

Movement

N/
N

Improved Movement synchronized Motors (cont)

Checkpoint
The motors are now constantly updating themselves to maintain identical positions as they move.
If one motor happens to stop, the other motor will adjust, and maintain 100% of the new position!

Finally, motor synchronization is useful for far more than just going straight. Cleaning up turning
is also quite easy. As you saw when you first encountered turns, all you need to do is set the
motors to move at different speeds. To turn in place, the motors should go different speeds. For a
point turn, they should be completely opposite. The Slave motor should go -100% of the Master
motor’s speed.

8. Change the sync ratio to -100% to make the robot turn instead of moving straight.

1 task main|()

2 {

8

4 nSyncedMotors = synchBC;

5 nSyncedTurnRatio =‘ -100; } 8. Modify this code

6 Change the sync ratio

100% to -100% to make

7 motor [motorB] = 50; the motors turn in exactly
) waitlMsec (4000) ; opposite directions.

9
10 }

9. Download and Run.

<3 RobotC - LabyrinthSynch.c *
File Edit Wiew NG Window Help
Dl rload Fragram FS 9a. Compile and Download
EF F Click Robot > Compile and

Battery & Pow

C Construcks Debugger Download Progrqm.
Display
Maotars MAT Brick

Sensors

cound Platfarm Twpe 2400

4-0un Refresh Rate

Timing Mokors and Sensors Setup e = ob. R .

User Defined | Download Firmiware = Rl g e— - Run the program

Click “Start” on the onscreen

Program Debug window.

-

_ /

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797 Improved Movement ¢ 18

ROBOTC

Movement

N/

End of Section

most important thing is getting your robot to go straight.

N

Improved Movement synchronized Motors (cont)

Motor synchronization allows you to control your robot in a way that prioritizes motor
alignment over motor speed. This is a trade-off, but one that may be favorable when the

N

/

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Improved Movement ¢ 19

N ROBOTC
Pasl)
ovementi |
C >
e N
° L]
Moving Forward aquiz
NAME DATE
1. In the program below, which line or lines control how long the robot will move?
1 task main ()
2
3 motor [motorC] = 100;
4 motor [motorB] = 100;
5 waitlMsec (2000) ;
6 }
a. Line 1
b. Lines 4 &5
c. Line 6
d. This robot moves forever
2. Look at the code below. Write a second block of code that would cause the robot
to move at half the speed, but still move approximately the same distance.
1 task main ()
2 {
3 motor [motorC] = 100;
4 motor [motorB] = 100;
5 waitlMsec (2000) ;
6
7
8
9
10
11
12
13 }
\ J

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Moving Forward Quiz

ROBOTC

\

N

N

Moving Forward Code Dissection

Now that you understand the steps needed to download a program, which you learned through
downloading a sample program, let’s take a step back and figure out what all of this “code” is

really doing.

Here on the main screen we have several lines of code. Let’s walk through what each of these

commands “does”.

1{ task main ()) task main()
~

I ™ This line creates a task called main,
which contains the behaviors that
we want the robot to do.

mO‘tI:O]f [motorC] = 100; task main () marks the
waitlMsec (3000) ; beginning of a structure.

N O~ A WN

} |—————{body}
& J { and } “braces” surround the
body of the structure. The lines
between the braces tell the
program what commands to follow
as part of the main task.

_/
~

As you know, the code currently tells the robot to move in a circle. More literally, it tells the robot
to move “Motor C” forward for 3 seconds. Moving only one motor, or wheel, will make your robot

go in circles. The details of each command are as follows:

motor[] command

The motor[] cammand tells the robot to set a motor to run at a given power level. The
example below (taken from the program you ran) sets motor C to run at 100% power
forward. Note that every command in ROBOTC must end with a semicolon, just as every
English statement must end with a period.

Example:

motor [motorC] = 100;

wait1Msec() command

The command “wait1Msec” tells the robot to wait, for the given time in milliseconds.
The number within the parenthesis is the number of milliseconds that you want the robot
to wait. 3000 milliseconds is equal to 3 seconds, so the robot moves for 3 seconds.

Example:

waitlMsec (3000) ;

/

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Moving Forward ¢ 1

ROBOTC

ovement

J

N

MOVil‘lg Forward code Dissection (cont.)

N

In this lesson, you will modify the existing program code to create a Moving Forward

behavior with the robot.

1. Before making any changes, save the program with a new name. Go to “File”, “Save As”, and
rename this program to “Labyrinth”.

3 RobotC - MotorC Forward.c

5=0 EAEt View FRobot Window Help

e Chrl+M

la. Save program As...

Opeh and Compile
Opeh Sample Program

nil

Chrl+3

otorC] = 100;
sec (3000 2

Print. .. Chrl+FP
Prink Previews

= [1b. Browse to an

J T
>~

Savejr(| 9 RobolC Programs)] o=

D

My Recent
Documents

!

Deskiop

\$

My Documents

ter

=

by Compi

Filz name: (| Labyririth])

@

V| H save | —— 1d. Save

Select File > Save As... to save your
program under a new name.

appropriate folder
Browse to or create a
folder (on your desktop,
in your documents folder,
etc.) that you will use to
store your programs.

T1c. Rename program
Give this program the
new name “Labyrinth”.

by Metwork, Save as lype: |E Files [*.roc:”.c2”.cpp.” ngc:”.h:".ngh) V| l Cancel] Click Save.
2. Add a new line after the first motor command.
1 task main ()
2 {
3
4 motor [motorC] = 100;
5 2. Add this space
6 WwaitiMsec (3000) ; This is where we will add the
! second motor command in
7 the next step.
8 |}

/

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Moving Forward ¢ 2

L ROBOTC
A N
ovement
N 4
e N\
H o L]
Movi ng Forward code Dissection (cont.)
3. In order to make the robot go forward, you'll want both motor C and motor B to run
forward. The command motor [motorC]=100; made Motor C move at 100% power.
Add a command that is exactly the same, but addresses Motor B instead.
1 task main()
2 {
3
4 motor [motorC] 100;
5 (motor[motorB] = lOO;) 3. Add this code
: " This code is exactly the same as
6 waitlMsec (3000); the line above it, except that it is
7 directed at Motor B (right wheel)
8) instead of Motor C (left wheel).
4. Make sure your robot is on and that the robot is plugged in with the USB cable,
then go to the menu “Robot” > “Compile and Download”.
4a. Check connection
Ensure that your robot is turned on
and plugged in to the computer
through the USB cable
4b. Compile and Download
5 Battery & Pov Select Robot > Compile and
¢ Constructs Download Program to send
£ Debugger
Display your program to the robot.
Mators KT Brick
Sensors Platform Twpe
Sound
Timing IMokors and Sensors Setup
User Defined | Download Firmware
1 | 2400
Refresh Rate
o 4c¢. Press Start
Press the Start button on the
Program Debug menu that
appears, to run the program.
- %

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Moving Forward * 3

N ROBOTC
Al N
ovement
\C 5
4 N
H o L]
Movmg Forward code Dissection (cont)
5. Once the program is downloaded, you can either unplug the bot and navigate to your program
to run it, or you can keep it connected to the computer and click on the “Start” button.
End of Section
By examining what each line of code in the Sample Program did, we were able to figure out a
way to turn on the other motor on the robot as well. Both motors running together created a
forward movement. Proceed to the next section to begin experimenting with the other parts of
the program.
- /

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Moving Forward * 4

] ROBOTC
Al N
ovement |
o 5
4 N
(] d ° []
Moving Forward Timing Lesson
In this lesson, you will learn how to adjust the time (and consequently, the distance) the robot
travels in the Moving Forward behavior.
The robot moves forward for 3 seconds. This is a great start, but the end needs work.
l : Missed turn
The robot has traveled
too far and cannot make
the first turn in the maze.
| B A
1. Adjust the amount of time the robot lets its motors run, by changing the number value inside
the wait1Msec command.
1 task main ()
2 {
3
4 motor [motorC] = 100;
5 motor [motorB] = 100;
6 waitlMsec|(2000)) 1. Modify this code
7 Change the 3000 milliseconds in the
8 wait1Msec command to 2000 milliseconds.
- /

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797 Moving Forward ¢ 5

ROBOTC

N/

N

Moving Forward Timing (cont)

2. Compile and Download the program by going to “Robot” > “Compile and Download”.

&3 RoboiC - Labyrinth.c *

O =
Batkery & Pow

C Constructs
Display
Matars
Sensars
Sound
Timing

=2 3 e R R)

File Edit Wiew RGGEEES Window Help

N

Compile and Download Program FS

Fecompile Frogram

Debugger
AT Brick »
Platform Tvpe 3

Motors and Sensors Setup

Download Firmware

—

c] = 100;:
E] = 100;
ooy ;

2a. Compile and Download

Select Robot > Compile and
Download Program to send
your program to the robot.

—— 2b. Press Start

Press the Start button on the
Program Debug menu that

appears, to run the program.

End of Section. The wait1Msec command controlled how long the robot let its motors run. By
shortening the duration from 3000ms to 2000ms, we adjusted the total distance traveled as well.

m-_

Ready to turn

The robot stops in a good
position to begin its next
maneuver, a left turn toward
the next part of the path.

/

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Moving Forward * 6

ROBOTC

N/
N

Speed and Direction quiz

NAME DATE

1. In the code example below, the speed of the robot could be changed by manipulating the:

task main ()

{

100;
100;

1

2

3 motor [motorC]
4 motor [motorRB]
5

6

waitlMsec (4000) ;

a. motor brackets.
b. motor time.

c. motor power.
d. motor sensor.

2. In the section below, write code that makes the robot perform the following tasks in order:
a. Move forward at half speed for 3 seconds, then
b. Turn in place to the right for half a second (at any speed), then
c. Move reverse at full speed for 1 second

task main ()

{

1
2
3
4
5
6
7
8

9
10
11
12
13
14}

_ /

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797 Speed & Direction Quiz

N ROBOTC
paal N
ovement
N 4
4 N\
Speed and Direction Motor Power
In this lesson, you will modify the existing program to make your robot move at a slower
speed. This should result in more consistent movement.
Moving at slower speeds can help your robot to be more consistent. All you need to do is alter the
motor commands to turn the motors on with a power level lower than 100%.
1. Change the power levels in your motor[] commands to move at half speed.
1 task main ()
2 {
3
4 motor [motorC] . .
1. Modify this code
5 motor [motorB] Change the old 100 (100% power)
6 waitlMsec (2000) ; to 50 (50% power) to make the
robot move at half power. Do this
7 for both motor commands.
8 }
2. Download and run your program. Note that downloading automatically saves your program.
&3 RobotC - Labyrinth.c *
File Edit Wiew REGEEES Window Help
O E 2a. Compile and Download
Battery G poy oCOMPIE PrOQram Select Robot > Compile and
CConstructs | Dehugger Download Program to send
Display your program to the robot.
Makars MET Brick. 3 c] = 50;
SENSOrs Platfarm Type N B] = 50:
sound Motors and Sensors Setup a0y ;
Timing
Daownload Firmwate
Program Debug
2400
Fiefresh Fate
e St g 2b. Press Start
Press the Start button on the
5
Clear Log Program Debug menu that
appears, to run the program.
- /

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Speed & Direction ¢ 1

] ROBOTC
Pl N
ovement
e 94
4 N
L] L]
Speed and Direction motor Power (cont)
Checkpoint. The numeric value assigned to each motor in the motor[] commands represents
the % of power that the motors will run with. So far, we've changed them from full power to half.
Since your robot is traveling slower, it will now need to travel longer to go the same distance.
Distance changed
Traveling for the same amount
of time, but at a slower pace,
causes the robot to stop short of
its destination.
h \
3. Since the power has been halved, try doubling the time.
1 task main ()
2 {
3
4 motor [motorC] = 50;
5 motor [mot = 50;
6 waitlMseq (4000) 3. Modify this code
7 Since the motors are traveling at
half power, double the 2000ms
8 } duration to 4000m:s.
4. Download and run again.
File Edit View ‘Window _Help
O 4a. Compile and Download
Battery G Poy T oooPIG PTOTTEM Select Robot > Compile and
C Constructs | piehugger Download Program to send
Display your program to the robot.
Matars MAT Brick,
2400
gzziodrs Platform Type Refresh Rate
Timing Motors and Sensors Setup 1 i L 4b. Press Start
Download Firmware G Press the Start button on the
< o [m Clear Log Program Debug menu that
|| appears, fo run the program.
- /

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Speed & Direction © 2

N ROBOTC
A N
ovement
e 94
4 N\
L] L]
Speed and Direction motor Power (cont)
End of Section
Your robot is traveling approximately the same distance, but at a slower speed than before.
Traveling at this speed, the robot is able to maneuver more consistently, and its behaviors
are easier to see and identify.
Back again
The robot now travels the correct
distance again, but at a slower
speed than before.
- /

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797 Speed & Direction * 3

N ROBOTC
Pl N
ovement
O %4
4 N\
Speed and Direction Turn and Reverse
In this lesson, you will learn how to make the robot turn and back up using different
combinations of motor powers, and how to perform multiple actions in a sequence.
Setting both motors to half power makes the robot go slower. What do other combinations
of motor powers do?
1. Negative numbers make the motor spin in reverse, up to -100% power.
1 task main()
2
3
4 motor [motorC] =
_ 1a. Modify this code
5 motor [motorB] = Change both motors to run at -100% power.
&) walitlMsec (4000) ;
7
8 }
&3 RobotC - Labyrinth.c *
File Edit Wwiew N Wwindow _Help
= 2 and Download Program FS 1b. Compile and Download
Battery BPow T -CPIe Frogram Select Robot > Compile and
CConstructs | Debugger Download Program to send your
Display program to the robot.
Matars MAT Brick 3
2400
:z;;;rs Platform Type ¥ Fiefresh Rate
Timing Mokars and Sensors Setup - fT1 0 Tc. Press Start
User Defined | Downlaad Firmware s Press the Start button on the
1 - [m] Clear Log Program Debug menu that
|| appears, to run the program.
1d. Move Backward
The robot runs in reverse with both
motors set to -100% power.
- /
© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797 Speed & Direction * 4

ROBOTC

ovement

N/
N

Speed and Direction Turn and Reverse (cont)

2. A motor power of 0 makes the robot stop.

1| task main ()

2 {

3

4 motor [motorC] = 0; 2a. Modify this code

5 motor [motorB] =|0; Ch-onge both motors to run at 0% power.
6 walitlMsec (4000) ;

7

8| }

&3 RobotC - Labyrinth.c *
File Edit Wiew RGELES Window Help
O=E
Batkery & Pow

C Construcks Debugger

Display
Maokars MAT Brick Pl

2b. Compile and Download
Select Robot > Compile and
Download Program to send
your program to the robot.

Compile and Download Program FS
RECOmpile Frogran

2400
Fiefresh Fate

et e g 2c. Press Start
Press the Start button on the
St
Clear &ll | Clear Log Program Debug menu that
|| appears, to run the program.

SEnsars

Sound

Timing

User Defined | Dowrload Firmware
'1 =

PlatForm Type 3
Motors and Sensors Setup

[= T R R e R e = |

2d. Braking
The robot holds its position and applies
braking with both motors set to 0% power.

Try pushing the robot while the program
is running.

_ /

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797 Speed & Direction * 5

ROBOTC

ovement

N/

N

Speed and Direction Turn and Reverse (cont)

3. Giving different powers to the two motors causes the robot to turn in various ways.
Giving them opposite powers causes the robot to turn in place.

task main ()

{

1

2

3

4 motor [motorC]
5 motor [motorB]
6

7

8

waitlMsec (4000) ;

}

&3 RobotC - Labyrinth.c *
File Edit Wiew [‘Window _Help

3a. Modify this code
Change the motors to run at 100%
power in opposite directions.

N

= | e and Download Program FS

3b. Compile and Download

m H.ecompile Frogram

C Canstrocks Debugger

Display

Mokore NKT Brick. '
Sensars
Sound
Timing

Flatform Twpe 3
Motors and Sensors Setup

[z e R R e e R |

User Defined Download Firmware
'1 =

Select Robot > Compile and
Download Program to send
your program to the robot.

Clear &ll | Clear Log

2400
Fiefresh Rate
—_— . o 3c¢. Press Start

Press the Start button on the

Program Debug menu that
appears, to run the program.

3d. Point Turn Right

Making the left wheel go forward while
the right wheel goes backward causes
a “point turn” in place to the right.

/

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Speed & Direction * 6

Ll ROBOTC

ovement

N/

N

N

Speed and Direction Turn and Reverse (cont)

4. Making one wheel move while the other remains stationary causes the robot to “swing turn”
with the stationary wheel acting as a pivot.

1 task main()

2 {

3

4 motor [motorC] =|100; da. Modify this code

5 motor [motorB] =|0; Mo.ke one wheel move

6 waitlMsec (4000) ; while the holds its position.
7

8| }

&3 RobotC - Labyrinth.c *

File Edit Wiew [‘Window _Help
0= - Compile and Download Program FS 4b. Compile and Download
Battery i Pou T-ooompie Frogram Select Robot > Compile and

C Constructs | Debugger Download Program to send

your program to the robot.

Display
Mators MT Brick. [1]

2400
Refresh Rate

Sensors Flatform Twpe 3

Sound [alulx}
- Motars and Sensors Setup

Timing

User Defined Dawnload Firmware

T =

i o 4c. Press Start

Press the Start button on the

Program Debug menu that
|| appears, to run the program.

=23 e R R e

4d. Swing Turn Right

Making the left wheel go forward while
holding the right wheel stationary causes a
“swing turn” around the stationary wheel.

/

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797 Speed & Direction * 7

ROBOTC

N/

Mo

xment

N

Speed and Direction Turn and Reverse (cont)

Checkpoint

The following table shows the different types of movement that result from various
combinations of motor powers. Remember, these commands only set the motor powers.
A wait1Msec command is still needed to tell the robot how long to let them run.

Motor commands

Resulting movement

motor [motorC]=100;
motor [motorB]=100;

motor [motorC]=50;
motor [motorB]=50;

motor [motorC]=-100;
motor [motorB]=-100;

motor [motorC]=0;
0

motor [motorB]=

’

motor [motorC]=100;
motor [motorB]=-100;

motor [motorC]=100;
motor [motorB]=0;

N

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

)
Speed & Direction * 8

ROBOTC

ovement

N/

1
2
3
4
5
6
7
8

9
10
11
12

O

B E-E-E-E-E

task main ()

{

motor [motorC] =
motor [motorB] =
waitlMsec (4000) ;

motor [motorC]

walitlMsec (800) ;

=50¢
motor [motorB] = 50;

&3 RobotC - Labyrinth.c *
File Edit Wiew RGGEEES Window Help

==

Battery & Pow

C Construcks
Display
Matars
Sensors
Sound
Timing

User Defined

Compile and Download Program FS
HECampie Program

Debugger
T Brick b
FPlatform Tvpe 3

Motors and Sensors Setup

Download Firmware

6b. Add this code

Adding a left-point-turn behavior
after the moving-forward behavior
will make the robot move then turn.

The turn needs only about 0.8
seconds (800ms) to complete.

Speed and Direction Turn and Reverse (cont)

6. Finally, the robot will need to be able to perform multiple actions in a sequence. Commands in
ROBOTC are run in order from top to bottom, so to have the robot perform one behavior after
another, simply add the second one below the first in the code.

6a. Modify this code
Restore the first behavior to a
half-power forward movement.

N

1 =

2400
Fiefresh Fate

o

6¢c. Compile and Download
Select Robot > Compile and
Download Program to send
your program to the robot.

6d. Press Start

Clear &ll | Clear Log

e

Press the Start button on the
Program Debug menu that
appears, to run the program.

6e. Behavior Sequences
Placing behaviors one after
another in the code tells your
robot to perform them in
sequence.

The moving-forward behavior
in lines 4-6 of the program is
done first (at left). The turning
behavior in lines 8-10 follows
immediately afterward.

/

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Speed & Direction * 9

N ROBOTC
A N
ovement
e %4
4 N\
L] L]
Speed and Direction Turn and Reverse (cont)
End of Section
You now know how to program all the necessary behaviors to navigate the Labyrinth. However,
even at lowered speeds, the robot’s movements are not as precise as we might like. Continue
on to the Improved Movement section to learn how to clean up the robot’s motion.
One down...
The robot has completed
the first leg of its jouney,
and is ready for the next!
- /

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797 Speed & Direction * 10

ROBOTC
(-)

B
N

N

Obstacle Course Challenge

Challenge Description

This challenge includes obstacles which forces students to use sensors in order to get to the
goal area. The robot must first begin at the starting area, touch the wall, follow a line, get to
the calibration area using the Sonar, Touch, or Light sensor, and finally getting to the goal.

Materials Needed

* Black electrical tape * Ruler (or straight edge) * 4 Books
* Red electrical tape * 3 Styrofoam cups * 1 LEGO Box container
* Scissors (or cutting tool)

Board Specifications

’ LEGO
l/ Box
O

4'9.75" O |<—1 1.5"

T

1'5.75"

o) 4

—1

=: 3’ 91/ =|

Note: Diagrams are not drawn to scale

@ @ Follow the line while @ Goal area.
avoiding obstacles.
@ Touch the box. @ Get to this calibration area.

_ /

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797 Obstacle Course Challenge

Starting area.

ROBOTC
gl BN

N

-/
g
Forward Until Dark aquiz

NAME DATE

1. One reasonable way of finding a threshold for a light sensor would be to:
a. use the output value of the LED.
b. sum up the high and low readings and then divide that by two.
c. use the high reading and subtract the distance traveled.
d. calculate the average of the ambient light in the room.

2. What type of light does the NXT light sensor use?
a. Reflected halogen light
b. LED
c. Neon light
d. Fluorescent light

3. A high number reading from the light sensor could mean:
a. the light sensor is seeing a dark surface which reflects a small amount of light.
b. the light sensor is seeing a dark surface which reflects no light.
c. the light sensor is seeing a light surface which reflects a large amount of light.
d. the light sensor was unable to detect either a light or dark surface and cannot
make a consistent final reading.

4. A standard behavior to move until the robot sees a dark line on a light surface looks like
the following code. Writing directly on the code, change the program above to look for
a white line on a dark surface instead (assume the threshold value stays the same).

1 while(SensorValue (lightSensor) > 45)
2 {

3 motor [motorC] = 75;

4 motor [motorB] = 75;

5

5. What does it mean when the Light Sensor is in “Active Mode"?2
a. It is actively generating its own light using the built-in emitter.
b. The light sensor is actively controlling the motors.
c. The light source is turned off, and the sensor is actively searching for outside light.
d. The light sensor is broken, and you need to actively find a replacement.

_ /

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797 Forward Until Dark Quiz

PSP
LV2)
==
=]

«Q

ens

Forward Until Dark Light Sensor

the Touch and Ultrasonic Sonar sensors.

In this lesson, you will learn how the Light Sensor works, and how its feedback compares to

Touch Sensor

The Touch Sensor detects physical contact with the
orange frigger, and returns a SensorValue of 1 if it is
pressed in, or O if it is not.

Detects: Physical contact

Feedback: 0 if unpressed, 1 if pressed

Typical use: Bumper

Sample code: while (SensorvValue (touchSensor) == 0)

will run the while() loop as long as the
touch sensor is not pressed.

Ultrasonic Sensor

in centimeters as its SensorValue

-

Detects:
Feedback:
Typical use:

Sample code:

The Ultrasonic (sometimes called Sonar) Sensor sends
out pulses of sound and measures the time it takes for
the sound waves to bounce off an object and return.
Since the speed of sound is known, the sensor calculates
the distance based on the time, and reports the distance

Distance to object
Range to object in centimeters (1-250)
Obstacle detection and avoidance

while (SensorValue (sonarSensor) > 25)
will run the while() loop as long as there
is no object detected within 25 cm.

/

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Forward Until Dark / Light * 1

oo

Sensing

Forward until Dark Light sensor (cont)

And now, let’s look at a new sensor.

P

Detects: Reflected + Ambient light
Feedback: Brightness (0-100)
Typical use: Line defection

Sample code: while (SensorValue (lightSensor) > 40)
will run the while() loop as long as the
light sensor value remains brighter
than 40.

Light Sensor

The Light Sensor (in the normal Active mode) shines a
light out in a cone in front of it, and measures how much
light comes back to it, from either reflection or ambient
sources. See additional explanation below.

This is the Light Sensor. When turned on, it shines a cone of red light out from the red LED, and
measures how much of it comes back into the light detector through the clear lens.

Red lens
A cone of red light shines out
from the red LED.

Clear lens
A light detector measures
how much light comes back.

N /

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797 Forward Until Dark / Light ¢ 2

ROBOTC

2
LV2)
7
=)
«©

en

N/

N

The light sensor can detect the basic colors of objects and surfaces by aiming directly at them at
close range. Light-colored surfaces, like this bright grey table, reflect a large amount of the light,
and produce a high sensor reading. Dark-colored surfaces, like this strip of black electrical tape,
reflect very little light, and produce a low sensor reading.

High readings vs. low readings can therefore be used to distinguish light surfaces from dark
ones. To make this work for the while() loop, we'll need to use the same technique we used with
the Ultrasonic Sensor: set a threshold value to create a “cutoff” point between light and dark.

The sensor gives a light intensity reading of 0-100. But unlike the Ultrasonic Sensor, where the
number was in centimeters, the Light Sensor’s values are relative only, and do not correspond to
any set system of units. In fact, any light source — lamps, sunlight, shadows — and even the height
of the light sensor off the table can affect how much light the Light Sensor sees for the same
surface. So how can you set a fair cutoff (threshold) between light and dark?

In the next section, you will use the NXT’s View Mode to see for yourself what sorts of numbers
you get for different surfaces. You will use these real-world readings as reference values for light
and for dark. Your readings will give you measured “anchors,” that take into account the colors
of surfaces, and lighting conditions, and will allow you to make a proper choice of threshold.

N

/

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Forward Until Dark / Light * 3

ROBOTC

PSP
LV2]

ens

=
©

N/
N

Forward until Dark Thresholds 201

Reminder! Light sensor readings and other numbers used in this printed guide may
not be right for your environment. Your room’s lighting and the position of the sun and
shadows will cause light sensor readings to vary. Measure often!

So higher is brighter, and lower is darker, but if you remember from the last time we worked with
a large range of values, we set a threshold to separate the two values we care about. Before we
can set a threshold for the Light Sensor, we need to know what values mean ‘Light” and what
values mean “Dark.” Let’s take some readings to find out.

In this lesson, you will learn how the Light Sensor works, and how its feedback compares to
the Touch and Ultrasonic Sonar sensors.

1. View the Reflected Light values in View Mode.

- 2

b

Ta. Turn on NXT 1b. Navigate to View Mode

Turn on your NXT if it is not already on. Use the left and right arrow buttons to find
the View option, and press the Orange
button to select it.

Tc. Select Reflected Light 1d. Select Port 1
Use the left and right arrow buttons to find the Make sure your Light Sensor is plugged into
Reflected Light option, and press the Orange Port 1 on the NXT. Select Port 1 on screen.

button to select it.

Caution! Do not choose “Light Sensor*”’!
Light Sensor* (and all sensors with a * at the
end of their names) refers to the old RCX-
generation Light Sensor, and will not provide
the correct readings for the NXT Light Sensor.

_ /

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797 Forward Until Dark / Light * 4

ROBOTC
Sensing
N >
4 N
[]
Forward until Dark Thresholds 201 (cont)
Checkpoint
You are now seeing the sensor’s value live, in real time.
- =,
2. Place the robot so the light sensor is over the light surface, move your hand away (it can cast a
shadow and mess up your readings), and record the reading on the screen.
2a. Place robot over light surface 2b. Record “light” sensor value
Position the robot so that the light sensor On a separate sheet of paper, write down
shines on a light-colored surface. the Light Sensor value for a “light” surface.
- /

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797 Forward Until Dark / Light ¢ 5

ROBOTC
Sensing
N /
4 N
o
Forward until Dark thresholds 201 (cont)
3. Now, place the light sensor over a part of the dark line, and record that reading.
2a. Place robot over dark surface 2b. Record “dark”” sensor value
Position the robot so that the light sensor On a separate sheet of paper, write down
shines on a dark-colored line. the Light Sensor value for a “dark” surface.
4. A fair place to set the cutoff line is right in the middle between these two values. That would be
the average of these two values.
4a. Add “light” and “dark” values
| The first step in finding an average is to find
(value 1 + valve 2) the sum of the two values.
——————— = Threshold Value
(2) 4b. Divide sum by 2
Since there were two values (light and dark),
divide the sum by 2 to find the average.
4c. Write down Threshold value
This average is fairly situated, exactly
between the other two values. Record this
End of Section
With the threshold set at the point indicated by the red line, the world of light sensor readings
can now be divided into two categories: “light” values above the threshold, and “dark” values
below the threshold. This distinction will allow your robot to find the line, by looking for the “dark”
surface on the ground.
The threshold you have calculated marks the cutoff line for your lighting conditions. Any sensor
values above the threshold value will now be considered light, and any below it will be
considered dark.
\ J

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Forward Until Dark / Light * 6

ROBOTC

PSP
LV2)

ens

=t
o]

N/
N

Forward until Dark Wait for Dark

Reminder! Light sensor readings and other numbers used in this printed guide may
not be right for your environment. Your room’s lighting and the position of the sun and
shadows will cause light sensor readings to vary. Measure often!

So higher is brighter, and lower is darker, but if you remember from the last time we worked with
a large range of values, we set a threshold to separate the two values we care about. Before we
can set a threshold for the Light Sensor, we need to know what values mean ‘Light” and what
values mean “Dark.” Let’s take some readings to find out.

In this lesson, you will use the Light Sensor and the Threshold you calculated in the previous
section to adapt your Ultrasonic Wall Detector program to detect a dark line instead.

1. Open “sonar1”, the Ultrasonic Sensor program from the Wall Detection (Ultrasonic) lesson.

3 RoboiC - SourceCode
GIEN Edit |Wiew Robot window Help
Chrl+h

Ta. Open Program
Select File > Open and Compile
to retrieve your old program.

Chrl+5
G_ RobotC - sonarl.c ™

| Open

My Recent | 1b. Select the program
Documents Select “sonarl”.

@

Desktop

%

iy Documents

ber
2c. Open the program

File name: |sonar1 c A | (Open }
: Press Open to open

My Metwork, Files of type: | C Files [“rec: o opp;™ noc™ b ngh) - | Cancel the saved program

=
SCiE
) P
E| i
a
p

_ /

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797 Forward Until Dark / Light * 7

ROBOTC

.v‘,
o
-
-
«©

N/

N

Forward until Dark wait for Dark (cont)

Checkpoint. The program should look like the one below.

3 RobotC - sonarl.c *

File Edit ‘iew Robot Window Help

N

IR

[#)- Battery & Power Col 1
). Bluetoath 5
Buttons]
C Constructs 7
=}
9

Datalog
Debug
Display i0
- File Access 11
10 Man fice: 1

i

CcoOnst CIEENsS0rs SonarS3ensor
J/FVICLICE to edit 'wizard'

task maini)

while(ZensorValus (sonar3ensor)
i

created

>

2. Because we're going to be changing the program, save it under the new name “ForwardDark”.

&3 RobotC - sonarl.c*

N Edit Wieww Robot window Help

1= it
Open &nd Compile
Open pample Praogram

Prink. ..
Prink Presvigw

Ctrl+P

3 RobotC - sonar1.c *

Save As

L
Y]

2a. Save program as...

Chrl4+S
I —

2t tLIensors sonariensor
VICLICE to edit 'wizard!

k main()

while(SensorValue (sonar3ensor)

created

Select File > Save As... to save your
program under a new name.

>

Dlght)

Save in

B

—

2b. Browse

My Recent
Documents

®

Deskiop

My Documents

@

by Computer

Browse to and/or create
an appropriate folder.

2c. Name the program

Give this program
the name “ForwardDark”.

File: name:

&

(I ForwardD ark) v |

G Save D_

3d. Save the program

My Metwark Save as lype:

| C Files [*.ree e cpp.” ngc® b ngh) » |

Press Save fo save the program

[cance | with the new name.

/

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Forward Until Dark / Light * 8

.v‘,
1]
-
2
«©

-

Forward until Dark wait for Dark (cont)

3. Open the Motors and Sensors Setup menu, and go to the Sensors tab.

File Edit Wiew window Help
== Compile and Download Program FS
[#- Biattery & Po Recompile Pragram F7 S Sonar3ensor
Debugger edit 'wizard' created
MAT Brick. 3

orWValue (sonar3ensor) >

33 RobotC - ForwardDark.c

Motors and Sensors Setup

3a. Open “Motors

and Sensors Setup”

Select Robot > Motors and
Sensors Setup to open the
Motors and Sensors Setup menu.

Matars | A/D Sensors |

Inde:-:;ﬁﬁlﬁe/ Tvpe
TRobard I
motarB I | Mo mator b |
tnotarC I | Mo matar b |

3b. Select the A/D Sensors tab
Click the “A/D Sensors tab” on the
Motors and Sensors Setup menu.

4. Use the Motors and Sensors Setup interface to name the S1 sensor “sonarSensor”, then select
“SONAR 9V” as its type.

3 RobotC - ForwardDark. :

Motors and Sensors Setup

Index Harme
51 lightSensor
52 I | No Sensor A |
33 I | No Sensor v |
54 I | No Sensor v |

4a. Name sensor “lightSensor”
Enter the name “lightSensor”
in the ST name box.

4b. Make type “Light Active”
Use the dropdown box to make
“Light Active” the sensor type.

/

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Forward Until Dark / Light * 9

ROBOTC

PSP
LV2)

ens

=t
o]

N/
N

Forward until Dark wait for Dark (cont)

5. Modify the (condition) in the while() loop to watch for the lightSensor value to be greater than
(brighter than) the threshold.

Auto const tSensors lightSensor = (tSensors) S1;
Atte //*!!CLICK to edit ‘wizard’ created sensor
1
2 task main ()
K 5a. Modify this code
4 | Change the while() loop
: g > condition’s value so that
5 while (Sensor\/alue((llghtSensor))] ehock whefhor
6 { the Light Sensor’s
7 value is greater than the
threshold value you
8 motor [motorC] = 50; calculated in the last
9 motor [motorB] = 50; lesson.
10
11 }
12
13 motor [motorC] =(0;
rl rCl 5b. Modify this code
14 motor [motorB] ={0; Change the speed of
15 waitlMsec (2000) ; Motors C and B to 0
so that the robot stops
16 when it reaches a
17 } black line, rather than

reversing at 50% power.

6. Download and Run the program.

3 RobotC - ForwardDark.c

File Edit View B Window Help

6b. Download the program
Click Robot > Download Program.

1sors lightSensor
£ to edit 'wizard' created

é--BIuetooth
& Buttons

E! Program Debug

el 2400
E! Ciebug Status Refresh Fate

i [ﬁ ensors lightSensor
e e “—{Step-nt |_|nnm T oo ouIt WIZoro Creatoo 6c. Run the program
N " "
Stap Click “Start” on Thg onscreen
Clear Al e Program Debug window.

Tip: If your robot stops immediately

[+ Display 5 while (ZensorWalue (light3ensor) > or runs past the line without

ELF;LE Arcess g : stopping, check your light sensor
danfocass values using the View mode.

Lighting conditions (position of

the sun, room lighting) may have

changed, and your threshold may

need to be adjusted.

_ /

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797 Forward Until Dark / Light ¢ 10

& e ..
g
K
End of Section
When the robot sees “dark” (a value below the threshold), the (condition) is no longer satisfied,
and the program moves on to the stop commands, causing the robot to stop at the dark line.
As a final exercise, consider what would happen if you were to turn the lights off (or on) in the
room where the robot is running. Make your prediction, and test itl
- /

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797 Forward Until Dark / Light * 11

ROBOTC

ol
(V2]
--

ensing

N/

Line Tracking quiz

NAME DATE

N

1. Why can nested loops cause a problem in a program?

2, List two ways in which the “Line Tracking (Rotation)” program improves upon the
“Line Tracking (Basic)” program. Explain why they are actually improvements.

3. Answer the questions about the following segment of code:

if (SensorValue (lightSensor) > 45)
{

motor [motorC] 75;

}

else

{

motor [motorB] = -75;

0 NO U WN —

a. What will the robot do if the light sensor reads a value of 642

a. What if it reads a value of 452

N

/

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Line Tracking Quiz

Line Tracking Basic Lesson

Now that you're familiar with a few of the key NXT sensors, let’s do something a little more
interesting with them. This lesson will show you how to use the Light Sensor to track a line.

The trick to getting the robot to move along the line is to always aim toward the edge of the line.
For this example, we'll use the left edge.

Track the left side

The Light Sensor will be positioned
and programmed to track the left
side of the black line.

‘:-

Put yourself in the robot’s position. If the only dark surface is the line, then seeing dark means you
are on top of it, and the edge would be to your left. So you move toward it by going forward and
left by performing a Swing Turn.

Light Sensor sees dark Swing turn left
The robot is over the dark surface. The left Therefore, turn left toward the edge of the line.
edge of the line must be to the robot’s left.

_ j

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797 Line Tracking * 1

& e ..
g
K
[] (] .
Line Tracking Basic (cont)
The only time we should see Light is when we’ve driven off the line to the left. If we need to get to
the left edge, it's always a right turn to get back to line. Make the forward-right turn as long as
you're seeing Light, and eventually, you're back to seeing Dark!
Light Sensor sees light Swing turn right
The robot is now over the light surface. The left Therefore, turn right toward the edge of the line.
edge of the line must be to the robot’s right.
Put those two behaviors in a loop, and you will see that the robot will bounce back and forth
between the light and dark areas. The robot will eventually bobble its way down the line.
Track the line:
The robot will perform the line track
behavior to the end of the line
- /

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797 Line Tracking * 2

bv‘,
o
-
-
«©

N/
N

Line Tracking Basic (cont)

In this lesson you will learn how to use the light sensor to follow a line, using behaviors similar
to the Wait for Dark (and Wait for Light) behaviors you have already worked with.

1. Start with a new, clean program.

Edit Wiew Robot Window Help

1. Create new program
Compile Select File > New to create a

Open Sample Program blank new program.

Save Cirl+S

Save As.

Brint... Cirl+P
Print Preyiew
Page Setup...
Print Setup...

2. The first step is to configure the Light Sensor. Go to the Motors and Sensors Setup menu.
Click “Robot” then choose the “Motors and Sensors Setup”.

DD [) = D e

File Edit “igw Window Help

ODe d - Compile and Download Program FS

- Battery & Powe Compile Program F7

-- C.Constructs Debugger

(- Display

- Motors MXT Brick >

- Sensors

- Sound

& Timing ——— 2. Open “Motors and Sensors Setup”

& User Definad - Select Robot > Motors and Sensors Setup to
Download Firmuare open the Motors and Sensors Setup menu.

_ /

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797 Line Tracking * 3

ens

N/

Line Tracking Basic (cont)

3. Configure an Active Light Sensor named “lightSensor” on Port1.

' — . A/D Te
Motors and Sensors Setup BaS 3a. Open A/D Sensors Tab

| Motors| A/D Sensars

N

Click the A/D Sensors tab

3b. Name the sensor
Irndex Nf"me Name the Light Sensor on
51 lightSerwsor port S1 “lightSensor”.
52 Mo Sensor '
sa || [Mo Sensor v 3c. Set Sensor Type
S4

| | Mo Sensar v Identify the Sensor Type as a
“Light Active” sensor.

I_ ok l [Cancel] [Apply] [Help

4, Press OK, and you will be prompted to save the changes you have just made. Press Yes to save.

RobotC

] } { amEel } 4. Select “Yes”

Save your program when prompted.

5. Save this program as “LineTrack1”.

Save As
Save in:

My Recent
Documents

Desktop

%

My Docurments

ter

=
S -
"
. = |
=]
=

by Metwork.

|E}F|obot[ﬁ Programs Vl) _? =% -

E] ForwardDark,

E] Labyrinth

=) sonarl

E] touchl

E] WallTouch
5a. Name the program
Give this program the name
“LineTrack1”.

File name: LinEeTr.au::l::.‘I) V| Save _Dl_ 5b. Save the program

Save as type: |E Files [*.1oc:” o cpp.™ nge:™ h:".ngh) v| Cancel] Pr.ess Save fo save the program
with the new name.

N

/

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Line Tracking * 4

PSP
LV2)
0
)

«Q

en

N/
N

Line Tracking Basic (cont)

Checkpoint
Your program should look like the one below. The Light Sensor is configured, and we can now
start with the rest of the code.

<= RobotC - LineTrack1

File Edt Yew FRobot Window Help

D SRS N

§ Bathiry & Powir Contral Auto const tiensocs light3ensor = (t3snsors) 51;
® O Cordiuch huto ¥ oo oedit i E i

i Drsplay 1

= Maotors
w Sermors
Sourdd

 Tiring
® Liser Dafined

6. Let's start by putting the “easy” stuff in first: task main, parentheses, and curly braces.

task main ()) 6. Add this code

{ These lines form the main body
of the program, as they do in
every ROBOTC program.

o U A WN

7. Recall that in order to seek the left edge of the line, the robot must go forward-left for as
long as it sees dark, until it reaches the light area. Similar to the Forward Until Dark behavior
you wrote earlier, this uses a while () loop that runs “while” the Sensorvalue of the
lightSensor is less than the threshold (which you must calculate as before).

2 task main ()

3 {
4
-
5 while (SensorValue (lightSensor) < 45))— 7a. Add this code
6 ' This while () loop functions like
the Forward Until Dark behavior
7 you wrote earlier.
8 [motor [motorC] = 0; J It will run the code inside the braces
_ . as long as the Sensorvalue of
? motor [motorB] = 80; the lightSensor is less than the
10 threshold value of 45.
11 }
. __/
=y)
7b. Add this code
Instead of moving forward like
Forward Until Dark, the robot
should turn forward-left.
Left motor stationary, with right
motor at 80% creates this motion.
N %

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797 Line Tracking * 5

Al N
Sensing
NS 4
4 N
o L] .
Line Tracking Basic (cont)
8. The robot has presumably driven off the line, and must now turn back toward it. The robot
must turn forward-right as long is it continues to see the light table surface (i.e. until it sees the
dark line again).
2 task main ()
BN {
4
5 while (SensorValue (lightSensor) < 45)
6 {
7
8 motor [motorC] 0;
9 motor [motorB] = 80;
10
11 }
12
13 (while (SensorValue (lightSensor) >= 45) 8a. Add this code
- This while () loop is very
14 { similar to the one above it,
15 except that it will run the code
16 = [motorC] = 80; inside it while the light sensor
e | OIS 4 sees light, rather than dark.
17 motor [motorB] = 0;
18
19 } 8b. Add this code
20 This turns the robot forward-right by
running the left motor at 80% while
21 } holding the right motor stationary.
Checkpoint
The code currently handles only one “bounce” off and back onto the line.
However, to track a line, the robot must repeat these two operations over and over again.
This will be accomplished using another while () loop, set to repeat forever. “Forever” will
be achieved in a somewhat creative way...
Discussing Concepts Using Pseudocode \
\
Often when discussing programs and robot behaviors, it is useful for programmers
to use language that is a mixture of English and code. This hybrid language is
called “pseudocode” and allows programmers to discuss programming concepts in
a natural way. Pseudocode is not a formal language, and therefore there is no one
“right” way to do it, but it often involves simplifications to aid in discussion.
(continued on next page...)
\ J
- /

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797 Line Tracking * 6

Sensing
e %4
4 N\
o L]
Line Tracking Basic (cont)
9. Create a while () loop around your existing code. Position the curly braces so that both
of the other while loop behaviors are inside this new while loop. For this new while loop's
condition, enter “1==1", or “one is equal to one”.
2 task main ()
3| {
4 s
5 while (1==1))7 9. Add this code
6 { r The new while () |opp goes
around most of the existing
7 code, so that it will repeat
8 while (SensorValue (lightSensor) < 45) those behaviors over and over.
9 { The loop will run as long as
10 “1==1", or “one is equal
to one”. This is always true,
11 motor [motorC] 0; hence the loop will run forever.
12 motor [motorB] = 80;
13
14 }
15
16 while (SensorValue (lightSensor) >= 45)
17 {
18
19 motor [motorC] 80;
20 motor [motorB] = 0;
21
22 }
23
24 }
25 —/
26 }
Discussing Concepts Using Pseudocode (cont.) \
-
The program on this page might repeat forever
look like this in pseudocode: {
while (the light sensor sees dark)
{
turn forward-left;
}
while (the light sensor sees light)
{
turn forward-right;
}
}
J
- /

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797 Line Tracking * 7

Sensing
o /
4 N
o L] .
Line Tracking Basic (cont)
End of Section
Now that your program is complete, check to see if it works. Save your program, and then
download it to the robot and run. If you see that your robot is moving off the line in one direction,
it means that your threshold is set wrong. The robot thinks it’s seeing dark even on light, or light
even on dark, and it's just waiting to see the other, which probably won't happen if the values are
wrong. If, however, you see your robot bouncing back and forth, moving down the line, then your
robot is working correctly, and it’s time to move on to the next lesson.
- /

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Line Tracking * 8

N/
N

Line Tracking Better Lesson

In the previous lesson we learned the basics of how to use the light sensor to follow a line. That
version of the line tracker runs forever, and cannot be stopped except by manually stopping the
program. To be more useful, the robot should be able to start and stop the line tracking behavior
on cue. For example, the robot should be able to stop following a line when it reaches a wall at

the end of its path.

F

In principle, we should be able to do this pretty easily, all we need to do is change the “looping
forever” part to “loop while the touch sensor is unpressed.”

_ /

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797 Line Tracking * 9

oo

Seris' ng

N/

N

Line Tracking Better (cont)

N

In this lesson, you will adapt your line tracking program to stop when a Touch Sensor is
pressed, and then make it more robust by replacing risky nested loops with if-else statements.

1. Save your existing program from the previous lesson under a new name, “LineTrack?2”.

Z RobotC - LineTrack1
112 [=tn 1]y =1y o 4 (01 =)

la. Save program As...

Open Bnd Compile

Open Bample Program

Chr+h ? |

Select File > Save As... to save your
program under a new name.

15t tIensors bumper

VICLICE to edit 'wizard' created
Chr+3
I ... 1. Name the program
- ive this program the name
Prink. .. Chrl+P .
Fr!n ' “LineTrack?2"”.
A My Computer
E
File name: LineTra-::l::.'-? V| Q_ Save _D‘_ Tc. Save the program
by M etvwork, Save as lype: |EI Files [".roc” o cpp:”.ngc.” h;".ngh] A | [Cancel] :/rlfl’?sﬂ’?:\:'lee\t/? :Z:efhe program
2. Open the Motors and Sensors Setup menu.
Roba P
Filz Edit “iew Window Help
ODeld & Compile and Download Program FS
- Battery & Powe Recompile Program F7 lightSensor = (t3
edit 'wizard' created sensd
.Constructs Debugger
isplay
Motors MNXT Brick
eNsors

rvalue (light3ensor) < 45)

2. Open “Motors and Sensors

- User Defined [motork] = 75: Setup”
[motorE] = O Select Robot > Motors and Sensors
9 3 Setup to open the Motors and
10 Sensors Setup menu.
11 else
12 {

3. You will be adding a second sensor for this lesson. Configure a Touch Sensor called
“touchSensor” on S2.

3a. Open A/D Sensors Tab
Click the A/D Sensors tab

3b. Name the sensor

Name the Touch Sensor on
port S2 “touchSensor”.

3c. Set Sensor Type

Index Marme Type
51 Light &ctive v |
32 Tauch v
53 Mo Sensor M
34 I | Mo Sersor e !

Identify the Sensor Type as a
“Touch” sensor.

/

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Line Tracking * 10

Al N
Sensing
N %
4 N
o L]
Line Tracking Better (cont)
4. On your physical robot, plug the Touch Sensor into Port 2.
5. Press OK on the Motors and Sensors Setup menu.
Motors and Sensors Setup X
Matorz | &/D Sensors |
Index Mame Type
51 |Iight8ensor |Light Active ~ |
52 |T0uc:h v |
53 | |N0 Sensor v |
54 | |N0 Sensor v |
5. Press OK
Accept the changes to the sensor
setup and close the window.
N
Q Ok,] || Cancel] [Apply] [Help
J
_ /

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797 Line Tracking * 11

Pl N
Sensing
NS A
4 N
o L]
Line Tracking Better (cont)
6. Replace the “forever” condition 1==1 with the condition “the touch sensor is unpressed”,
the same condition you used to “run until pressed” in the Wall Detection (Touch) lesson.
This condition will be true when the Sensorvalue of touchSensor is equal to O.
2 task main ()
3 {
4
5 while (@ensor\/alue (touchSensor) == @7— 6. Modify this code
6 { Change the condition
in parentheses to check
7 whether the “touch sensor
8 while (SensorValue (lightSensor) < 45) is unpressed” instead.
9 { The condition will be true
10 when the touch sensor’s
value is equal to 0.
11 motor [motorC] = 0;
12 motor [motorB] = 80;
13
14 }
15
16 while (SensorValue (lightSensor) >= 45)
17 {
18
7. Elevate (“block up”) the robot so that you can test it without its wheels touching the ground.
Note that the light sensor now hangs in the air. Download and run your program.
7a. Block up the robot
Place an object under the robot
so that its wheels don’t reach
the table. The robot can now
run without moving.
File Edit “iew Balslslsls
= ¥ ram FS 7b. Download the program
D L= E Recompile Proaran F7 Click Robot > Compile and
Battery & Paow P 9 Download Program.
R il P ¥ TR 3 3
= g0;
= 0: 2400
Debug Status Fefresh Rate
] (| Start)-=espeed—Stopatel——nce 7c. Run the program
Click “Start” on the onscreen
Clear &0 | Cloar | Program Debug window, or
=l iselr e use the NXT’s on-brick menus.
_ %

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797 Line Tracking * 12

Line Tracking Better (cont)

Checkpoint
Check that your Line Tracking behavior is correctly responding to light and dark by placing light-
and dark-colored objects or paper under the light sensor.

Simulated dark line Simulated light surface

Using a dark-colored object (or the naturally low Place a sheet of white paper under the sensor
value of the sensor when held in the air like this), to simulate the robot traveling off the line and
confirm that the robot exhibits the correct motor onto the light table surface. Watch for the
behaviors when the sensor sees “dark”. motors to change behaviors accordingly.

We modified the program so that the (condition) of the while() loop would only be true as long as
the Touch Sensor was unpressed. When the sensor is pressed, the loop should end, and move on.

r;*r

Touch the Sensor
Press in the bumper
on the robot to trigger
the Touch Sensor.

Observe motors

Do the motors stop like
they should at the end
of the program?

Light/Dark again
Release the Touch
sensor, and see if the
robot still responds to
light and dark.

Light/Dark pressed
Hold down the Touch
Sensor bumper, and try
light/dark again. Does
anything happen?

N /

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797 Line Tracking * 13

A N
Sensing
N /
4 N\
° L]
Line Tracking Better (cont)
The robot responds strangely. When you pressed the touch sensor, it didn’t respond. But when you
held the touch sensor and waved the paper underneath it, the robot did stop. The touch sensor
seems to be doing its job of stopping the loop... sometimes? Let’s step through the code.
Key concept: While() loops do not continually monitor their
) (conditions). They only check when the program reaches the
2 task main () “while” line containing the condition.
S {
4
5 while (SensorValue (touchSensor) == (0) ¢——— a. Touch Sensor check
The program checks the
6 { condition only at this
7 point. It's true when we
T s e P T R e TR tart, so th
8 while (SensorValue (lightSensor) < 45) 4+ ;ges fﬁ]sideef?;ﬁgr&rgp.
9 {
10 b. Inner loop
11 motor [motorC] = 0; As long as the rosofk
continues to see dark,
12 motor [motorB] = 80; it enters and remains
13 in this loop.
14 } —>
115
16 while (SensorValue (lightSensor) >= 45)
17 {
18
What was the program was doing while the robot saw the dark object (or dark space below its
sensor)¢ The program reached and went inside the while(dark) loop, (b) above, and remained
inside as long as the Light Sensor continued seeing dark. Consider which lines check the Touch
Sensor. While the program was inside the inner while() loop, was it ever able to reach those lines?
2 task main ()
BN {
4
5 while (SensorValue (touchSensor) == 0)4—— Code must reach
6 { this point
7 The Touch Sensor is
8 while (SensorValue (lightSensor) < 45) only checked when
the program reaches
9 { this line.
10 .
i motor [motorC] = 0; Code is stuck here
12 motor [motorB] = 80; Until the !_|ghf Sensor
stops seeing dark,
E the program doesn’t
14 } leave this loop.
The current program contains flawed logic. Until the robot stops seeing dark, there’s no
way for the program to reach the line that checks the touch sensor! This “stuck in the inner loop”
problem will always be a danger any time we place one loop inside another, a structure called a
“nested loop”. We were only able to get the robot to recognize touch by waving the light object in
front of it to force it out of the while(dark) loop, and back around to check the Touch Sensor again.
- /

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797 Line Tracking * 14

A N
Sensing
e %4
4 N\
o L]
Line Tracking Better (cont)
The solution requires a little shift in thinking. The program as it is now involves running trough an
“inner” while loop, where it has the potential to get stuck, oblivious to the outside world. We need
to get rid of the nested loop. If, instead, we break down the robot’s actions into a series of tiny,
instantaneous decisions that will always pick the correct direction, we can avoid the need to go
“inside” a loop that might not end in time. Enter the 1£-else statement.
7. Replace the inner while () loops with a simpler, lightweight decision-making structure called
a conditional statement, or if-else statement.
/
8 if(SCMDUL”aluc (lj.ghtScuoLu_) 45) 7a. Modify this code
Replace while with if.
9 . .
If the light sensor value is
10 less than 45, run the code
11 motor [motorC] = 0; between the curly braces,
ly, th .
12 motor [motorB] = 80; once only, fhen move on
13
14 }
15
16 else 7b. Modify this code
17 Replace the while () line with
the keyword else.
18 If the code in the if statement’s
19 motor [motorC] = 80; brackets did not run, the code in
. the else statement’s brackets
20 motor [motorB] = 0; will instead (once). This should
21 only happen when the light
29 } sensor is seeing a value >= 45
(i.e .light).
23
In the same way that the while loop started with the word “while”, the if-else starts with the
word “if”. It, like the while loop, is followed immediately by a condition in parentheses. In fact, it
uses the same condition as the old program to check the light sensor. The difference is that the
if-else statement will only run the commands in the brackets once, regardless of the light or touch
sensor readings.
If the SensorValue of the lightSensor is less than the threshold, then the code directly after will
execute, once. The else, followed by another set of curly braces, represents what the program
should do if the condition is not true.
if (condition) General form
{ A Conditional (if-else) loops always follow the pattern shown here.
)1 If the (condition) is true, the true-commands will run.
? =e If the (condition) is false, the false-commands will run instead.
n ST CRT T Note, however, that whichever set of commands is chosen, they
are only run once, and not looped!
- /

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Line Tracking * 15

PSP
LV2)
)

«Q

ens

N/
N

Line Tracking Better (cont)

8. As a final touch, add a Stop motors behavior into the program, right before the final bracket.
This ensures that you'll see an immediate reaction when the robot gets out of the loop.

1J
16 else
17 {
18
19 motor [motorC] = 80;
20 motor [motorB]
21
22 }
23
24 }
25
26 {motor[motorc] — 0 .
. 8. Add this code

27 motor [motorB] Stop both motors. Because these

28 lines come outside the while ()
loop, they will run after the

29 } while () loop has completed.

|
o
<o

Il
o
N——~

End of Section
Save your program, download, and run.

The robot no longer gets stuck in the “inner” while() loop, and successfully tracks the line until the
touch sensor is triggered.

_ /

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797 Line Tracking * 16

PSP
L' 2)
y

ensing

N/
N

Line Tracking Timer Lesson

The behavior we programmed in the previous lesson is great for those situations where you want
the robot to follow a line straight into a wall, and stop. However, let’s see if there are any good
ways to make the robot line track until something else happens.

To make the robot go straight for 3 seconds, we gave it motor commands, followed by a
waitlMsec (time) command. How would this work with line tracking?

2| task main ()
Sl
& ¢ Location A
5 while (SensorValue (touchSensor) == 0) Does the wait1Msec
command go here?
6 {
7
8 if (SensorValue (lightSensor) < 45)
9 {
10
11 motor [motorC] = O;
12 motor [motorB] = 80;
¢ Location B
13 Here?
14 }
15 \
16 [waithsec (3000) ; Location C
1 J How about here like this?
18 else
19 {
20
21 motor [motorC] = 80;
22 motor [motorB] = O; .
< Location D
23 Or here?
24 }
25
26 }
27
28 motor [motorC] = O0; Option E
29 motor [motorB] = 0; Both B and D together.
30
31 }

Which one of the above locations is the right place to put the waitlMsec command?

The correct answer is: none. There is no right place to put a waitlMsec command to get the
robot to line track for 3 seconds. Wait1Msec does not mean “continue the last behavior for this
many milliseconds,”it means, “go to sleep for this many milliseconds.”

You've really told the robot to put its foot on the gas pedal, and go to sleep. That doesn’t work
when the robot needs to watch the road. Instead, we'll keep the robot awake and attentive, using
a Timer (rather than just Time) to decide when to stop.

_ /

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797 Line Tracking * 17

PSP
LV2)
0
)

Qo

en

N/

Line Tracking Timer (cont)

Your robot is equipped with four Timers, T1 through T4, which you can think of as Time Sensors,
or if you prefer, programmable stopwatches.

Using the Timers is pretty straightforward: you reset a timer with the ClearTimer () command,
and it immediately starts counting time.

Then, when you want to find out how long it’s been since then, you just use timel [TimerName],
and it will give you the value of the timer, in the same way that SensorValue (SensorName)
gives you the value of a sensor.

ClearTimer (TimerName) ; Tlmer Tl PS

R Timers should be reset when you are ready to start counting.

time1[TimerName] represents the timer value in milliseconds
since the last reset. It is shown here being used to make a while
loop run until 5 seconds have elapsed.

N

N

/

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797 Line Tracking * 18

bv‘,
o
-
-
«©

N/

N

Line Tracking Timer (cont)

N

In this lesson you will learn how to use Timers to make a line-tracking behavior run for a set

amount of time.

1. Open the Touch Sensor Line Tracking program “LineTrack2”.

3 RobotC - SourceCode

Ta. Open Program

Edit | e e

ChrlHm

Ctrl+5

3 RobotC - SourceCode

Open

Select File > Open and Compile to
retrieve your old program.

1b. Select the program

Select “LineTrack2”.

Look in: | |- RuobotC Programs
_% E:] FarwardDark
My Recent
Docurients =
== E:] touchr
u LE i E] wallTouch
Desktop
by Documents
Mu Computer
g File narne:
ty Metwork Files of type:

| LineTrack2 hd |

Tc. Open the program

Open]) —

=/

| C Files [*.rec;™ . cpp:”.nge;” b ngh) w |

Press Open to open the saved

Cancel]

program.

2. Save this program under a new name, “LineTrackTimer”. (Note the “r

3 RobotC - LineTrack?

u n

at the end of “timer”)

Edit—"iemr— Rt wirmioe— el

2a. Save program Aes...

Mew Chrl+M

. 59

Select File > Save As... to save your
program under a new name.

Oper and Compile &
Oper| Sample Program e

Chrl+3
£
(T —

Print... Chri+P b

Print Presview L
=

onst tSensor=z lightSensor
onst tlensors touchlensor
SFVICLICE to edit 'wizard!

created

2b. Name the program

ask

vt

whiile (SensorValue (touch3ensor)

Give this program the name
=1 “LineTrackTimer”.

My Computer

Q File name: ([m v |

2c¢. Save the program

G Save h-—

by M etwork, Save as tppe:

=/

| C Files [".rec” ;" cpp.”.nagc.” h:*.ngh) v |

Press Save to save the program

C. | .
[Corecel | with the new name.

/

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Line Tracking * 19

Line Tracking Timer (cont)

Checkpoint
The program on your screen should again look like the one below.

task main ()

{
while (SensorValue (touchSensor) == 0)
{
if (SensorValue (lightSensor) < 45)
{
motor [motorC] = O;
motor [motorB] = 80;
}
else
{
motor [motorC] = 80;
motor [motorB] = O;
}
}
motor [motorC] = 0;
motor [motorB] = 0;
}

3. Before a timer can be used, it has to be cleared, otherwise it may have an unwanted
time value still stored in it.

task main ()

{

(ClearTimer (T1) ;) 3. Add this code

while (SensorValue (touchSensor) == 0) the loop begins.

{

Se oo -~ E g <

N

Reset the Timer T1 to 0 and
start it counting just before

j

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Line Tracking ¢ 20

PSP
LV2)
==
=]

«Q

ens

N/
N

Line Tracking Timer (cont)

4. Now, change the while loop’s (condition) to check the timer instead of the touch sensor.
The robot should line track while the timer T1 reads less than 3000 milliseconds.

2 | task main ()

B {

4

5 ClearTimer (T1) ;

6

7 (while(timel[Tl] < 3000)) 4. Modify this line

8 T Base fhe decmor} about whether
fo continue running, on how

9 much time has passed since T1's

10 if (SensorValue (lightSensor) < 45) lostreset

11 {

12

13 motor [motorC] = O0;

14 motor [motorB] = 80;

15

16 }

17

18 else

19 {

20

)
\
§
)
b)
>

End of Section
Download and Run.

Line Tracking for Time(r)
The robot tracks the line for a set
amount of time. But is time really
what you want to measure?

ROBOTC gives you four different timers to work with: T1, T2, T3, and T4. They can be reset and
run independently, in case you need to time more than one thing. You reset them the same way
— ClearTimer (T2) ; — and you check them the same way — timel [T2].

Still, there’s the issue of fiming itself. Motors, even good ones, aren’t perfectly precise. By
assuming that you're going a certain speed, and therefore will go a certain distance in a set
amount of time, you are making a pretty bold assumption.

In the next part of this lesson, you'll find out how to track a line for a certain distance, instead of
tracking for time and hoping that it equates to the correct distance.

N /

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797 Line Tracking * 21

Line Tracking Rotation

In this lesson we'll find out how to watch for distance, instead of watching for time and hoping that
the robot moves the correct distance, like in our previous program.

NXT Motors
Rotation sensors are built into
every NXT motor.

A rotation sensor is a patterned disc attached to the inside of the motor. By monitoring the
orientation of the disc as it turns, the sensor can tell you how far the motor has turned, in
degrees. Since the motor turns the axle, and the axle turns the wheel, the rotation sensor can tell
you how much the wheel has turned. Knowing how far the wheel has turned can tell you how far
the robot has traveled. Setting the robot to move until the rotation sensor count reaches a certain
point allows you to accurately program the robot to travel a set distance.

N

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

%
Line Tracking * 22

Line Tracking Rotation (cont)

Review

The last program we're going fo visit in the Line Tracking lesson is perhaps the most useful
form, but it's taken us awhile to get here. Progress in engineering and programming projects is
often made in this “iterative” way, by making small, directed improvements that build upon one
another. Let’s quickly review what we have done in some of the previous lessons.

We started with figuring out that a line tracking behavior consists of bouncing back and forth
between light and dark areas in an effort to follow the edge of a line.

N /

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797 Line Tracking * 23

N

Line Tracking Rotation (cont)

We then implemented a naive version of the line tracking behavior using while() loops, inside

other while() loops.

task main ()

{

while (1l == 1)
{

while (SensorValue (lightSensor)

{

motor [motorC] 0;
motor [motorB] = 80;

}

while (SensorValue (lightSensor)

{

motor [motorC] = 80;
motor [motorB] 0;

But, we found that the program could get stuck inside one of those inner loops, preventing it from
checking the sensor that we wanted to use to stop the tracking.

J

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Line Tracking * 24

N

Line Tracking Rotation (cont)

We then implemented if-else conditional statements, which allow instantaneous sensor checking,
and thus avoid the “nesting” of loops inside other loops, which had caused the program to get stuck.

if (SensorValue (lightSensor) < 45)

{
motor [motorC] = O;
motor [motorB] = 80;
}
else
{
motor [motorC] = 80;
motor [motorB] = O;
}

Then, we upgraded from checking a Touch Sensor, to being able to use an independent timer to
determine how long to run the line tracker.

task main ()

{
ClearTimer (T1) ;

while (timel[T1] < 3000
{

if (SensorValue (lightSensor) < 45)

{
motor [motorC] = O;
motor [motorB] = 80;
}
else
{

j

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797 Line Tracking * 25

bv‘,
o
-
-
«©

N/

N

N

Line Tracking Rotation (cont)

Now, let’s improve upon the Timer-based behavior by using a sensor more fundamentally
connected to the quantity we wish to measure: distance traveled, using the Rotation Sensor.

In this lesson you will learn how to use the Rotation Sensors built into every NXT motor to
make a line tracking behavior run for a set distance.

1. Start by opening the Line Tracking Timer Program “LineTrackTimer”.

< RobotC - SourceCode
Edit | e e

ChrlHm

Ta. Open Program
| Select File > Open and Compile to
retrieve your old program.

Ctrl+s

5 RobotC - SourceCode

Lok in: | |- RaobotC Programs
L E] ForwardDark.
Lé E] Labyrinth
My Recent E:] LineTrackz
D ocuments
= E] sonarl
@ 2] toucht - 1b. Select the program
Desklop [£] wallTouch Select “LineTrackTimer”.
iy Documents
My Computer
g File name: |LineTrackTimer V| [Opeh] ———— Tc. Open the program
e [Fles P 1o67"opp? o b | [Press Open to open the saved
|y M el iles of type: iles [“roc o cpp:” nge:™ b ngh) A ance program.
2. Save this program under a new name, “LineTrackRotation”.
&3 RobotC - LineTrackTimer
1N Edi 2a. Save program As...

Select File > Save As... to save your
program under a new name.

Mew Chrl+H =] ‘1?|

Open snd Compie const tSensors lightSensor
Open Bample Program const t3ensors touchSensor

ﬁi Chri+5 | J/FVICLICK to edit 'wizard' created

Prink ChltP vask eIty 2b. Name the program
Print Preview i _] S}l_ve this progrgm"the name
Bans Sahin whilk (SensorValue (touch3ensor) =4 LlneTrc:ckRo'ra‘rlon .
e
by Computer
=
File riamie: (([CineT ckFotation) v| ([_sae_|§—— 2c. Save the program
Press Save to save the program
by Metwork, Save as type: |E Files [*.roc;” e cpp.” nge:” ;" ngh) - | Cancel with the new name.

/

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797 Line Tracking * 26

A N
Sensing
NG A
4 N
o L]
Line Tracking Rotation (cont)
Checkpoint
Your starting program for this lesson should look like the one below.
2| task main ()
3 {
4
5 ClearTimer (T1) ;
6
7 while (timel [T1] < 3000)
8 {
9
10 if (SensorValue (lightSensor) < 45)
11 {
12
13 motor [motorC] = 0;
14 motor [motorB] = 80;
15
16 }
17
18 else
19 {
20
21 motor [motorC] = 80;
22 motor [motorB] = 0;
23
24 }
25
26 }
27
28 motor [motorC] = 0;
29 motor [motorB] = 0;
30
BN)
It's time to start changing the program to use the Rotation sensors. Rotation sensors have
no guaranteed starting position, so, you must first reset the rotation sensor count. It will take
the place of the equivalent reset code used for the Timer.
In the robotics world, the term “encoder” is often used to refer to any device that measures
rotation of an axle or shaft, such as the one that spins in your motor. Consequently, the ROBOTC
word that is used to access a Rotation Sensor value is nMotorEncoder [MotorName].
Unlike the Timer, which has its own ClearTimer command, the rotation sensor (motor encoder)
value must be manually set back to zero to reset it. The command to do so will look like this:
Example:
nMotorEncoder [motorC] = 0;
_ %

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797 Line Tracking * 27

Line Tracking Rotation (cont)

that motor to 0.

task main ()

3. Start with the left wheel, attached to Motor C on your robot. Reset the rotation sensor on

{
(nMotorEncoder[motorC] = O;)
while(timel[T1] < 3000)
{
if (SensorValue (lightSensor)
{
motor [motorC] = O0;
motor [motorB] = 80;
}
else
{
motor [motorC] = 80;
motor [motorB] = O;
}
}
motor [motorC] = O0;
motor [motorB] = 0;
}

N

< 45)

3. Modify this code

Instead of resetting a Timer,
reset the rotation sensor in
MotorC to a value of 0. Replace
ClearTimer (T1) ; with
nMotorEncoder [motorC]=0;

j

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Line Tracking ¢ 28

Line Tracking Rotation (cont)

while (timel [T1] < 3000)
{

if (SensorValue (lightSensor) < 45)
{

motor [motorC] = O0;
motor [motorB] = 80;
}
else
{
motor [motorC] = 80;
motor [motorB] = O;
}
}
motor [motorC] = O0;

motor [motorB]

Il
(@]
~e

N

4, Reset the other motor’s rotation sensor, nMotorEncoder [motorB] 0;
task main ()
{
nMotorEncoder [motorC] = 0;
(nMotorEncoder [motorB] = O;) 4. Add this code

Reset the rotation sensor in
MotorB to 0 as well.

j

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Line Tracking ¢ 29

Line Tracking Rotation (cont)

5. The NXT motor encoder measures in degrees, so it will count 360 for every full rotation
the motor makes. Change the while () loop's condition to make this loop run while the
nMotorEncoder value of motorC is less than 1800 degrees, five full rotations.

task main ()

{
nMotorEncoder [motorC] = 0O;
nMotorEncoder [motorB] = 0O;
while((nMotorEncoder[motorC] < 1800))—5.Modifythiscode
{ Set MotorC to run for five full
rotations or 1800 degrees.
if (SensorValue (lightSensor) < 45)
{
motor [motorC] = O;
motor [motorB] = 80;
}
else
{
Checkpoint

Save, download and run your program. You may want to mark one of the wheels
with a piece of tape so that you can count the rotations.

_ j

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797 Line Tracking * 30

N

Line Tracking Rotation (cont)

6. We only checked one wheel and not the other. Add a check for the other motor’s encoder
value to the condition. The {condition} will now be satisfied and loop as long as BOTH motors
remain below the distance threshold of 1800 degrees.

task main ()

{

nMotorEncoder [motorC] = 0;
nMotorEncoder [motorB] 0;

while (nMotorEncoder [motorC] < 1800(&& nMotorEncoder [motorB] < 1800))
{

6. Add this code
This change sets the condition

to run while “the motor encoder
on motorC reads less than 1800
degrees, AND the motor encoder
for motorB also reads less than
1800 degrees.

End of Section

Download and run this program, and you will see that on curves going to the left, where the right
motor caps out at 1800 first, this program will stop sooner than the one that just waited for the
left motor (remember, the left motor is traveling less when making a left turn).

Take a step back, and look at what you have. Your robot is now able to perform a behavior
using one sensor, while watching another sensor to know when to stop. Using the rotation sensor
means that your robot can now travel for a set distance along the line, and be pretty sure of how
far it's gone. These capabilities can be applied to more than just line tracking, however. You can
now build any number of environmentally-aware decision-making behaviors, and run them until
you have a good reason to stop. This pattern of while and conditional loops is one of the most
frequently used setups in robot programming. Learn it well, and you will be well prepared for
many roads ahead.

J

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797 Line Tracking * 31

ROBOTC

N/
N

Volume & Speed aui:

NAME DATE

1. The program below makes the robot:

1 const tSensors soundSensor = (tSensors) S1;
2

3 task main ()

4 {

5 motor [motorC] = SensorValue (soundSensor) ;

6 motor [motorB] = SensorValue (soundSensor) ;

7 walitlMsec (10000) ;

8 }

a. travel at a speed that varies continually based on the value of the sound sensor, for 1 second.
b. travel at a set speed based of the initial value of the sound sensor, for ten seconds.

c. travel at a speed that varies continually based on the value of the sound sensor, for 10 seconds.
d. travel at a set speed based of the initial value of the sound sensor, for one second.

2. Explain, in terms of “values”, why the amount of sound you made affected how quickly
the robot moved in the Speed Based on Volume program.

_ /

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797 Volume & Speed Quiz

ROBOTC
\
NG /
4 N\
Speed Based on Volume values & Assignment (Part 1)
The Sound Sensor is the last of the standard NXT sensors. In essence it's a kind of microphone
which senses amplitude (how loud or soft a sound is), but not anything else about it. The Sound
Sensor, like the Light Sensor, reports values from 0-100 which do not correspond to any specific
standard scale.
Sound Sensor
The Sound Sensor has an
orange foam pad which
resembles a microphone
- /

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797 Volume & Speed ° 1

ROBOTC

e ™
Sensing

\ B2

4 N

Speed Based on Volume values and Assignment (Part 1) (cont.)

In this lesson you will learn how to use the Sound Sensor to manipulate your robot’s motors

1. Start by opening a new program.

& RobotC - SourceCode

1. Create new program

=z Compile Select File > New to create a
Open Sample Program blank new program.
Save Cirl+5
Save As...
Print... Cirl+P
Print Preyview
Page Setup...

2. Open the Motors and Sensors Setup menu to configure the Sound Sensor.

& RobotC - SourceCode

Eile Edit “iew RS VWindow Help

D Compile and Download Program FS

Battery & Powe Compile Program F7

C.Constructs Debugger

Displary

Motors MNXT Brick 4

Sensors i s

Sound Platform Tyne

Timing 2. Open “Motors and Sensors Setup”
Select Robot > Motors and Sensors Setup to

User Defined Download Firrmveare up
open the Motors and Sensors Setup menu.

_ /

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797 Volume & Speed * 2

ROBOTC

s
L9 2)

ehs

7

ing

N/

N

Speed Based on Volume values and Assignment (Part 1) (cont.)

3. Configure the sensor on port 1 to be a “SoundDB” sensor named “soundSensor”.

'Motors and Sensors Setup

1

] ot e |
Indes Type
5. (sound DB 7 D
52 |N0 Sensor v|
53 |N0 Sensor v!
54 | Mo Sensar W |
(L_oxJ[cancel J[Aoy J[Heb

N

3a. Name the sensor
Name the Sound Sensor on
port ST “soundSensor”.

3b. Set Sensor Type
Identify the Sensor Type as a
“Sound DB” sensor.

3c. Click OK
Click the “OK” button to
save your changes.

4. You will be prompted to save the changes you have just made. Press Yes to save.

4. Select “Yes”

Save your program when prompted.

5. Save this program as “SoundValue”.

Save As

-

Recent
Fr—
L
Desklop

9

ky Documents

My Cormputer

by Network,

Save in: | I Training Samples

5 © &2 E-

[£] Labyrinth

[LineTrackl

[£] LineTracking2

(2] LineTrackRotation
[E] LineTrackTime

[] LineTrackTimer
() MotorC Forward

5a. Name the program

File name: 5 oundy alus

~| w— 5b. Save the program
Save as lype: C Files [".rco;”. ¢ cpp:”.nge;™ hy".ngh) w | Cancel

Give this program the name
“SoundValue”.

Press Save to save the program
with the new name.

/

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797 Volume & Speed * 3

ROB

OoTC

oensing

N

N

Speed Based on Volume values and Assignment (Part 1) (cont.)

The Sound Sensor is now configured. Now, start the program by creating a task main() structure,
then add a forward movement command for 10 seconds with both motors at 50% power.

1 task main ()

2 {

3 motor [motorC] = 50;
4 motor [motorB] = 50;
5 waltlMsec (10000) ;

6

Checkpoint

Let’s analyze what we're telling the robot to do. The basic motor command sets a given
motor’s power level. In this case, you're setting Motor C and B’s power level to 50. 50 is
just a number. If you wanted to set the power to 25, you would put 25 here. 100 works

too. Really, any number value will do....

The Sound Sensor reading is also a number value. If the Sound Sensor is reading a
sound level of 40, SensorValue(soundSensor) is the number value 40! We could simply
put SensorValue (soundSensor) in place of the number we've been using, and the
motor power would be set to the Sound Sensor’s value! Let’s try it.

CONsSt ToEnNSOrs Soundoensor

SensorValue (soundSensor)
task main()

100
\ j, 25
motor [motorC] = /‘/_/ /

motor [motorEB] 50:;

valtlMsec (10000

N

/

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Volume & Speed ° 4

ROB

OoTC

Yensing

N/

with the sensor value.

task main ()

{

motor [motorB] SensorValue (soundSensor) ;

motor [motorC] =|SensorValue (soundSensor) ,]
walitlMsec (10000) ;

o A WN =

6. Modify the code

Replace the number values of
50,to the value of the Sound
Sensor, S1.

Speed Based on Volume values and Assignment (Part 1) (cont.)

6. Motor powers are number values. You can replace any number value with another, like
changing a 50 to 75 or 100. SensorValue(soundSensor) is also a number. Replace 50

Checkpoint. In theory, our program should now work like this:
¢ The Sound Sensor reads the amount of sound in the environment

and slow for quiet

N

* The Sound Sensor sets the motor power to be equal to the sensor’s numeric value
* The robot should run at a speed determined by the Sound Sensor reading — fast for loud,

N

/

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Volume & Speed °* 5

ROHOTC
T
sensin m
; i
4 N
Speed Based on Volume values and Assignment (Part 1) (cont.)
7. Save, download, and run your program. Clap your hands to change the sound sensor value.
7a. Make some noise! 7b. Observe the (lack of) reaction
Run the program then clap your hands to The robot doesn’t seem to do anything different...
change the sound sensor value.
End of Section
The robot’s reaction to the level of sound in the environment was pretty disappointing
- nothing happened. In the next section, we'll take a look at what’s going on, where our
understanding went wrong, and how the problem can be fixed.
- /

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797 Volume & Speed * 6

Sp&&d Based on Volume values & Assignment (Part 2)

(In this lesson you will make the robot’s motors use the Sound Sensor’s values in real-time.

Try running the robot again, but make the sound just as you press the Start button.

Clap and Run Observe the behavior
This time, clap (or talk into the Sound Sensor) The robot moves much faster.
just as you press the Start buton.

The robot is clearly responding to sound levels, but not at the right time. Remember the line
tracking behavior? The wait1Msec command tells the robot to go to sleep for a period of time.
Going to sleep means the robot isn’t watching the sound sensor or updating motor values!

If we want to keep the motor’s power level up to date with the sensor, we will need to make
sure that the power level command gets run over and over. We'll need to use a while loop
and a Timer.

N

j

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797 Volume & Speed * 7

ROBOTC
Pl N
yensing
N >4
4 N
Speed Based on Volume values and Assignment (Part 2) (cont.)
1. Delete the wait statement, and add a while() loop around the motor behaviors.
1 task main ()
2 { ———
3 while () 1a. Add this code
4 Place the while loop
{ so that the motor
5 motor [motorC] = SensorValue (soundSensor) ; commands go inside
6 motor [motorB] = SensorValue (soundSensor) ; its curly braces.
7 C eV WV) The (condition) is not
WS SECAACAC Ay yet specified.
8
9 1}
1b. Delete this line
We don't want the robot “sleeping”
when it needs to update motor powers.
2. Timers must first be initialized, so add a ClearTimer(T1) just before the loop. Check the timer
in our while loop condition, we use timer1[T1] less than 10,000 milliseconds, or 10 seconds.
1 task main ()
2 {
3 | —(ClearTimer (T1) ;)
4 while((timel [T1] < 10000))
5 {
6 motor [motorC] = S¢nsorValue (soundSensor) ;
7 motor [motorB] = S¢nsorValue (soundSensor) ;
8 }
9 }
2a. Add this code 2b. Add this code
- The (condition) will now check whether
Timers must be reset before use. the timer, T1, is less than 10000ms
(10 seconds). The loop’s {body} will
run while this is true, i.e. less than 10
seconds have passed since the reset.
_ %

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Volume & Speed ° 8

Speed Based on Volume Vvalues and Assignment (Part 2) (cont.)

3. Save, download, and run your program.

Run the program Observe the behavior
Run the program and clap your hands The robot moves depending on how much
repeatedly. noise it defects!

End of Section

The robot is now checking the sensor repeatedly, and updating the motor power with the new
sensor values as quickly as it can, over and over again. As a result, the robot is now responsive to
new sound levels in the environment. Rather than just on or off, loud or soft, we've programmed
the robot to change the motor power level in direct proportion to the sound level. This is a
powerful way to use sensor values. It takes advantage of their numeric nature to link a sensor
value with another numeric value, motor power output.

In the next Unit’s challenges, you'll have additional opportunities to look even more deeply into
the nature of numbers and other data types in ROBOTC. For the immediate future, we think you'll
find this Volume Based on Speed behavior helpful on the Obstacle Course. See you on the field!

- J

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797 Volume & Speed * 9

ROBOTC

N/
N

Wall Detection (Touch) quiz

NAME DATE

Mooy | AT Seraony

SN | [y

2 | [Ty — »
R | Mo Saracr ™
se! [T Mt Sarncr -]

x| [ocaem | [| [iwe

1. The recommended method of configuring sensors in ROBOTC is to use the Motors and Sensors
Setup menu shown above.
a. True
b. False

2. What form does feedback from the Touch Sensor take?
a. A number between 0 and 255, indicating how hard the button is being pressed.
b. A number, either O or 1, indicating Pressed or Not Pressed.
c. Pounds per square inch of pressure.
d. A or B, depending on how the user configures the sensor.

3. In plain English (or pseudocode), describe what the following code does.

1 while (SensorValue (touchSensor) == 1)
2 |

3 motor [motorC] = 100;

4 motor [motorB] = 0;

S|}

4. In general, when does a while loop run the body of its code?
a. When its condition is true.
b. When its condition is false.
c. When the sensor gives feedback above the value of threshold.
d. If the motor has been given a power level and assigned a wait state in milliseconds.

_ /

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797 Wall Detection Touch Quiz

Sensing
O %4
4 N
]] L]
Wall Detection Touch vs. Timing
We've learned a lot about how to make the robot move, including how to make it go forward and
backward for specific lengths of time, how to adjust its speed, and how to make it go as straight
as possible. But motor control alone won't be enough to let the robot to stay on the obstacle
course below, because we don’t know exactly where the robot will start.
2 4—@—— Turn left
To get from position 1 to position 2,
the robot has to turn left just in front
of the wall, at the red circle. In this
challenge, we don't know exactly
where the robot will start in the red
hatched area. It is therefore impossible
to make the robot turn in the correct
1 place using motor control only.
We know we want the robot to make a left turn just in front of the obstacle course wall. What we
need is a way for the robot to find out where that wall is, and adjust its course accordingly. In this
lesson, we'll attach a Touch Sensor to the robot and use it to detect the wall. By using feedback
from the sensor, we can make the robot turn in the correct place no matter how far away from the
wall it started.
Touch Sensor Touch Sensor detecting a wall
The Touch Sensor, above, can enable the robot to A robot uses sensors to gather information from the
detect physical contact with objects like walls. environment and uses the information to plan movement.
_ /

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797 Wall Detection / Touch ¢ 1

Wall Detection Touch vs. Timing (cont.)

In this lesson, you will learn to use feedback from a Touch Sensor to let the robot detect
a solid object and adjust its course accordingly.

1. Add the Touch Sensor attachment to the robot (if it doesn’t have one already). Connect the
sensor to Port 1 on the NXT brick. The bumper assembly helps the sensor to detect collisions
that are not centered directly on the sensor’s orange contact surface.

1. Build the Touch Sensor attachment
Building instructions are available through
the main lesson menu. Connect the Touch
Sensor to port 1.

<23 RobotC - SourceCode

FEN Edit View Robot Window Help

2, Load the program “nxt_wait_for_push.c” on the NXT.

Mew Chrl+M d |

=T=jr Chrl+5

Look in: | (£ NxT

IChLight
| Makar
L Raotation

kdy Recent
Drocurments

=| NXT Bukkon
IE] MET Comps
E] MET Comps
[Z] M=T Draw g
[Z] M=T File Se

2a. Open sample program
Click File > Open Sample Program.

EhTaige

Look in: | [C Touch

E E] nxt_bug_bat.c

tMy Recent

2b. Open Touch folder
Double-click the “Touch”
folder to open it.

Docurnets

@

Deskiop

-

2c. Open nxt_wait_for push
Double-click “nxt_wait_for_push.
¢” to open the program.

/

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797 Wall Detection / Touch ¢ 2

ROBOTC

=t
o

N/
N

Wall Detection Touch vs. Timing (cont)

Checkpoint
The program should look like the one below.

-

=3

const tiensors touch3ensor = [t3ensors)
JAFVICLICE to edit 'wizard' created Sensor & mot

f’f’ ol i o o ol o ol o o o o ol o e o o o o o o o o o o o o

ik Wait for Fush
Hd RobotC on NXT
Fa

3. Note that the program has 3 major parts. (Lines 1-35 have been omitted, since they contain
only comments that do not affect how the program works.)

Aufo(const tSensors touchSensor = (tSensors) S1;|— Touch Sensor setup
At the top of the program
is a special line that tells
36 task main () ROBOTC to look for a Touch
37 | Sensor on Port 1, and to call
- it “touchSensor”.
38 while (SensorValue (touchSensor) == O))
39 { |
40 (motor[motorA] = 100; | — g LVh"’e() 'ﬁop he while(
ext, we have the while
41 motor [motorB] = 100; loop. It's called a “while”
42 } loop because it will do
43 something while certain
conditions continue.
44 (motor[motorA] = —75;\
Movement commands
45 motor [motorB] = -75;) Finally, we have two sets of
46 movement commands: one
. inside the while() loop, and
47 waitlMsec (1000); one right after the while()
48 } loop. The positioning of
49 these commands inside
} and outside of the loop is
important, but otherwise,
these are the same
commands you have already
used to move the robot in
previous programs.
Checkpoint

You will learn more about the Sensor Setup and while() loop parts of the program later in this
lesson. For now, however, look carefully at the motor commands. Which motor ports do they
address? What ports are your motors plugged into? Do they match?

The sample program assumes your motors would be on ports A and B, but your robot’s design
has them on C and B! The program will not work without modifications. Software (programs) and
hardware (like the physical robot) are dependent on each other to produce correct behaviors.

_ /

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797 Wall Detection / Touch « 3

ROBOTC

P
L2

ens

=t
@

N/
N

Wall Detection Touch vs. Timing (cont.)

4. Modify the motor[] commands to send power to the correct motors by changing all the motorA
references to motorC (motorB is the same in both).

Auto const tSensors touchSensor = (tSensors) S1;

36 task main ()

37 {

38 while (SensorValue (touchSensor) == 0)

39 {

40 motor[motorC] } 56~ 4. Modify this code
41 motor [motorB] = 100; Change the motorA

references to instead use

42 } motorC, where your left
43 motor is actually attached.
44 motor [motorC])=——+5+

45 motor [motorB] = -75;

46

47 walitlMsec (1000) ;

48 }

49 }

5. Download and run the program.

File Edit Wiew wfindowe Help

O = & 5a. Download the program

[Battery & Po F7 I oors touchsSend Click Robot > Download Program.

-- Bluetooth Debugger £ Lo edit 'wizg

-- Euttons

E 240

o Debug Status Refresh Rate = s
o 1 [lEnsors touchSensg

L (}‘: St ——Hoee L 5b. Run the program

Click “Start” on the onscreen
Clea[A" FEEEE T T LA TR T L FT LY

Program Debug window.

=r
[+ Display 5 s
[+ File Access 3 f4 This program allows
G IO Man Arce) relemoerd Cuars 1

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797 Wall Detection / Touch © 4

P
L2

ens

=t
©

Wall Detection Touch vs. Timing (cont.)

6. Run the program on the Obstacle Course board. Observe the sample program’s behaviors.

6a. Forward until touch
The robot runs forward as long as the
touch sensor is not pressed in.

6b. React to touch

When the touch sensor is
pressed, the robot will back up
for one second, then stop.

6c. End
The program ends after one
touch-and-reverse cycle.

End of Section

We've taken a crucial step forward in solving the problem of getting the robot to adjust

its course when it touches a wall by adding a Touch Sensor attachment, downloading a
program, and demonstrating that the robot will reverse its direction when it reaches a solid
object. The next step is to understand the program, so that you can write one like it yourself.

N /

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797 Wall Detection / Touch * 5

ROBOTC

K
J

Sensing
NG /
4 N
]] (]
Wall Detection Configuring Sensors
Now that we've seen the wall detection program work, we're going to take it apart it piece by
piece to understand how it works. In this lesson we’ll examine the first section of the program,
where we set up the sensors. This configuration process tells the robot which sensors are present,
and which ports they’re connected to.
In ROBOTC, sensor configuration is done through the Motors and Sensors Setup dialog, which
we'll go through in this lesson. You don’t have to, and shouldn't, type any code inside the sensor
configuration section at all, unless you're an experienced programmer.
Aufo(const tSensors touchSensor = (tSensors) S1;|—— Touch Sensor set up
At the top of the program
is a special line that tells
36 task main () ROBOTC to look for a Touch
37 | §elpsor on Port J, ond,’ro call
it “touchSensor”. Don't type
38 while (SensorValue (touchSensor) == 0) in this area unless you know
39 { what you're doing!
40 motor [motorC] = 100;
41 motor [motorB] = 100;
42 }
43
44 motor [motorC] = -75;
45 motor [motorB] = -75;
46
47 waitlMsec (1000) ;
48 }
49 1
_ %

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797 Wall Detection / Touch © 6

7
1)
3
o
=
@

N/
N

Wall Detection Configuring Sensors (cont.)

In this lesson, you will learn how to use the Motors and Sensors Setup dialog to configure
the Touch Sensor.

1. Begin by saving the program under a new name. You can’t save changes directly to the sample
programs, and you want to have a copy of the program for yourself anyway.

3 RoboiC - nxt_wait_for_push.c

FIEN EditvEwRobor—wirdor—Heim Ta. Save program As...
P Chrl E | Select File > Save As... to save your
program under a new name.

Cper) and Compile =t tSenzZors touchSend
Oper Sample Program I ICLICKE to edit 'wizd

CErl+5
e R R R

Print. .. P 1b. Browse to an

Print Presview appropriate folder
Smci Browse to or create an appropriately

- named folder within your program

folder to save your program.

Save in; (@ touch_sensor) V| J 3 B '
My Recant
Documents
w1
F = Tc. Rename program
N e Give this program the .,
is new name “wall_touch”.
op

=1

File name: (wall_touch.c) b | (Save h—— 1d. Save
Save as type: C Files [* 106 o cpps*.nge;®.h;* ngh) 7 | o] i Click Save.

Z3 /4 1. The touch sensor should be mounted on thy
z4 I
25 ll."ll."'K'KW'X'&"&"&"XW'K'K'KWTT'&"&"&‘W'K'K'KWWT'X'X'XWW'K'K'KWT'X'X'X'XW'K'K'KWT

N /

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797 Wall Detection / Touch * 7

P~ L.
Sensing
O %4
II H . .
Wall Detection Configuring Sensors (cont.)
2. Open the Motors and Sensors Setup menu, and select the A/D Sensors tab.
Robo a D
File Edit Wiew window Help
== Download Program F5
[+ Battery & Po Recompile Pragram i 150rs touchSensor
Bluetooth Debugger f to edit 'wizard' created
Buttons
C Construcks MAT Brick, L R R R R]
Datalog Wai
g;‘;lfy = 2a. Open “Motors
rogram allows your taskho and Sensors se'up”
MR - O e YR Select Robot > Motors and
Sensors Setup to open the
Motors and Sensors Setup menu.
2b. Select the A/D Sensors tab
Type Click the “A/D Sensors tab” on the
motod | Motors and Sensors Setup menu.
matorB I | Ha matar w |
tnotarC I | Mo matar b |
3. Note the Motors and Sensors Setup menu configuration. To the right of S1 are boxes indicating
the name and type of sensor attached to sensor port 1.
= 3a. Sensor “Name”
2Roboit - wall touch.c Assigns the name “touchSensor” to
Motors and Sensors Setup the sensor on port 1. “touchSensor”
is a name chosen for convenience,
Motors | 4/D Sensors following certain rules (see below).
Index M ame Type
51 (Joersersa) | 0); 3b. Sensor “Type”
Identifies the sensor aftached to
52 I |No Sensor v|
sensor port 1 as a Touch Sensor.
53 I |No Sensor v|
54 I |No Sensor V|
Naming Things in ROBOTC \
N
Here are some basic rules for giving names to things (such as Sensors) in ROBOTC:
* Words that are already part of the ROBOTC language (like “while” or “motor”)
cannot be used as names
* Names may not contain spaces
* Names may not contain punctuatlon
* Names may not 321START with a number, but may contain them anywhere els3
* CaPiTaLiZaTiOn maTTeRs
- J

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Wall Detection / Touch * 8

P
L2

ens

=t
©

-

Wall Detection Configuring Sensors (cont.)

4., Let's try changing some settings to see what happens. Move all the Touch Sensor entries
in the menu from S1 to S2.

2 RobotC - wall_touch.c
Motors and Sensors Setup

Maotars | &40 Senszars
Index Ma Type
51 ~Ho-Semeon - 4a. Delete “touchSensor” from S1
5 I— |N . Y| Delete the name “touchSensor” from the
o Sensa S1 Name box. The Type box for S1 will

23 RobotC - wall_touch.c change to read No Sensor after your
cursor leaves the Name area.
Motors and Sensors Setup

Maotors | A/0 Sensars

Index Marme Type
s

52

|N0 Senzor v|

touchSensor) LMos : 4b. Enter “touchSensor” in $2
Type the name “touchSensor” in
the S2 Name box.

3 RobotC - wall_touch.c

Motors and Sensors Setup

Matars | 40 Senzorg
Index arne Tupe

51 l Mo Senzor ~

52 ItouchSensor v 4c. Change S2 Type to Touch

o I— INS—v| Select Touch from the S2 Type

Shabsilii dropdown menu.
54 I |N0 Sensor V|
ok | sanee—H—tps—-—ttels 4d. Click OK
Click OK to save your sensor
configuration changes.
Checkpoint

The first line of the program should now look like this. Make sure that the first line of the

program contains “S2” and not “S1”. The sensor on S2 is named touchSensor and set to
work as a Touch Sensor.

Auto const tSensors touchSensor = (tSensors)| S2;
a

/

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Wall Detection / Touch ¢ 9

doesn’t run into anything.

Wall Detection Configuring Sensors (cont.)

5. Download and run the program, but before you run it, pick up or block up the robot so it

5a. Block up the robot

Place an object under the robot so that
its wheels can’t reach the table. This
lets you run the robot without having
to chase it around.

5b. Download the program

FA
-
o ol
Robo 0
File Edit ‘Wiew window Help
D=
[+~ Battery & Pol Fr
- Blustooth Debugger 4

+ - Buttons
Robo d 0

1S0rs touch3end

Click Robot > Download Program.

to edit 'wizg

240
Debug Statusz Fefrezh Fate

[ra M)

ens=o0rs touch3ens

5c. Run the program

: Start | femera—Steptatel—— e e - Ru
Click “Start” on the onscreen

Stop

Clear Al R e et o e e o e Program Debug window.
e

[+ Display 5 ’f

[#- File Access 3 /4 Thi=s program allows

Gl T Man Acce ir) relea=ed Orce. the

rather than reversing direction.

-

6. While the program is running, press the Touch Sensor. The robot continues to move forward,

4—— 6. Press the touch sensor

Press the orange button on the
Touch Sensor and observe the
robot’s reaction (or lack thereof).

/

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Wall Detection / Touch ¢ 10

ROBOTC

[72)
0
3
@

N/

N

Wall Detection Configuring Sensors (cont.)

7. Stop the program to conserve battery power.

2 RobotC - wall_touch.c

Program Debug

Debug Status

3]

2400
Refresh Rate

ensors touchiensor

7. Stop the program

Stop h:.—A”c'.—] [e |

K CTo oolit T Wlooro Creaboo

R R e R R

Wai
Rob
[+ Display 5 I
[*-File Access 3 /¢ Thi= program allows your taskbo
IO Man frce Z relezced Qnoe the rouch con

Click “Stop” on the Program
Debug window.

N

8. Bring up the NXT Device Control Display window to find out why the Touch Sensor no longer
makes the robot reverse direction. If the NXT Device Control Display window is already visible,

skip this step.

File Edit ‘Wiew Window Help
O = n Download Progran F5
Recompile Program F7

120rs touchSensor

[+ Battery & Po
[# Blustaoth

g to edit U wizsrd! crested

8a. Bring up the Debugger

| File Edit

= Fobok

Window Help

Select Robot > Debugger.

Debug Status

Cou] -

Dawnload Program
Recompile Program

F5

F7
1=0rs touch3ensor

Debugger
Dl A
Hexadecimal

. o edit 'wizard'

MET Brick

Event Variables

Platform Type
Mators and Sensars Setup

3 Task Stack
Syskem Parameters

created

—— 8b. Bring up the Device Window
Select Robot > Debug Window >

/

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Wall Detection / Touch * 11

7
1)
3
o
=
@

N

N

-

Wall Detection Configuring Sensors (cont.)

9. Observe the changes in the NXT Device Control Display window when you run the program,
and when you touch the Touch Sensor.

Z RoboiC - wall_touch.c

Proagram De NXT Device Control Display

Read Yalues from NAT
Debug 5t
il Mator Speed| F'ID|M0de |Hegulate|Heg State| Tach User|TachM
: 0| OFF(Float] 0 riore Idle 0
0 OFF[Float] O none Idle 33
Claar Al 0 OFF(Flaat) 0 niare Idle 0
Sensor| Type [Mode [Walue] Raw| |Variable
2 | Bawbialue modeFar 1023 1023| | Sync Type syncl
Dlsplay = b W} ke K] (= T
) 52 [RawValue 9a. Observe S2
Filer Acce: = 4 . .
Y modefiar) 1023 1023) |Battey Find the S2 box under Sensor in the
NXT Device Control Display. Under

Z RoboiC - wall_touch.c

Program Debug

Type, it should say “Raw Value”.

2400
[rebug Status Refresh Rate

Once

Suspend| [Step Into

| Hegulate|Heg State| Tach User| Tach M
Idle 1]
Idle 773

none
none

9b. Change Refresh Rate

hiohe Idle 0

to Continuous

3 RobotC - wall_touch.c

i Program Debug

Debug Status

oo L1

Ooce

2400
Refresh Rate

If you see a button labeled
"Continuous”, press it.
Otherwise, skip this step.

| Hegulate|Heg StatE| Tach User|Tach il

9c. Start the program

al e
=)

‘ Start | J=

| RobotC - wall_touch.c

Program De NXT Device Control Display

FiSFiE Tl L1}

nane Idle 77 Click Start in the Program

Debug window.

Program De NXT Device Control Display

Fiead " alues from MxT 9d. Ob -, 7 of $2
A Debug 5t . Observe e” o
S A1 ator| Spe d| F‘IDlMode |Hegulate|Fleg Statel Tach User|TachM The “Type” of sen)s’gr on S2 is now
s A [706 100 OMBrakel 3 none | Runring 0 T qus e i
B | 100 100 ONBrake] 3 | nore | Rurring e @ fouch oensor, ust as we set 1
Clear All C 0 0 OFFFleati 0 none | Ide 0 to be.
g 0 Sensor| Type |Mode | Value| Raw| [Wariable
51 _RaluMalye modeR an 1 1023 | Sunc Type synchi
Touch rodeBac 0 23— Sunet 9e. Observe “Value” of $2
modeRay| 1 1023| | Battery A Touch Sensor will show a
“Value” of 1 if the sensor is

pressed, and a value of 0
otherwise. What does this

Read Yalues from MxT value indicate?
[ebug Stal
b atar Speed| F'ID|Mode |Hegulate|F|eg StatE| Tach User|Tach
Stop & 100 100 OM[Brake] 3 note | Running 0
B 1000 100 OM[Brake] 3 none | Running 334
Clear Al C | 1 0 OFF([Float) 0 riare Idle 0
(et Senzor| Type [Mode [Walue] Raw| |[Yariable
) Display 51 |RawYalue modeR ay 1023] [Svnc Type synch]
el 52 |Touch modeBoc = e 9f. Press the Touch Sensor
sl 53 |RawValue modeF av 1 1023| |Battery and waich the S2 value
Press the Touch Sensor, and

watch for a change (or lack of
change) in the “Value” box in
S2. Should it change?

/

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Wall Detection / Touch * 12

P
L2
:.
=)
«©

ens

Wall Detection Configuring Sensors (cont.)

10. Even when you press the Touch Sensor, the 52 value remains 0. This makes sense, because
the Touch Sensor is attached to Port 1, not Port 2. Try connecting the Touch Sensor to port 2
and see what happens.

\ \d
- <

N\ A4
— -

10a. Switch sensor ports 10b. Press the Touch Sensor and watch the S2 value
Disconnect the Touch Sensor from port 1 Press the Touch Sensor, and watch for a change (or lack of
and reconnect it to port 2 on the NXT. change) in the S2 Value in the NXT Device Control Display.
Checkpoint

Now when you press the Touch Sensor, the S2 value turns to 1. A value of 1 indicates “pressed”
on a Touch Sensor. Also, the program now works as it did before. When you press the Touch
Sensor, the motor now reverses for one second and stops.

00 OM(Brake] 3
00 OM[Brake) 3

|Mode |
riccder 2
madeBoc ; Not Pressed

The value for the
modeR av = sensor S2 is O while

the Touch Sensor
remains unpressed

o oA o Wr 1= 1[%][=]
-75 OM[Brake] 3 none | Running
-75 ON(Brake] 3 none Running |

|Mode | WValue| Raw| [V
modeR & 1023 1023 |5
modeBoc L Pressed
modeR ay 1023 1023 |B The value for the
| sensor S2 is 1 when
Fiay 1023 1023| |5 the Touch ISensor is
Wi pressed.
- %

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797 Wall Detection / Touch 13

ROBOTC

Sensing
NC /
4 N
L]
Wall Detection Configuring Sensors (cont.)
11. Use the Motors and Sensors Setup menu to change the sensor settings back to the way they
were so we can move on with the program.
@g_RnhntC -wall_touch.c
Motors and Sensors Setup
Matars | 4D Senzorz |
Inides Mame Type
51 g iNo Sensor b
sz (e) —Fouch : 11a. Delete “touchSensor” from $2
— N Delete “touchSensor” from the S2
3 RobetC - wall_touch.c Name box.
Motors and Sensors Setun 11b. Enter “touchSensor” in S1
— Type “touchSensor” in the S1
Matars | &0 Senzors Name box.
Index I arne Tupe
s ;TD—UEhSBnSUf 11c. Change S1 Type to “Touch”.
2 No Soreor 7 Select “Touch” from the S1 “Type”
_ = dropdown menu.
53 l]No Senszar v|
s [| sersar <t 11d. Click OK
Click OK to confirm the change.
[(u])l [Cancel] [Apply] [Help
11e. Switch sensor ports
Disconnect the Touch Sensor from
port 2 and reconnect it to port 1
End of Section
You have successfully used the Motors and Sensors Setup menu to configure the Touch Sensor to
work on port 2, and now changed it back to port 1. This is the universal process for configuring
sensors in ROBOTC. You also learned to use the NXT Device Control Window to view sensor
values. Finally, you also saw the two values the Touch Sensor can provide: O (unpressed) and 1
(pressed). It's time to move on to the next lesson, where you will examine the part of the program
called the while loop.
N %
© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797 Wall Detection / Touch * 14

ROBOTC
Al N
Sensing
\C /
4 N
L] (]
Wall Detection The while() Loop
Your robot’s ability to sense and respond to touch revolves around a structure in the program
called a while() loop. The while() loop in this program uses the Touch Sensor feedback to decide
whether the robot should continue on its current course, or back up and turn.
In this lesson, you will learn what a while() loop is and how it works.
Below is the code for the sample program’s while() loop. Reading this statement out loud tells you
pretty much exactly what it does:
“While the sensor value of the Touch Sensor is equal to zero, run motors C and B at 100% power.”
38 while (SensorValue (touchSensor) == 0)
39 {
40 motor [motorC] = 100;
41 motor [motorB] = 100;
42 }
The decision-making nature of the while() loop may not be apparent at first, but making
decisions that control the flow of the program is actually the while() loop’s main purpose. The
while() loop above instructs the program to use the Touch Sensor’s status to decide how long to
keep the motors running.
When the program reaches most commands, it runs them, and then moves on. When the
program reaches the while() loop, however, it steps “inside” the loop, and stays there as long as
the while() loop decides that it should. The loop also specifies a set of commands that the robot
will repeat over and over as long as the program remains inside the loop.
The programmer specifies in advance under what conditions the program should remain in the
loop, and what commands the robot should repeat while inside the loop.
The while() loop therefore has three parts, in order:
* The word “while”
* The condition enclosed in parentheses “()”
* A group of commands enclosed in curly braces “{}"”
The word “while”
38 (whileXSensorValue (touchSensor) == 0))—————— The condition enclosed in
39 { parentheses “()”
40 motor [motorC] = 100;
_ . A group of commands
41 motor [motorB] = 100; enclosed in curly braces “{}"
42 }
- /
© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797 Wall Detection / Touch ¢ 15

ROB

oTC

g

N/

N

Wall Detection The while() Loop (cont)

The word “while”

38 (whileXSensorValue (touchSensor) == 0 D— The condition enclosed in
39 { parentheses “()”

40 motor [motorC] = 100;
41 motor [motorB] 1OO;J A group of commands

enclosed in curly braces “{}”
42 }

. while (condition) ngeral form
while { while() loops

A while() loop always starts with the word “while”. , commandss always follow the
pattern shown here

The (condition)

The statement in parentheses specify the condition(s) under which the loop should continue
looping. These conditions are specified in the form of a true-or-false statement, like the one in the
example above, “The sensor value of the Touch Sensor is equal to zero”. The statement is either
true (the value IS zero) or it is false (the value IS NOT zero).

The true (or false) value of the statement determines whether the loop will continue or end. As
long as the condition is true, the while loop will continue to run. If the condition becomes false,
the loop will end and the program will move on to the commands that come after it.

Example

In the code above, the condition is “The sensor value of the Touch Sensor is equal to zero.” This (condition)
statement is true as long as the Touch Sensor reads zero. Recall from the previous lesson that the Touch Sensor
reads O whenever its button is not pressed in, and it reads 1 when the button is pressed in.

So, as long as the Touch Sensor button is NOT pressed, the sensor value will be zero, and the condition will be
true. As long as the condition remains true, the commands inside the curly braces will run. If the Touch Sensor
is ever pressed, its value will become 1, not 0, and the condition will become false. The loop would then end.

The {commands}, sometimes called the “body”

These are the commands that are run while the condition is true. The commands inside the braces
are run in order. When they have all been run, the program goes back to check the condition
again. If the (condition) is still true, the loop continues and the {commands} are run again. In the
code shown above, the {commands} are to run both of the robot’s motors at full power forward,
and the program will do that as long as the touch sensor remains unpressed.

End of Section

The while() loop allows the program to make a decision about program flow, based on a true-
or-false statement. It works by checking to see if a (condition) is true, then, if it is true, running a
group of {commands}, and looping back to recheck the (condition). If the (condition) ever stops
being true, the while() loop skips over the {commands}, and moves on to the next section of
the program.

In the wall_touch program, the robot will move forward at full power while the Touch Sensor
remains unpressed, then exit the loop and move on to the rest of the program. A well-planned
choice of commands to follow the loop tell the robot to back away from the obstacle afterwards.

N

/

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Wall Detection / Touch * 16

ROBOTC

Sensing |
\C /
4 N
L]] (]
Wall Detection Putting it Together
Now that you have examined and worked with the pre-written “Wait for Touch” program, it’s
time fo write one on your own.
1. Start with a new program.
Edit Wiew Robot Window Help
1. Create new program
Compile Select File > New to create a
Open Sample Program blank new program.
Save Cirl+S
Save As..,
Brint... Cirl+P
Print Preyiew
Page Setup...
Print Setup...
2. Remember the program has to do three things:
* Configure the sensor port to recognize a Touch Sensor on Port 1
* Create a while() loop that runs forward while the touch sensor is unpressed
* Back away from the obstacle afterwards
- /

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797 Wall Detection / Touch « 17

Wall Detection Putting it Together (cont.)

File Edit Wiew window Help

== Download Program F5

[+~ Battery & Po Recampile Program Fr 150rs touch3ensor

--Bluetooth Debugger f to edit 'wizard' created

[+ Buttons
€ Construcks MET Brick. L EE R R R R
-Datalog Wai
-Debug Rob
- Display -
-File Access

2 RobotC - wall_touch.c

Dawnload Firrmware rogram allows your taskho

Motors and Sensors Setup

TRotand,

motarB

3 RobotC

Index

Motors

Matars | &0 Senzors

51 ‘Ibumper) Ly e :

52 I | Mo Sensor w |

Matars | A/0 Sensars

Index Mame Type
51 |bumper ([Touch) el
52 I |N0 Sensorl Vl
33 I |N0 Sersor V|
54 I |N0 Sensor vl

I Mo matar »

- wall_touch.c

e Motors and Sensors Setup

Mame Tupe

3. So let’s do them in order, starting with the first: configure the sensor port.

3a. Open “Motors and
Sensors Setup”

Select Robot > Motors and Sensors
Setup to open the Motors and
Sensors Setup menu.

3b. Select the A/D Sensors tab
Click the “A/D Sensors tab” on the
Motors and Sensors Setup menu.

| Mo Sensor

| Mo Sensor

Z RobotiC - wall_tou

and Sensors Setup

3c. Give S1 the Name “bumper”
In the “Name” box next to ST,
type “bumper”.

3d. Designate S1 as
a Touch Sensor
Select “Touch” from the
dropdown box in the
“Type” area.

3e. Click OK

! u] ! [Cancel][Apply][Help

-

Click the “OK” button to save
your changes.

/

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Wall Detection / Touch * 18

ROBOTC

=t
o

N/

N

Wall Detection Putting it Together (cont)

4. ROBOTC will want you to save your program at this point. Save your program with your other
programs as “touch1”.

RobotC

1a. Select “Yes”
Save your program when prompted.

Save in: (&} touch_sensor\l

My Recent
Docurmerts

N

1b. Browse fo an appropriate folder
Browse to or create an appropriately named
folder within your program folder to save
your program.

|

File name:

Save az lype:

touchl }

V| (I Save ‘I,

Tc. Name program
Give this program the name
“touch1”.

>4

> 4

C Files [“.roc:™ . cpp™ hge” by ngh)

]

l

Cancel

1d. Save
Click Save.

/

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Wall Detection / Touch * 19

N

Wall Detection Putting it Together (cont.)

5. Create task main().

const tSensors bumper = (tSensors) S1;
//*VICLICK to edit ‘wizard’ created sensor

A

task main ()

5. Add this code
Create the basic
task main() {}.

6. Create the while() loop.

const tSensors bumper = (tSensors) S1;
//*VICLICK to edit ‘wizard’ created sensor

task main ()

{
while () | 6. Add this code
i Add the while() loop: the word
“while”, the parentheses to hold
the condition, and the curly
braces to hold the commands.
}
}
Checkpoint

Your program should now look like this, with a while() loop within task main(). Line numbers
will not update until you compile, so the line of 1s is normal.

const tSensors bumper = (tSensors) S1;
//*!ICLICK to edit ‘wizard’ created sensor

task main ()

{

while ()
{

j

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797 Wall Detection / Touch 20

Wall Detection Putting it Together (cont.)
7. Write the condition.

const tSensors bumper = (tSensors) S1;
//*VICLICK to edit ‘wizard’ created sensor

task main ()

{

(while (SensorValue (bumper) == 0)) 6. Add this code

{ The condition should test
whether the Touch Sensor
is unpressed. Thus, the
condition is that the Touch
Sensor value is equal
to zero. Recall that ==

} means “is equal to”.

7. Tell the robot what to do while the Touch Sensor is unpressed: go forward at a prudent
50% power (since are expecting to run into an object at some point).

const tSensors bumper = (tSensors) S1;
//*VICLICK to edit ‘wizard’ created sensor

task main ()

{

while (SensorValue (bumper) == 0)

{

6. Add this code
Turn Motors A and B on
forward at full speed.

} Because this code is inside
the while loop’s {} braces,
they will be run repeatedly

} as long as the condition
remains true.

motor [motorC] = 50; \
motor [motorB] = 50; J

_ j

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797 Wall Detection / Touch © 21

ROBOTC

P
\" 2

ens

=t
@

N/
N

Wall Detection Putting it Together (cont)

9. Tell the robot what to do after the Touch Sensor is pressed and the while loop ends.

Auto const tSensors bumper = (tSensors) S1;
Aute //*!!CLICK to edit ‘wizard’ created sensor

1

1 task main ()

1| {

1

1 while (SensorValue (bumper) == 0)

1 {

1 9a. Add this code

1 motor [motorC] = 50; Run motors A and B

1 motor [motorB] = 50; backward at 50% power.
! Because this code comes

1 after the } of the while

1 } loop, it will be run only

1 after the loop is done.

Thus, the robot will back

1 motor [motorC] = -50 ;\ up AFTER the loop ends.

1 motor [motorB] = —50;)

1 (waitlMsec(1000);) 9b. Add this code

1 Leave the motors

1 running for 1 second.

End of Section

Download and run your program. Congratulations, you have now programmed your robot to
use a sensor to detect and respond to its environment! In fact, you've just created your first true
robot. The ability to use sensor feedback to govern its own behavior is what sets a robot apart
from other machines.

<3 RobotC - touchi.c
File Edit ‘Wiew N ‘Wwindow Help
0O = E f| Compile and Download Program FS Download the program

@ Battory & Pow] oI PrOgEM F Click Robot > Download Program.

Canstrucks Debugger

= humper k
edit 'wizard' created 3

ctors MAT Brick

Program Debug

Platfarm Type

2400
Matars and Sensars Setup Refresh Rate

e Slep-hte|—(—Dhes—) Run the program

Click “Start” on the onscreen

Program Debug window.

[#-User Defined | Download Firmware

Forward until touch

The robot runs forward as dictated by the
while() loop, then, when the touch sensor

is pressed and the loop ends, the program
continues on to the backing-up commands.

_ /

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797 Wall Detection / Touch * 22

ROBOTC
gl BN

_/
~

N

Wall Detection (Ultrasonic) quiz

NAME DATE

1. The Ulirasonic sensor uses sound to determine:
a. Direction
b. Contact
c. Temperature
d. Distance

2. In ROBOTC, the command is used to find the value of a sensor.
a. SensorDistance(sensor_name)
b. SensorValue(sensor_name)
c. Sensor(sensor_name)
d. SensorMeasurement(sensor_name)

3. In the ROBOTC program, it is not necessary to specify the units returned by the
ultrasonic sensor because the NXT Ultrasonic Sensor always measures in:
a. inches.
b. centimeters.
c. fractional units.
d. decimal units.

4. The ultrasonic sensor sends and then receives the deflected sound waves and uses the difference
between the time sent and time received to calculate the distance from an object.

a. True
b. False

5. A robot at the museum is programmed to ask visitors to please step back
if they come within six feet of a very fragile glass sculpture.
How might a threshold be used to implement this behavior?

_ /

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797 Wall Detection Sonar Quiz

sensing
4 N
Wall Detection A Sonic Sojourn
Robots are precise, reliable, intelligent machines, but only when they are programmed to both
sense and respond appropriately. Using a sensor which can only detect an obstacle by contact
has drawbacks. You would rather not have to bump into something to know it's there, and neither
would your robot.
Above right is an Ultrasonic Sensor. Using the same physical principle that a bat or a submarine
uses to find its way around, the Ultrasonic Sensor measures distances using sound. It then tells the
robot how far away the nearest object in front of it is.
- ! - !
| i | i
4@ 4@
=] + =] +
| nxr nxTt
Ultrasonic Sensor detecting a wall (1) Ultrasonic Sensor detecting a wall (2)
The Ultrasonic Sensor sends out The sound waves hit an obstacle and deflect back.
ultrasonic sound waves. The Ultrasonic Sensor receives the deflected sound
waves, then calculates the difference between the time
it sent the sound waves and the time it received them.
Since the waves travel at a known speed (the speed of
sound), the Ultrasonic Sensor can then calculate the
distance to the obstacle (in this case, 40 centimeters).
The program you'll write in this lesson will work in a very similar way to the Touch Sensor program
you wrote in the previous unit, but instead of using a Touch Sensor to detect obstacles by contact,
it will use an Ultrasonic Sensor to detect them at a distance.
- /

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Wall Detection / Sonar ¢ 1

PSP
LV2)
==
=]

«Q

ens

Wall Detection A sonic Sojourn (cont.)

In this lesson, you will learn to use feedback from an Ultrasonic Sensor to make the robot
detect a solid object and stop when it's 25 cm away.

1. Build the Ulirasonic Sensor attachment
Building instructions are available through the
main lesson menu. Connect the Ultrasonic

1. Build the Ultrasonic Sensor attachment, and connect it to your robot.

Sensor to port 1.

3 RobotC - SourceCoda
ZEN Edit |View FRobot ‘Window Help

Open

Iy Recent
D ocuments

®

Desktop

My Documents

&

My Computer

&

b Metwork,

& RobotC - SourceCode

Chrl+h

Ctrl+3

2, Open the “wall_touch” program you wrote for the previous section.

2a. Open Program
Select File > Open and Compile
to retrieve your old program.

File name:

Files of type:

———

| wall_touch.c

)

Open D-

| C Files [“.rec.” e cppi”.nge: h.ngh)

=]

Cancel])

-

2b. Select the program
Select “wall_touch”.

2¢. Open the program
Press Open to open
the saved program.

/

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Wall Detection / Sonar © 2

ROBOTC

PSP
LV2)

ens

=t
o]

N/

N

N

Wall Detection A sonic Sojourn (cont.)

Checkpoint
The program should look like the one below.

&3 RoboiC - wall_touch.c

File Edit Wiew Robot Window Help

R IR

@--Battery&PowerCon Auto const tiensors bumper

& Blugtooth Auto J/*VICLICE to edit 'wizard' created
& Buttons Auto

@C Construcks Auto task maini)

- Datalog 37 {

é\--Dehug 37

I?--Display 38 while(Z3ensorValue (bumper) == 0)
& File Access 39 i

. T0 Man Acce =]

3. Save this program under a new name, “sonar1”.

&3 RoboiC - wall_touch.c

N Edit view FRobot wWindow Help

Mew trieed s i 3a. Save program as...

Open Bnd Compile Select File > Save As... to save your
[St toensors bumper d

Open pampla Program VICLICE to edit 'wizard' created program under a new name.

Ctr+s
lk maini()

Print. .. Ctrl+P

Prink Preview i
o while (ZensorValus (bumper) == 0)

3 RobotC - wall_touch.c

Save As e
Savein(| 3 ultrasonic:) T e—_’—ﬂ—a 3b. Browse
Browse to and/or create
a an appropriate folder.
My Recent
Documents
[esktop

My Documents 3c. Name the program

- Give this program
g’ the name “sonar1”.
ty Computer
Q File name: sonar1|) V| G Save | 3d. Save the program
My M etwork Save as lype: C Files [* rec® o opps® nacs by .ngh) v| [Cancel Press Save fo save the program

with the new name.

/

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797 Wall Detection / Sonar * 3

.v‘,
1]
-
-
2 °)

Wall Detection A sonic Sojourn (cont.)

4. Open the Motors and Sensors Setup menu, and go to the Sensors tab.

File Edit Wiew window Help
== Compile and Download Program FS
@--Battery & Pow Recompile Program F7 EE—
@--Bluetooth Debugger edit 'wizard' created
#-Buttons
o Constructs MiT Brick 4

33 RobotC - sonarl.c

Motors and Sensors Setup

orWValus (hwnper)

== 0]

4a. Open “Motors

and Sensors Setup”

Select Robot > Motors and
Sensors Setup to open the
Motors and Sensors Setup menu.

4b. Select the A/D Sensors tab

Muotors I A0 Sensars |!

Index ame Type

Tnobard I
motarB I | Mo matar M |
tnotarC I | Mo matar b |

Click the “A/D Sensors tab” on the
Motors and Sensors Setup menu.

3 RobotC - sonarl.c

Motors and Sensors Setup

Index i
51 |(frorwsorear)
52 | |No Sensor V|
53 I |No Sensor V|
54 I |No Sensar V|

-

5. Use the Motors and Sensors Setup interface to name the S1 sensor “sonarSensor”,
then select “SONAR 9V” as its type.

5a. Name sensor “sonarSensor””
Enter the name “sonarSensor”
in the S1 name box.

5b. Make type “SONAR 9V”*
Use the dropdown box to make
“SONAR 9V" the sensor type.

/

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Wall Detection / Sonar * 4

ROBOTC
Al N
Sensing
NS 4
4 N
(]
Wall Detection A sonic Sojourn (cont.)
Checkpoint
Your program should look like this. The while() loop is the focal point of its structure.
Auto const tSensors sonarSensor = (tSensors) S1;
Attel //*!!CLICK to edit ‘wizard’ created sensor
1 while
. The keyword while signals
2 task main() the beginning of the
8 { while loop.
4
5 (while)SensorValue (bumper) == 0)) The (condition)
6 { As long as the (condition)
is satisfied, the loop will
7 continue repeating.
8 motor [motorC] = 50; w
The {commands}
9 motor [motorB] = 50; J These commands are
10 repeated over and over
while the (condition)
T } remains true.
12
13 motor [motorC] = -50;
14 motor [motorB] = -50;
15 waitlMsec (2000) ;
16
17 }
The program uses the while() loop to check a certain (condition) to see whether it should keep
looping or not. The (condition) right now is satisfied as long as the bumper is 0, or unpressed.
The robot keeps running as long as this is true.
But now we're using the Ultrasonic Sensor. Having the (condition) look for a sensor value of 0
no longer makes sense, because the Ultrasonic Sensor can report a large range of values, not
just one or zero. Remember, the Ultrasonic Sensor measures distance. It gives you a number that
indicates the number of centimeters to the nearest detectable object in front of the sensor. It could
be 1, 250, or anything in between.
The while() loop, however, doesn’t want 250 different values, it just wants to make one decision:
continue looping or go on to the next section of the program. The task is to get the robot to stop
around 25 cm away from the obstacle. Ask yourself when the robot needs to run, and when it
needs to stop. “The robot should run while...”.
We'd like the robot to move forward while it is more than 25 cm away from the box, that is, while
the distance to the box is greater than 25 (centimeters). Once the robot gets closer than 25cm, it
should stop and move on to the next part of the program.
So, let’s try that.
- /

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797 Wall Detection / Sonar * 5

ROBOTC

PSP
LV2)

ens

=t
©

N/
N

Wall Detection A sonic Sojourn (cont.)

5. Change the loop’s condition to make it run while the Ultrasonic Sensor’s value is greater

than 25cm.
Auto const tSensors sonarSensor = (tSensors) S1;
Atto //*!!CLICK to edit ‘wizard’ created sensor
1 5b. Change sensor name
. Change the sensor name in
2 task main() the while () loop condition to
3 { “sonarSensor”.
4
5 while (Sensor\/alue@sonarSensorD(> 25))— 5b. Modify this code
6 { Change the while() loop
condition’s value so that
7 it will check whether the
) motor [motorC] 50 sonarSensor’s value is

greater than 25 cm.
9 motor [motorB] = 50;

10

11 }

12

13 motor [motorC] = -50;
14 motor [motorB] = -50;
15 waitlMsec (2000) ;

16

17 }

6. Download and run the program. Disconnect the robot and move it onto the course if needed.

File Edit ‘Wiew Window Help
L= E 6a. Download the program
@ Battery &Pow F7 loors sonarsensor Click Robot > Download Program.
- Bluetooth Debugger £ to edit 'wizard' created
&-Buttons
RobotC - sonari.c
ogram Debug [x]
]
E! Debug Status Refresh Rate
i /_H m =nsSors sonarfensor
L g Sta[t J -3l a Lc‘ "'I : J L J OO Edln WLZard LEqbed 6b' Run 'he program
N " "
Stop Click “Start” on fhg onscreen
Clear Al - Program Debug window, or
use the NXT’s on-brick menus.
l‘%\--DispIay
@--File Access 6¢c. 25cm Sfop)
10 Man fArcecs The robot runs forward until
the Ultrasonic Sensor detects
an object < 25 cm away.

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797 Wall Detection / Sonar * 6

N

Wall Detection A sonic Sojourn (cont.)

7. So we've succeeded in making the robot stop when it's 25 centimeters from an obstacle.
Now let’s try making the robot stop at some other distance from an obstacle.

const tSensors sonarSensor = (tSensors) S1;
//*VICLICK to edit ‘wizard’ created sensor

task main ()

{
while (SensorValue (sonarSensor) 7. Modify this code
{ Change the while() loop
condition’s value so that
it will check whether the
_ . sonarSensor’s value is
motor [motorC] = 50; greater than 40 cm.
motor [motorB] = 50;
}
motor [motorC] = -50;
motor [motorB] = -50;
waitlMsec (2000) ;
}

8. Download and run the program. Disconnect the robot and move it onto the course if needed.

File Edit Wiew Window Help

LD=EE 8a. Download the program

@ Battery & Pow N Click Robot > Download Program.
& Bluetooth Debugger £ to edit 'wizard' created

- Butkons

RobotC - sonar1.c

B Program Debug [x]

C 0

w)| _[Cebug Status Refresh Rate m

; /_H (.. | [prsors sonariensor
o] AT har Lt Ohce

8b. Run the program
7 Db L J | S OO EdIT T EardT TrEated
Click “Start” on the onscreen
Clear Al h) Program Debug window.

8c. 40cm Stop

The robot runs forward until
the Ultrasonic Sensor detects
an object < 40 cm away.

J

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797 Wall Detection / Sonar © 7

ROBOTC

Al N

Sensing

N 4
4 N
L]

Wall Detection A sonic Sojourn (cont)

End of Section

You have modified your program to stop when the robot detects an object closer than a

specified distance.

The number that you use to determine how far the robot stops is called a threshold. Thresholds

are values that set a cutoff in a range of values, so that even though there are many possible

values, every one of them will fall either above the threshold or below it.

In the case of the Ultrasonic Sensor, we set the threshold to 25 in our initial program, and

made the distinction that values “greater than 25” will let the loop continue running, while

values less than or equal to 25 will make the loop stop.

Then we changed the threshold to a different distance value, and saw how it affected the

robot’s behavior. By using thresholds, we can make use of the range of values an Ultrasonic

Sensor provides to make a robot stop at whatever distance from an obstacle we want.
- /

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Wall Detection / Sonar ¢ 8

Rohot Educator Model

Building Instructions

-

mndsTorms Carnegie Mellon p==
education Robotics Academy <=

1

Parts Page 1

@) s

® =
© =
® =
® 2
@) 1x
O,
®

1x

NXT Brick

NXT Servo Motor
5-Module Beam
7-Module Beam
13-Module Beam
11-Module Beam
4x6 Angular Beam
3-Module Beam
56x26 Tire

30x20 Hub
24x14 Tire

18x14 Hub

@ = Part Number

1x = Amount Needed

'U
)
o
”
e
o)

Q
®
n

=1
b

Bushing
2-Module Cross Block

1/2-Module Bushing
2x1-Module Cross Block
3-Module Cross Block
4x2 Angular Beam

2-Module Axle

Connector Peg with
Friction Axle

Axle Extender

18x Connector Peg with
Friction

3-Module Connector
Peg with Friction
Connector Peg with
Bushing

2-Module Double
Connector Peg
Double Cross Block

Cable
10-Module Axle
8-Module Axle
6-Module Axle
5-Module Axle
% 4-Module Axle
2x 3-Module Axle

N N R N NN
X x M X X X

M
>

f-N
>

N
>

- N = N W
> > > » x

(48]
>

w

GEEEEEEEM ® ® @ O EEEEEE

= Part Number

-
>

= Amount Needed

————————————— OB H

CICICICIOICIQIOOCIONINIO) [1:1

______]©)
=——0 1

QIOIOICIOBOBO) 7 1:1

1:1
-—

CICICICICIOIOIOBOICEOIOIO) [l 1:1

——————————————— JOBH

4x

2x

S

)

1"

12

13

S‘;;*f@ & i 2 16 11 CICICICIOIOIO) [1:1
r gl ’

15

2X

17

18

35 CMI

19

20

Your Rohot Educator Model
IS now completel

ROB

OoTC

N

Download Firmware aquiz

NAME DATE

1. Mark each of the following statements as either ‘T’ for True or ‘F’ for False.
The firmware must be downloaded every time you wish to run a program on the NXT.

Without a firmware loaded, your robot cannot run any programs.

Once the ROBOTC firmware is loaded, you will be able to run both ROBOTC
and normal NXT language programs.

All firmwares are identical, so as long as one is loaded, you can run any program.
Firmware and programs are the same thing.

You can download the firmware in ROBOTC by using the Robot menu command
“Compile and Download”.

Without a firmware loaded, your robot cannot run any programs.

N

N

/

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797 Download Firmware Quiz

P S

Setup

N

Firmware

You have installed ROBOTC and built the REM bot, but the robot is not yet able to
understand ROBOTC programs. You must first download firmware onto your NXT.
Firmware is the operating system for your robot. Once loaded on the brick, the
firmware will allow the NXT to load and run ROBOTC programs.

You will need:

1. Your NXT

2. A computer with ROBOTC installed

3. A USB connector cable (A-B, included with 9797 base set)

1. Plug one end of the USB cable into your NXT, and the other into your computer.
If the robot is not on press the orange button on your NXT brick.

1a. Connect the USB cable

Plug one end of the USB cable into your
robot, and the other into your computer
to allow communication between them.

1b. Turn NXT on

Press the orange square on your
NXT brick to turn your robot on if
it is not already.

J

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797 Firmware © 1

ROBOTC

5
J

Setup

~
N

Firmware

2. Open up the ROBOTC program. To start ROBOTC go to the Start Menu, Programs or
All Programs, RobotC and finally choose “RobotC for Mindstorms”.

T ORI

— 2. Open ROBOTC for Mindstorms
Select the Start Menu > Programs or
All Programs > RobotC > RobotC for
Mindstorms to open up the ROBOTC
program.

bC O RobaotC for Mindstorms
Studio 9 v
Swmantec Client Security 3
Total Recorder 3
WinRAFR: ’
74 start £l 1. Acrobat Distiler 7.0

7 RobotC Quickstart Guide

All Programs »

Checkpoint
This what your screen should look like. The ROBOTC Dialog box will disappear
after a few seconds. What is left is the main ROBOTC window.

=

SJ RobotC - SourceCode
File Edit Wiew Robot Window Help

D=d =
Battery & Power Control
C Constructs

Display

Mokars RQBUTC Im' n I:l ETI:I?EWDED
Sensars progromming sofwors #
for the LEGO™ MINDSTORMS™®
- Sound
Tion::g KT and RCX Indellgent Bricks

Undefined Entries

Copyvight 20068 Fobomadter LT |
D) Softesind 11C

Thet eaam i prfiochod by LS

Fie Edt Vew Robot wede b
D al & 7

& Battiry b Powess Contral |
& I Congtnacts

Far Help, preg ELIM

[Fox e, ceess 11 Lni L, Col W WM

N /

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797 Firmware * 2

ROBOTC

P S

Setup

N

N

Firmware

3. Go to the “Robot” menu, then select “Download Firmware”.

File Edit View

Window Help

=y =]

Compile and Download Program F5

Compile Program F7

Debugger

MXT Brick 3

Platform Type 3
Motors and Sensors Setup

3. Download Firmware

T —

4. The NXT Brick Download menu will appear. In the white box in the upper left,
you will see your NXT’s name and device address. Make sure the line for your NXT
is selected, then click on the “F/W Download” button.

Select Robot > Download Firmware to
open up the NXT Brick Download menu.

NXT Brick Download

|’§'|

3

MXT Bricks Currently Connedted via USE

[Refresh Lists |

Brick
NXT

Address

USBO:: (kD694 (0002::00 1653031 EDS::F{...)

(F/ W Download ’

Message Log
“seanching tor any NXT bricks in boot mode

Searching for any NXT bricks connected via USE

Help

l Close

N\

4a. Select NXT

Select your NXT in the
window. Normally, there
will only be one listed.

4b. Select F/W
Download
Select “F/W Download” to

download the firmware to
your NXT brick.

/

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Firmware * 3

ROBOTC

o o

Setup

N

N

Firmware

5. A list of available firmware files will appear. If there is only one firmware file listed,
select it. If there is more than one, choose the firmware file (.rfw) with the highest number.

Click “Open” to begin downloading the firmware.

Select NXT firmware file (download)

Look in: | | Fimware

My Recent
Documents

Desktop

My Documents

.

My Computer

File name: NXTO707 s v Open

Fles oftype: | NXT Finmware Files (:a79;"fw)

[Open as read-only

N\

5a. Select the (.rfw) file

Select the firmware file to download
to your robot. If more than one

is shown, select the one with the
highest number.

5b. Select Open

Once you have selected the file,
click “Open” to begin downloading
the firmware.

End of Section

The message log will show the progress of the firmware download. Your robot will appear to turn
off while the firmware is being loaded. When the process is complete, you will see a line at the

end of the log stating, “Firmware download completed”.

NXT Brick Download

MXT Bricks Cumently Connected via USB

Brick Address
NXT USBO:: 006594 (0002 :001653031E03::R....

Refresh Lists

F/W Download

_ﬂ'FFﬂ'I'I'ﬂ'I'E T I I LT T L T A s T =T T
Starting fimnware download....

o Opening connection to NXT brick
% Waiting for NXT brick initialization to complete
Fm Fimmware download completed

'] Fimmware download completed. Waiting for NXT restart.

OD ST T ST T T T T OIS
Waiting for NXT brick initialization to complete
Firmware download completed

Help] I Close

/

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Firmware * 4

ROBOTC

N

N

Download Sample aquiz

NAME DATE

N

1. Number the following steps in the order that you need to do them in order to successfully run a
program. Put an ‘X’ next to any steps that are not a necessary part of the process.

Write or open an existing program file.
Press the dark grey button on the NXT.
Say clearly to the robot, “Run Program.”

Check that the robot is plugged in and turned on.

Navigate to the Try Me menu using the NXT’s LCD screen and buttons.

Press the Start button on the Program Debug window.

Open the Robot menu and select Compile and Download.

/

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Download Sample Quiz

ROBOTC
Pl N
Setup
NS 4
4 N\
Your robot is ready to go! All that's left is for you to tell it what to do by
sending it a program. A program is a set of commands that tell the robot what
to do and how to react to its environment. Once written, a program must be
transferred (“downloaded”) to the robot before it can be run.
This is the program you will download onto the NXT.
1 task main ()
2 |
3
4 motor [motorC] = 100;
S waitlMsec (3000) ;
6
7}
1. Normally, you would type this program directly into ROBOTC. For your convenience,
however, there is an already-completed copy provided in the Sample Programs folder.
Follow the steps below to open this program.
Q RobotC - SourceCode
FIEM Edit Wiew FRobot Window Help
e Chrlm S 7N
Open and Cormpile
Open Sample Program Tla. Open Sample Program
Save Chrl+s Select File > Open Sample
; = g Program to find the saved program.
Open E
Look in: | (£ N4T v @%@
o [Light B MNXT Button Advanced f% MxkDisplaySpeedTest
‘J [CMator @ MNxT Compass Sensor E] M=T-i3 Mowve Block Ba
Recent @Rotation Ej MAT Compass Sensor Driver || PCF3754
[5onar B MxT Draw Spiral @ RandomTest
— () 50und @] T File Searching @] RPGReader
@ E] MET Large Fonk =| Stalled Motor Check
Desklop (! Training Samples MmO o — S St ar T Temph 1b. Select Training Samples
— __ Execution Speed Test M=T Motor Examples Open the Tm]ning Scmples folder
—Hotar Acceleraion M bokar Sncho to find the “MotorC Forward”
saved program.
v| Q Al
Tc. Select the program
Select the “MotorC Forward”
program from the Training
Samples Folder.
My-Elomputer
File name: |M0t0rC Forward V| (Cpen)'I_ 1d. Open the program
My Metwark | Files of type: |C Files [* roc:® o opps™ nge:™ ki ngh) v| Cancel Press “Open” to open the saved
MotorC Forward program.
- /

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Download Program « 1

P S

Setup

-

Download Program

Checkpoint
The program should appear in the right-hand pane of the window.

&3 RobotC - MotorC Forward

File Edit ‘iew Robot

window Help

s IEEEIEREE]

[#- Batkery & Power Control
C Construcks

Display

Matars

SENSOrs

Sound

Timing

User Defined

[= 1IN - T P B S

task maini)

i

motor [motorC] =
waitlMsec (3000 ;

i00;

2, Download the program to the robot by first turning it on, then using the
“Compile and Download” command from the “Robot” menu.

=y =

[#- Batkery & Po

[User Defined

2a. Turn NXT on

Press the orange square on your
NXT brick if it is not already on.

Debugger
MET Brick 3
Platform Type 3

Motars and Sensors Setup

Download Firmware

Sin ()

C [motorc]

= 100;
1 M==c (2000

2b. Compile and Download
Select Robot > Compile and
Download Program to download
the MotorC Forward program.

/

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Download Program ¢ 2

P S

Setup

-

Download Program

Checkpoint

Several new windows should appear. If you get an error, make sure that the robot is turned
on and plugged in to the computer with the USB cable, then try again.

G RobotC - MotorC Forward

Fie Edi Viow Robot Window Help
DSHE B8 - 892

task main()

Program Debug

motor [motorc] = 100;
vaitilisec (3000) ;

Debug Status

o][t

)

FID[Mode. T |] T ach User] Tach Move] T ach Limif] Tach T
0 OFFFoal0 nore | Ide [[
0 OFFFoa)0 | nore | Ide 0 0 0
0 OFFFloal) __nore _Ide 0 [[
Sensar| Type [Mode | Vale] Reset Devic
[51 [Fawvae modefar syrchiare|
52 |m modeRar o
753 |RanVale 753
4 |RawVaie modeRar 60 i
2
Less
1 Values into NXT
o Sensors
Speed TagetRol Mode Reg Type Mode
Al ™ o[~O 1 =
s [v o [v O 2 Bl

3. Place the robot on an open area on the floor or table. In the Program Debug window, press
the button labeled “Start”. The ROBOTC debug windows appear when the download is complete.

3a. Place robot

Place the robot in an open areq,
on the floor or table, with the
USB cord connected.

3 RobotC - MotorC Forward

Fle Edt View Robot Window Help

EEIEEIERIER]

[m)
Battery & Povier Control

task main()

motor [motorc] = 100;
waitilsee (3000) ;

ctun St
Sper

)

Program Debug

2400
Debug Status Refrezh Hate

&ﬂm@—@ —— 3b. Select “Start”
Select the “Start” button to run
Clear Al the MotorC Forward program.

/

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797 Download Program © 3

Download Program

Checkpoint
The program we just downloaded told the robot to run one of the motors for three seconds.
This causes the robot to move in a circle or perform a pivot turn.

_ J

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797 Download Program ° 4

P S

Setup

Download Program

If you get an error, make sure that the robot is turned on and plugged in to the computer
with the USB cable, then try again.

Failed ta apen Communicatian link ta MET brick,
Check if brick is powered on and link (IUSE or BT) is setup.,

Error Code:
Couldn't Find brick,

N /

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797 Download Program ¢ 5

ROBOTC
eTUPp
4 N
End of Section.
The program must be loaded onto the robot while it is plugged in to the PC, but it can run
either attached, or unattached.
To run it unattached, first unplug the USB cable.
Make sure your NXT is on, and take a look at your robot’s screen. You should be seeing the
main menu, and “My Files” should be displayed. Press the orange button.
Go to the Main menu
Highlight “My Files”.
Press the orange button
Press the orange button to go
into the “My Files” menu.
Return to the Main menu
Pressing the dark gray button a
few times will take you back to
the Main menu.
- /

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797 Download Program ¢ 6

Download Program

|
4EP
fo

|
4@ p
-

Select “Software Files” Select your program

Press the orange button again to go into Navigate to your program using the right

the “Software Files” menu. and left arrow buttons. When you find the
name of your program, press the orange
button.

|
4@ P
s

Run the program Observe the robot

Press the orange button one more time to The robot should now move in a circle.
run the program.

N

J

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Download Program * 7

ROB

OoTC

N/

N

Avutomatic Thresholds aquiz

NAME DATE

1. The output of a sensor is always in the form of a:
a. value.
b. decimal.
c. threshold.
d. frequency.

2. If we want to store a decimal value in a variable named my_variable,
then the variable type we select should be a(n)

3. What does it mean to “declare” a variable?

4. Cross out the names on the following list, which cannot be used as variable names.
a. frue
b. my variable
c. varlx
d. ants go marching
e.1 by 1
f. one_by one
g. motor
h. PB&J

5. Using the following bit of code, write a line of code that will calculate the value of a times b
and store it in the variable “product”. What value will be in “product” after the line is run?

int a;

int b;

int product;
a = 10;

b = 100;

o A WN —

N

/

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Automatic Thresholds Quiz ° 1

:n:I
0

6. In the space below, identify all the variables used in the Automatic Thresholds program,
and briefly describe what each one does.

const tSensors touchSensor = (tSensors) S1;
const tSensors lightSensor (tSensors) S2;

task main ()
{
int lightValue;
int darkValue;
int sumValue;
int thresholdValue;
while (SensorValue (touchSensor) == 0)
{
nxtDisplayStringAt (0,31, "Read Light Now”) ;
}
lightValue = SensorValue (lightSensor) ;
waitlMsec (1000) ;
while (SensorValue (touchSensor) == 0)
{
nxtDisplayStringAt (0,31, "Read Dark Now”) ;
}
darkValue = SensorValue (lightSensor) ;
sumValue = lightValue + darkValue;
thresholdvValue = sumValue/2;
ClearTimer (T1) ;
while (timel[T1] < 3000)
{
if (SensorValue (lightSensor) < thresholdValue)
{

motor [motorC] = O;
motor [motorB] = 80;
}
else
{
motor [motorC] = 80;
motor [motorB] = O;
}
}
motor [motorC] = 0;
motor [motorB] = 0;
}
. J

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797 Automatic Thresholds Quiz * 2

Variables and Functions

N

Avutomatic Threshold values and variables

In this lesson, we’re going to look a little deeper into the world of “values,” and pay special
attention to the programming structures that are used to represent and store values, which
are called “variables.”

In the previous lesson, “Speed Based on Volume”, the robot set its motor power levels based on
sound sensor readings. To the robot, this was no different than setting the power level to 25, 50,
or 100. These numbers — 25, 50, 100, Sound Sensor readings — are all interchangeable values
that could be used to set the motor power levels.

There are some situations where values need to be stored for later use. For example, a robot sent
into a cave to gather Light Sensor values needs to both record those values inside the cave and
be able to recall them aofterwards.

Robot enters the cave Robot takes sensor readings Robot returns
The robot enters the cave (dark area The robot must take and store The robot backs out of the cave and
on the right) to gather data. sensor readings inside. displays the values from inside.

Without some way to store these values, they will be lost by the time the robot leaves the cave.
Variables are the robot’s way of storing values for later use. They function as containers or
storage for values. Values such as the cave robot’s sensor reading can be placed in a variable
when calculated (inside the cave), and retrieved at a later time (outside the cave) for convenient
use. A variable is simply a place to store a value.

There are, however, different types of values. For instance, there are different types of numbers
(integers versus decimals, to name just two), and there are values that aren’t even numbers, like
words. Since there are different types of values, there are different types of variables to hold
them. In order to create (or “declare”) a variable, the programmer must identify two key pieces of
information: the type of value it will hold, and a name for the variable.

J

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797 Automatic Threshold © 1

ROBOT

N
\C

Automatic Threshold values and variables (cont.)

The names of variables can include anything that follows the general ROBOTC naming rules

(see the “Wall Detection (Touch)” lesson for a list of rules). For types, ROBOTC breaks values
down into a few simple categories.

Number values in ROBOTC are broken down into two different kinds of numbers:

Integer, or “int” values are numbers with no fractional or decimal component.

Integers Non-Integers

0,010 (3

Floating point (“float”) numbers are so called because the decimal point “floats” around
in the value, allowing decimal places to be used. Floating point numbers can be positive,
negative, or zero, but they may also represent decimals. Floating point numbers take

up more memory on the robot, and are slower to calculate with, so integer values are
preferred when decimals aren’t necessary.

Floating Point Numbers

3.1456, 31.456, 0.0, -314.56

Other kinds of values also exist, including text like “Hello”, and logical values like True.
Strings (“string”): Text in ROBOTC is always a “string”. In ROBOTC, the word “Hello” is
really a collection of letters — ‘H’, ‘e’, ‘l’, /I, ‘o’ — “strung” together to form a single value.

In fact, while all words are strings in ROBOTC, all strings are not words, and do not even

have to be collections of letters. A string may be a series of numbers, or a series of mixed
numbers and letters.

Strings
“Hello’}] “my name is’] “a16Z"

Boolean (“bool”) values represent “truth” or “logic” values, in the form of “true” or “false”.

Boolean Values

true, false

_ /

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797 Automatic Threshold ¢ 2

ROBOTC

\
/

N

N

int lightValue; will create a new integer-type variable named lightValue.

bool isAwake; will create a new true-or-false (Boolean) variable named isAwake.

int lightValue = 0; will create a new integer-type variable named lightValue,

bool isAwake = true; will create a new true-or-false (Boolean) variable named

with a starting value of 0.

Automatic Threshold values and variables (cont.)

To declare a variable, simply call out its type, then its name, then end with a semicolon.

Optionally, you can also assign a value to the variable at this point, but it is not necessary.

isAwake, with a starting value of true.

~

Data Type

Description

Example

Code

Integer

Positive and negative whole
numbers, as well as zero.

-35,-1,0,
33, 100, 345

int

Floating Point
Decimal

Numeric values with decimal
points.

-.123, 0.56,
3.0, 1000.07

float

String

A string of characters that can
include numbers, letters, or typed
symbols.

“Counter

reached 4”,
“STOP”,

“time to eat

III

string

Boolean

True or False. Useful for express-

ing the outcomes of comparisons.

true, false

bool

End of Section
Things like motor powers and sensor readings are values. Values can be of different types, like
integers or strings. When you need to store them, you can use a variable of the appropriate type
to hold the value for later use. Variables must be declared by assigning them a suitable type

and a name. Names must follow the usual ROBOTC naming rules, and should be chosen so
that you will be able to remember what each variable is supposed to be doing when you read or
troubleshoot your code later.

/

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Automatic Threshold ¢ 3

ariables and-rFunctions

Automatic Threshold Variables and Threshold

Having to reprogram the robot every time the lighting conditions change is not efficient.

In this lesson, we will give the robot the ability to configure itself at the beginning of
every run, with only a little human assistance.

When the program begins, the user will be prompted to “scan” a light surface with the Light
Sensor, and then “scan” a dark surface. The robot will then calculate its own Light Sensor
threshold, wait a few seconds, and proceed as normal.

We'll begin by going through the threshold calculation process manually, and taking note of the
important values that the robot will have to keep track of. Every time a number or value has to be
remembered, make a note.

Scanning light Scanning dark
The robot’s light sensor is first positioned over a Then, the robot’s light sensor is positioned over a
light surface and told to read and store its value dark surface and told to read and store its value

N

j

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797 Automatic Threshold * 4

ariables-and runchions

Automatic Th I"eShOId Variables and Threshold (cont.)

1. Turn on your NXT and navigate to the “View” mode using the gray arrows.

1a. Push the orange button
Turn on the robot by pushing
the orange button. The screen
should display “My Files” when
it is on.

kb

4@b>

48>

1b. Go to the “View” menu 1c. Select “Reflected Light” 1d. Select your port number
Navigate to the “View” menu Select “Reflected Light”, not Select the port number that your
using the arrow buttons. Press “"Ambient Light”. You will get Light sensor is plugged into.

the orange button to go into it. different values otherwise.

2, Record your Light and Dark readings. Record these values.

2a. Record the light value
Place the robot on the light
surface, and record the value
that the Light sensor is reading.

- j

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797 Automatic Threshold * 5

ariables and Funchions

2b. Record the dark value
Place the robot on the dark
surface, and record the value
that the Light sensor is reading.

5. Find the average of the light and dark readings by adding them together and dividing by two.
This thresholdValue will be used for future comparison.

light value + dark value = sum

- 66 + 33 99

sum

/ 2
5b. 99 / 2 = 49,5

= average

Note: Get rid of the decimal number rggggﬂcﬁm’;ﬁ’e"’m“’

5c. rid of the decimal
m — 49 automatically when
using integers.

average = threshold

49 = thresholdValue

5d.

- j

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797 Automatic Threshold * 6

ROBOTC

=)
N w2
4 N

Automatic Th reShOId Variables and Threshold (cont.)

Checkpoint
Four values were either recorded or calculated: light value, dark value, sum, and threshold.

light value + dark value =[sum
Calculate “sum” value

66 + 33 — 99 The sum value is found by adding the

light value and dark value.

/ 2 = |threshold
Calculate average/”threshold” value
The average is found by dividing the sum
99 / 2 = 49 value by 2. The resulting average is the

threshold value.

In order to write a program that will auto-calculate the value of threshold, we will need to create
four variables to store the four values that the calculation needs. To declare each variable, a
name and type must be specified. The name should help you to remember what the variable
does. For this lesson these values will be named:

* lightValue
¢ darkValue
¢ sumValue
¢ thresholdValue

In addition to a name, the type of value (integer, floating point decimal, string, boolean value)
that each variable will hold needs to be determined.

Light Sensors yield values that are whole numbers. So lightValue and darkValue will be “declared”
as integers. Since the sum of two integers is also an integer, sumValue will be declared as an
integer as well. Dividing by two might result in a decimal, but since the threshold is an estimate to
begin with, rounding won't hurt it, and so thresholdValue will also be declared as an integer.

(Declaring Variables \

N
To create a variable, you must “declare” it with two pieces of information:
datatype then name;
Example:
int lightValue; will create a new integer-type variable named lightValue.
\ J
- /

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797 Automatic Threshold ¢ 7

ROBOTC
A N
\C 54
4 N\
ic Threshold
Avutomatic Threshold variables and Threshold (cont)
7. Place the four variables declared as integers in a new program.
Edit Wiew Robot ‘Window Help
= 7a. Create new program
Select File > New to create a
Open Sample Program blank new program.
Save Chr+s
Save As...
Print... Chrl4+P
Prink Prewview
Page Setup...
e : 2
task main () 7b. Add this code
3 |{ These lines form the main body
4 of the program, as they do in
every ROBOTC program. Leave
5 four lines between curly brackets
6 for the variables.
7
8
9
10 Q)
2 task main()
3 |
4 7c. Add these lines
. : Declare the four variables,
5 int lightValue; lightValue, darkValue, sumValue
6 int darkValue; and thresholdValue as integers.
. . Remember that typographic
7 int sumvalue; errors can keep the program
8 int thresholdValue; from functioning!
9
10 }
End of Section
Four variables have been created to store the four values needed to calculate a Light Sensor
threshold. In the next lesson we will write the remainder of the program.
- /

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Automatic Threshold ¢ 8

ROBOTC
Variables and Functions
\C 54
4 N
(]
Automatic Threshold Programming with Variables
In this lesson, you will learn how to store Light Sensor values in the variables you created, and
how to use a Touch Sensor as a user interface button.
The robot will take the first Light Sensor reading over a light surface when the Touch Sensor is
pressed, then take a second reading over a dark surface when the Touch Sensor is pressed a
second time.
. Existing program
2 task main () Your program should
3 { currently look like this.
4
5 int lightValue;
6 int darkValue;
7 int sumValue;
8 int thresholdvValue;
9
10 }
First, we'll configure the Light and Touch Sensors.
F\ Light Sensor
Touch Sensor
1. Open the Motors and Sensors Setup menu.
File Edit Wiew Window Help
I 0O = n Compile and Download Program FS
= Battery & Fo Compile Program F7
- € Constructs Dehugger
MET Brick 4
Dl akE, T »
1. Open “Motors and Sensors Setup”
5 Undefined Ent — Domrioad Frmmmare o Select Robot > Motors and Sensors Setup to
- User Defined open the Motors and Sensors Setup menu and
] configure the sensors.
- /

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Automatic Threshold ¢ 9

| | ROBOTC

s L ,J, ™
‘ariables and Funclions

N/
N

Automatic Threshold Programming with Variables (cont.)

2. ROBOTC will ask if you want to save your program. Click Yes, then save the program
as “Autothreshold”.

RobotC

2a. Select “Yes”
Save your program

Save changes to SourceCode? when promp1ed .

2b. Name the program
Name the program

=]][Cancel]

My Computer ‘ “Autothreshold”.
. File: namme: Autothreshold) v | ([Save] i— 2c. Save the program
e - < s e - | [coneel] Press Save to save the
y Metwor ave az type: ez [".ree”.e2" opp.” nge:” b nghl v ancel program with the new

name.

3. Select the A/D Sensors tab, and make Port 1 the Touch Sensor, named touchSensor,
and Port 2 the Light Sensor, named lightSensor.

Motors and Sensors Setup E'
Motord | 4/D Sersors) 3a. Select “A/D Sensors” tab
Indes - o Selecting this tab allows you view your
B ~
51 G;uchSensm (Touch 7] sensors set up menu.
52 | Mo Sensor v
53| | No Sensor a 3b. Set sensor type
sa [No Sensor 3 !Iden1|f):,1he Sensor Type as a
Touch” sensor.
3c. Name the sensor
Name the Touch Sensor on
port ST “touchSensor”.
[u]] [Cancel] [Apply] [Help]
Motors and Sensors Setup E|
Matars | 47D Sensars |
Irdes Mame Type
51 |t0uchSensor | Touch v
y -
52 @ightSensor) (| Light Active v 3d. Set sensor type
s3| | | Y — 3 !f;l(_anhfy fh'e S,:snsor Type as a
Light Active” sensor.
34 | |No Serisor v
3e. Name the sensor
Name the Light Sensor on port
S2 “lightSensor”.
/- N\
((_ox)| —sares—H—sppt—T-F—teb—] 3f. Click OK
N\ 7

_ /

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797 Automatic Threshold ¢ 10

ariables and Function
-
Automatic Threshold Programming with Variables (cont.)
The next step is for the robot to take the first Light Sensor reading over a “light” surface when the
Touch Sensor is pressed. Then, take the dark reading on the next Touch Sensor press.
. /

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797 Automatic Threshold ¢ 11

ROBOTC
A N
N 94
4 N\
(]
Automatic Threshold Programming with Variables (cont.)
4, The robot should wait for the Touch Sensor to be pressed. A while() loop is used to check the
touchSensor value to watch for a press. As long as the Touch Sensor isn’t pressed,
(SensorValue (touchSensor)==0) remains true, and the robot does nothing.
2 task main ()
3 {
4
5 int lightValue;
6 int darkvalue;
7 int sumValue;
8 int thresholdvalue;
9
10 while (SensorValue (touchSensor)==)]7 4. Add this code
1 { This while () loop idles
(i.e. runs an empty {} code
12 } block) while the Touch
13 Sensor is not pressed.
14
5. After the Touch Sensor is pressed, record the Light Sensor’s value to the variable
lightValue. Assign the value of the sensor to the variable. LightSensor =
SensorValue (lightSensor) Note: A single equals sign means, “set to the value of”.
2 task main ()
3
4
5 int lightValue;
6 int darkValue;
7 int sumValue;
8 int thresholdvValue;
9
10 while (SensorValue (touchSensor)==0)
11 {
I
13
14 [lightValue:SensorValue (lightSensor) ;)— 5. Add this code
15 This line puts the !_igh’r Sensor’s value
into the variable lightValue.
16 3
- %

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797 Automatic Threshold ¢ 12

ROBOTC
Pl N
N 5
4 N
(]
Automatic Threshold Programming with Variables (cont.)
6. Next, the robot records the dark value. Either retype the wait-for-press loop, and the storing
of the value manually, or just highlight and copy the code you just wrote, (starting with “while”
and ending with the semicolon) and paste another copy of it below. In this second recording,
of course, you want to record the value to the dark Value.
2| task main ()
3 |
4
5 int lightValue;
6 int darkValue;
7 int sumValue;
8 int thresholdvValue;
9
10 while (SensorValue (touchSensor)==0)
11 {
.
13
14 lightValue=SensorValue (lightSensor) ;
15
16 while (SensorValue (touchSensor)==0) 6a. Add this code
17 This while () loop idles while the
{ Touch Sensor is not pressed, just
18 } like the previous one.
19
20 CdarkValuezSensorValue (lightSensor) ; 6b. Add this code
9 This line puts the Light Sensor’s value
1 into the variable “darkValue”.
e
Checkpoint
Check to see if the program is working. It is almost always better to write code in small bits
and test often, rather than waiting to test a long section of code in which many mistakes could
be hiding.
7. Compile, Download and run your program.
0: RobotC - Autothreshold *
File Edit view RGEsES ‘window Help
= Compile and Download Program FS 7. Compile and Download
Battery & Pow REEOMPIIE Frogram i ESensors touch3ens RObO* > Compile Gnd
CConstructs | Debugger t3ensors lightSens Download Program
Display LICK to edit 'wiza
Maokars T Brick Y Hing)
Sensors Platfarm Type 3
?IDI_:::S Mokors and Sensors Setup l;gi&:?ﬁ;?
User Defined | Download Firmears sumialue;
=] Inc-thresholdValue;
_ %

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Automatic Threshold ¢ 13

ariables and Fu N
K
(]
Automatic Threshold Programming with Variables (cont.)
8. Run the program. Put the Light Sensor over a light surface. Press the Touch Sensor.
Keep an eye the robot... it may not do what you expect!
9. The program seems to end immediately when the Touch Sensor is pressed.
That’s not what we wanted!

End of Section

Something is wrong with the program. In the next lesson, the debugger will be used

to fix the problem.
o /

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797 Automatic Threshold * 14

Q
0
(7]

>

1 Fu

-
o

N

Automatic Threshold variables and the Debugger

In this lesson, the Debugger windows will be used to determine why the program is not
running properly. The debugger can be used to “freeze time” for the robot and allows you to

step through the program at whatever speed you want.

1. Something is obviously wrong with the program. Download the program again, but this time,
make sure the robot stays plugged into the computer, and watch the code window.

&3 RobotC - autothreshold *

N EETD
- |o=m

1a. Plug the robot back in
Robot has to be plugged into the
computer, via USB, to be able to
view the code window.

N e laltio]

[#)- Battery & Po = - Zensors touchSensd
m C Construcks Debugger Jensors lightSensd
[Display LICK to edit 'wizay
m Matars T Brick, P hing)

&-Sensors Platform Type vl

- Sound Motors and Sensars Setup jontieus:

[#)- Timing arkValue;

[User Defined Diownload Firrmware suriValue;

1b. Compile and download
Select Robot > Compile and
Download Program. The option
may just read “Download
Program”, which is fine also.

j

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Automatic Threshold ¢ 15

ROBOTC

‘ariables and Fune

cfions

J

N

Automatic Threshold variables and the Debugger (cont.)

2, After you have downloaded the program to your robot, fix the problem by open up the
Debugger, then select both the Global Variables and the NXT Devices options so both these

windows are visible.

Q RobotC - Autothreshold

oy =]

Batkery & Pow

Matars
Sensors
Sound
Timning

User Defined

[e

File Edit Wiew RG0S Window Help

Dawnload Prograr FS
Recompile Program F7

Display Debug Windows 3

AT Brick »

FlatForm Type 3
Motors and Sensors Setup

Dowrload Firmwate

st tSensors lightSensor
t tiensors touchiensor

| '/CLICK to edit 'wizard'

k main()

nt lightWalue:;

nt darkValue:

nt sumialue:

nt thresholdValue:

& RobotC -
File Edit Wiew GGG Wwindow Help

Autothreshold

0O = H Download Program
7Battery 2 Fou Recompile Program

C Constructs Debugger

Display

Maotars

SEMSOrs NXT Brick,

- Sound

i .DL!n Flatform Type

Timing Mot ds Seb
User Defined obors and Sensors Setup

Download Firmware

FS

7 t t3ensors light3ensor
t tIensors touch3ensor

nt lightWalue:;

nt darkValue:;

nt sumialue;

nt thresholdValue:

D

while [(SensorValue(touchSe

L

Global Yariables £ 'wizard'
N MAT Devices J

N

2a. View Debugger
Select Robot > Debugger to open
up the Program Debug window.

2b. View Debugger Windows
Select Robot > Debug Windows
and select both Global Variables
and NXT devices if they are not
already checked.

Checkpoint
The screen should look like the sample below with three windows visible: Program Debug,

Global Variable and NXT Device Control Display.

/

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Automatic Threshold ¢ 16

Variables and Funcfions

Automatic Threshold variables and the Debugger (cont.)

3. Run the program. Observe what happens when you push the Touch Sensor.

3. Push Touch Sensor

Pushing the Touch Sensor allows
the program to move forward
out of the while () loop.

Checkpoint

The button was pressed once, and the program shot straight to the end. You can tell the program
is finished because the Start button on the Program Debug window is highlighted. (If the program
was still running, the Suspend button would be highlighted.)

Program Debug

2400
Debug Status Refrezh Rate

Suspend

4, Run the program again, but this fime use the Program Debug window to “freeze” time and
step through the program while suspended. To do so, press the Suspend button, then the
Step button.

Program Debug

2400
Debug Status Refresh Rate
(L Start]\’c et [c; - ;} [Once]

4a. Press Start button
Press the Start button to get the
program started.

Program Debug

Debug Status
L Stap I[Suspend])[Stepr } T |

Corntinuous|

4b. Press Suspend bution

Press the Suspend button on the
Program Debug window to “stop” time
and leave the program right where it is.

Program Debug

2400
Debug Status Fiefrezh Rate

[Stop]LHesume]([Step])—%— 4c. Press Step button
w [Cmtinuousl Press the Step button to go to the

next line of code.

- J

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797 Automatic Threshold « 17

RO

Variables and Functions

N

N

Automatic Threshold variables and the Debugger (cont.)

5. Press the Touch Sensor and observe in the NXT Device Control Display that it is pushed and
working properly.

5a. Push Touch Sensor
Pushing the Touch Sensor allows
the program to move forward
out of the while () loop.

Fiead % alues from NT
Mator] Speed] PID[Made [Fiequlate [Run State] Tach User| Tach Mave] Tach Limit] Tach Tatal
A a 0/ OFF(Float) 0 none Idle a 0 1} 1]
B 1] 0/ OFF(Float] 0 rione Idle 1] 0 1} 1]
C a 0/ OFF(Float] 0 Hiohe Idle a 0 1} a
Sensor | Type [Mode | \-"aIgE[Raw| |Variable Walue Reset Devices
51 |Touch modeBoc g/‘ 1801 —SvneTop vrichl 5b. Observe the Touch Sensor
52 | Light Active modePen 426 | Spnc Tun 0 The value of the Touch Sensor, 1 ,
53 |FawWalue modeR ay 1023 1023) | EBattery oI e
means that it is pr .
54 | FawWalue modeR an 1023 1023) | Sleep Time B0 min eans tha sp essed
Yolume 2 90

Since you have suspended the program, the robot’s program remains “frozen” at the first while()
loop (where the yellow line appears in the code). The NXT Device Control window on your PC
screen, however, remains operational, and will cantinue to report the value of the sensors.

2 task main ()

3

4

5 int lightValue;

6 int darkValue;

7 int sumValue;

8 int thresholdValue;

9

10 (while (SensorValue (touchSensor) == Di Line about to run

11 T The program will run this '

step when the Step button is

12 } pressed again.

13 Because the line is a while
14 lightValue=SensorValue (lightSensor) ; '(gggaii:igvri')';‘:g';:‘;;:e
15 whether to loop, or move on.
16 while (SensorValue (touchSensor)==0)

17 {

18 }

19
20 darkValue=SensorValue (lightSensor) ;
21
22)

N\

/

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Automatic Threshold ¢ 18

Variables and Funcfions
e N
(]
Automatic Threshold variables and the Debugger (cont.)
6. While continuing to hold the Touch Sensor in the pushed position, click the Step button on the
Program Debug control panel to allow the program to move past the while() loop.
6a. Push the Touch Sensor
Hold the Touch Sensor in the
pushed position while pressing the
Step button.
Program Debug X
2400
[Debug Status Fiefresh R ate
[Stop | [Resume)([step |}——nee] 6b. Press Step button
Cantinuous| Press the Step button while pushing
g the Touch Sensor to allow you to go
to the next step of the code.
Since the Touch Sensor value is not O at the time the while loop checks, the program moves
past the loop to the next step. The next line turns yellow now to indicate that this command is
about to be executed.
2 task main{()
3
4
5 int lightValue;
6 int darkValue;
7 Jl'nt sumvalue; Line that was run
8 int thresholdValue; When you pressed Step, this line
9 was run. The (condition) was
- False because the touchSensor
10 (whlle (SensorValue (touchSensor)==0)) value was 1 (and not 0), so the
11 { program exited the loop and
moved on.
12
13
14 (lightValue=SensorValue (lLightSensor) ,)7 Line about fo run
15 The program will run this
. li hen the Step button i
16 while (SensorValue (touchSensor)==0) F;?:S:;dezgqien, ep bution s
17
18)
19
20 darkValue=SensorValue (lightSensor) ;
21
22
o /

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Automatic Threshold ¢ 19

Veariables and Functions

Automatic Threshold variables and the Debugger (cont.)

7. Find the variable lightValue in the Global Variables window. Push the Touch Sensor. Keep it
pushed in while pressing the Step button. The Light Sensor’s value when the Step button was
first pressed is now stored in the variable lightValue.

7a. Push the Touch Sensor

Hold the Touch Sensor in the pushed
position while pressing the

Step button.

Program Debug

2400
Debug Status Fiefresh Rate
|

[Stop] LHesume]([Step]) [o 7b. Press Step button
Press the Step button while pushing

Continuous|
L] the Touch Sensor to enable the

Global ¥ariables program to move to the next line

Yariable of code.
unused
1| unused
2 nused
(2 main: light'alue B 7c. Stored Variable
A main: darkvalue The lightValue variable now
5| main: sum'/alue equals the value of the Light
S il igdetielue Sensor when the Touch Sensor

was first pushed, as shown in the
Clobal Variables window.

13

14 @ightValue=SensorValue (lightSensorF Line that was run

15 When you pressed Step, this line

- was run, and stored the value of

16 Q\zhlle (SensorValue (touchSensor)==0) the Light Sensor in the variable.

17 {

18 }
Line about fo run

19 The program is now ready to

20 darkValue=SensorValue (lightSensor) ; run this next step when Step is

21 pressed again.

29 Because the line is a while loop,

} it will evaluate the (condition)
and decide whether to loop, or
move on.
- /

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797 Automatic Threshold * 20

Variables and Functions

Automatic Threshold variables and the Debugger (cont.)

8. While continuing to hold the Touch Sensor in, press the Step button several times to step
through the rest of the program.

8a. Keep the Touch Sensor pressed
Hold the Touch Sensor in the pushed
position while pressing the Step button.

Program Debug
2400
Debug Status Fiefresh Rate
[Stop] LHesume]([Step]) [o ! 8b. Press Sfep button
; Press the Step button several times
Continuous]
L] while pushing the Touch Sensor
to step through to the end of the
program.
13
14 (lightValue=SensorValue (lightSensor) 37 Line that was run
15 When you pressed Step, this line
) was run. The (condition) was
16, while (SensorValue (touchSensor)==0) False because the touchSensor
17 { value was 1 (and not 0), so the
program exited the loop and
18 } moved on.
19
20 (darkValue=SensorValue (LightSensor) ,)7 8c. Press Step button again
21 The program moves to the next
line of code, making the variable
22} darkValue equal to the Light
Sensor value the moment the
Touch sensor was pressed.
13
14 lightValue=SensorValue (lightSensor) ;
15
16 while (SensorValue (touchSensor)==0)
17 {
18 }
19
20 darkValue=SensorValue (lightSensor) ;
21

22 }()— 8d. Press Step button again

The program moves to the next
line of code, the last curly bracket,
and the program ends.

- J

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797 Automatic Threshold ¢ 21

ROBOTC
- I

_
N

N/

Automatic Threshold variables and the Debugger (cont.)

Checkpoint
Do you see what the problem is? When the Touch Sensor is held down, the program shoots
straight through to the end of the program without stopping.

Why does it do this? Because we told it to. When the Touch Sensor was pressed, it took the
program out of the first while loop. This was what we intended. But then, it quickly set the
lightSensor variable, and then waited for the button to be pressed... which it still was, from the
first press! The program immediately jumped past the second while loop. This is what we said,
though certainly not what we wanted!

With the Step function, you could see this happening one step at a time. At normal speed, all this
happens before you can take your finger off the button from the first press!

9. Place a command between the while() loops telling the robot to wait for 1 second before
looking for the Touch Sensor value again. This allows the human operator enough time to
push, and release, the Touch Sensor.

2 task main{()

3

4

5 int lightValue;

6 int darkValue;

7 int sumValue;

8 int thresholdValue;

9

10 while (SensorValue (touchSensor)==0)

11 {

12 }

13

14 lightValue=SensorValue (1lightSensor) ;

15

16 @aithsec (1000) ;J ?e.lfgiit’:l:o‘t:?:aaitforl
17 second before it starts looking
18 while (SensorValue (touchSensor)==0) for the Touch Sensor again.
19 {

20 }

21

22 darkValue=SensorValue (lightSensor) ;

23

24

End of Section

In this lesson, the debugger was used as a tool to diagnose why a program was not working
properly. Stepping through the commands in a program one at a time allows you to slow down
the program so the problem can be found.

_ /

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797 Automatic Threshold ¢ 22

Variables and Functions
4 N
(]
Avutomatic Threshold threshold calculations
About half of the autothreshold calculator program is complete. In the previous lessons the
Light and Dark values were recorded and stored in variables. In this lesson, you will use them
to calculate the threshold value for the robot’s environment.
Checkpoint
This is what the current program should look like.
2| task main ()
3 |
4
5 int lightValue;
6 int darkValue;
7 int sumValue;
8 int thresholdValue;
9
10 while (SensorValue (touchSensor)==0)
1M {
-
13
14 lightValue=SensorValue (1lightSensor) ;
15
16 waitlMsec (1000) ;
17
18 while (SensorValue (touchSensor)==0)
19 {
200
21
22 darkValue=SensorValue (lightSensor) ;
23
24 |}
- %

© Carnegie Mellon

Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Automatic Threshold ¢ 23

ROBOTC
Pl N
N 5
4 N\
(]
Automatic Threshold threshold calculations (cont)
1. Starting at the end of the program, just before the closing brace of the task main pair, set the
sumValue equal to the sum of lightValue and darkValue. The variable sumValue is now being
used to store the result of lightValue plus darkValue.
2 task main()
3 {
4
5 int lightValue;
6 int darkvValue;
7 int sumValue;
8 int thresholdvValue;
9
10 while (SensorValue (touchSensor)==0)
11 {
12
13
14 lightValue=SensorValue (lightSensor) ;
15
16 waitlMsec (1000) ;
17
18 while (SensorValue (touchSensor)==0)
19 {
20 }
21
22 darkValue=SensorValue (lightSensor) ;
23
24 Csum\/'alue = lightVvalue + darkValue;] 1. Add this code
25 Add lightValue and darkValue
together, and store the result in
26 |} the variable sumValue.
- /

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797 Automatic Threshold * 24

| ROBOTC
pasl L N
ariables and Functions
NC /
4 N
[]
Automatic Threshold threshold caicvlations (cont)
2, Set thresholdValue equal to sumValue divided by two. The variable thresholdValue now stores
the threshold value calculated from the readings of light and dark surfaces.
2 task main()
3
4
5 int lightValue;
6 int darkValue;
7 int sumValue;
8 int thresholdValue;
9
10 while (SensorValue (touchSensor)==0)
11 {
12 }
13
14 lightValue=SensorValue (1lightSensor) ;
15
16 walitlMsec (1000) ;
17
18 while (SensorValue (touchSensor)==0)
19 {
20 }
21
22 darkValue=SensorValue (lightSensor) ;
23
24 sumValue = lightValue + darkValue;
25 G:hreshold\/’alue = sumValue/Z;) 2. Add this line of code
26 Divide sumVolu.e by 2, qu
store the result in the variable
27 } thresholdValue.
N %

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Automatic Threshold ¢ 25

ROBOTC

Variables and Functions

N

N

Avutomatic Threshold rthreshold calculations (cont.)

3. Save the Autothreshold program.

3 RobotC - autothreshold
N Edit Wiew Robot ‘Window Help

New -
(Open and Compile

Auto Cconst LIensors touchien

Luto const t3ensors light3en
Euto TTCLICE to edit Wiz 5. Save program

e 1 task maini) File > Save, to save your current
Print.. P 2 ¢ autothreshold program.
. 8 3 int lightWValue;
Print Preview i
Paas Setu 4 int darkValue:
: 'gtS ; Pie 5 int suniValue:
fn. setup... 5 int thresholdValue:

4. Compile and download your program.

File Edit View Window Help

O E 4. Compile and download
Battery & Po & tZensors touchiens Robot > Complle and
CConstructs | pebugger E3ensors lightSens Download Program
Display LICKE to edit 'wiza
Matars MET Brick P Ling)
Sensors Flatform Twpe [
S Motors and Sensors Sebuy f ey
Timning i arkvalue;

[#- User Defined Download Firmveare suniValue:

'l =] Tt thresholdValue;
i

5. Step through the program using the debugger, pushing the Touch Sensor at the appropriate
times. Observe the variables window as sumValue stores the sum of lightValue and darkValue;
and thresholdValue stores sumValue divided by two.

Program Debug

2400
[rebug Status Fefresh Rate

’ Stop][F!esume_l([Step]) []

5a. Press Step button

Press the Step button in the
Program Debug window to step
through the program.

5b. Push the Touch Sensor

Push the Touch Sensor over light
and dark surfaces at the appropriate
times when you step through

the program.

5c. Observe variables

Observe the variables window as
lightValue, darkValue, sumValue and
thresholdValue are calculated.

Checkpoint
The threshold is now being calculated as the average of the other two values. The debugger
window shows the values of all the variables as they are collected and/or calculated.

N\

/

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797 Automatic Threshold

° 26

ROBOT

Variables and Functions

N

Save
Save fAs...

Prirk...
Print Prexview
Page Setup...

& RobotC - Autothreshold
=M Edit Wiew Robot Window Help

Open and Compile
Open Sample Program

6. Open your LineTrackTimer program.

Lock x| I3 FobolC Frograms
5] AutoTheeshold
19 7| ForwardDerk
My Recent | (] Foewarduniidak
Dincumants 5] Labryrinth
— (] Labyrireh#ID
L;Jl] LabyrirahPreciss
Deshbop _ LabrvrirdhSynich
LineTracki
5] LneTrack2
=74 [Irmtracking
My Drocumants et apFrg e
Lina TripckR ot ation
: i T ol Tty
99
. ratrvareg Forerd

Automatic Threshold threshold calculations (cont)

6a. Open and Compile
Select File > Open and Compile
to be prompted to open a file.

6b. Select the program
Select LineTrackTimer from your
previously saved programs, then
double click to open it.

N

while

ClearTimer (T1) ;

motor [motorC

(timel [T1]

21=0;

3000)

7. Copy the code highlighted below, from lines 5 to 29 of the LineTrackTimer program. Be
careful to copy exactly this portion of the program.

3: RobotC - linetrack-timer

e e O e O e

File B8 ¥iew Robot Window Help

Cut

Copy Configuration o Clipboard

Find
Find Mext
Find and Replace

Chrl+x

Chrl+F
F3
Chrl+H

—— 7b. Select Copy

7a. Highlight code
Highlight exactly this
section of code in
the LineTrackTimer
program.

Select Edit > Copy
to copy the
highlighted code.

/

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Automatic Threshold * 27

\ ROBOTC
A L N
ariables and Functions
\C 54
4 N\
°
Avutomatic Threshold rthreshold calculations (cont.)
8. Reopen the autothreshold program.
G RobotC - linetrack-timer
5-0 Edit View Robot ‘Window Help
Ctrl+h
Open and Campile T EEREET 8a. open and compile
Oper Sample Progra //#1ICLICE to Select File > Open and Compile
Save Chrl+s task main() to open a file.
Save As... i
Save in: | 1 Training Samples
r 2 8b. Select the program
{ Select the authothreshold
My Recent program from the previous
saved programs.
9. Paste the code you copied between “sumValue/2;"” and the concluding curly brace.
2 task main ()
3 {
4
5 int lightValue;
6 int darkvValue;
7 int sumValue;
8 int thresholdvalue;
9
10 while (SensorValue (touchSensor)==0)
11 {
12 }
13
14 lightValue=SensorValue (1lightSensor) ;
15
16 waitlMsec (1000) ;
17
18 while (SensorValue (touchSensor)==0) B ot e Aniothreahald
]9 { File Ws[# Yiew Robot Window Help
20 } O
21 E
, T Cut Chrl+%
22 darkValue=SensorValue (lightSensor); |®{ g .
23 | e
. : Copy Configuration to Clipboard
24 sumValue = lightValue + darkValue;]
:
25 thresholdvValue = sumValue/2; | Find .
Find Mext F3
26 AR .
27 || 9. Paste the copied code
28 Place the cursor right before the
last curly brace and select Edit >
Paste to paste the code.
- /

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDST

ORMS® Education NXT software and base set 9797 Automatic Threshold ¢ 28

N

| ROBOTC

P L ~
ariables and Functions

\L .

4 N

Automatic Threshold threshold calculations (cont)

10. Change the condition of the “borrowed” if-else statement so that instead of comparing the
light sensor value to a set number, it checks it against the “thresholdValue” variable calculated
in the Autothreshold program.

20

27 ClearTimer (T1) ;

28

29 while(timel[T1] < 3000)
30 ¢

31

32 if (SensorValue (lightSensor) <Cthreshold\/alue))— 10. Modify code

33 { Replace the
condition, which had

34 contained a number,

_) with the variable
35 motor [motorC] = 0; “thresholdValue”, that

36 motor [motorB] = 80; holds the calculated
37 threshold value.

38 }

39

40 else

41 {

42

43 motor [motorC]
44 motor [motorB] = 0;
45

46 }

47

48 |}

|
©
o
<o

/

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797 Automatic Threshold ¢ 29

ROBOTC

pasl ‘L N
‘ariables and Functions
NC /
4 N
[]
Automatic Threshold threshold calculations (cont,)
Checkpoint
Your final program should look like the one below, and on the following page.
2 task main ()
3 {
4
5 int lightValue;
6 int darkValue;
7 int sumValue;
8 int thresholdvValue;
9
10 while (SensorValue (touchSensor)==0)
11 {
12 }
13
14 lightValue=SensorValue (1lightSensor) ;
15
16 walitlMsec (1000) ;
17
18 while (SensorValue (touchSensor)==0)
19 {
20 }
21
22 darkValue=SensorValue (lightSensor) ;
23
24 sumValue = lightValue + darkValue;
25 thresholdValue = sumValue/2;
26
27 ClearTimer (T1) ;
N %

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797 Automatic Threshold ¢ 30

ROBOTC

ables and Furl.

L]

fions

N/

N

Avutomatic Threshold rthreshold calculations (cont.)

Checkpoint

Your final program should look like the one below. (continued)

A

29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

53 }

while (timel[T1] < 3000)

{

if (SensorValue (lightSensor)

{

motor [motorC]=0;

motor [motorB]=80;

else

motor [motorC]=80;

motor [motorB]=0;

4

motor [motorC]

=0
motor [motorB]=0;

4

< thresholdValue)

N

/

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Automatic Threshold ¢ 31

Variables and Functions
4 N
[]

Automatic Threshold rthreshold calculations (cont.)

11. Compile and Download to your robot.

<3 RobotC - Autothreshold *

File Edit Wiew

bDEE 11. Compile and download

[+ Battery & Po Jensors touch3ens Select Robot > Compile and

§-CConstructs | Dehugger Sensors lightSens Download Program to run your

[Display ICE to edit 'wiza robot.

--Motors MAT Brick. 3 Ling)

--Sensors

- Sound

--Timing

- User Defined

Checkpoint

Test your program. Find a line you can track in a place where you can turn the lights on and

off. Run your program and press the Touch Sensor once with the Light Sensor over light, to read
the value of the light surface. Move the robot so that it is in line tracking position, with the Light
Sensor over the line.

Pressing the Touch Sensor for the second time should not only read the dark value and calculate
the threshold, but should also make the robot track the line for three seconds. Now turn the lights
off, and run the program again. The robot should still be able to track the line!
Test program with lights on Test program with lights off
Show the robot what the light surface looks Change the light in the room and test the
like, then the dark one, and it should track the program again. The robot should again be
line for three seconds. able to track the line, demonstrating its ability to

calculate a threshold in different conditions.
. J

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797 Automatic Threshold ¢ 32

| ROBOTC
A L N
ariables and Functions
N 94
4 N\
(]
Automatic Threshold threshold calculations (cont)
The program works, but does need to be made more user-friendly. Right now, the robot will not
tell you what to do, or when. Place simple instructions in the code to solve this problem.
12. While the robot is waiting for the Touch Sensor to be pushed, program the robot to display
a message telling a user to press the button over a light surface. This command makes the
NXT display, on its screen, the words “Read Light Now” at position 0, 31 (that’s the left edge,
about halfway down). Place a similar line in the second while() loop that does the same
thing, but says “Read Dark Now”.
2 task main ()
B {
4
5 int lightValue;
6 int darkvalue;
7 int sumValue;
8 1int thresholdValue;
9
10 while (SensorValue (touchSensor)==0)
11 {
12 —(nxtDisplayStringAt (0, 31, “Read Light Now”) ;]
13 }
14
15 lightValue=SensorValue (lightSensor) ;
16
17 waitlMsec (1000) ;
18
19| | while (SensorValue (touchSensor)==0)
20 | | {
21 [nxtDisplayStringAt (0, 31, “Read Dark Now”) ,]
22 }
23
24 darkValue=SensorValue (lightSensor) ;
25
26 | sumValue = lightValue + darkValue;
27 | thresholdvalue = sumValuel/2;
28
—— 12a. Add this code —— 12b. Add this code
Tells the NXT to display, on its Tells the NXT to display, on its
screen, the words “Read Light screen, the words “Read Dark
Now” at the beginning of the Now” after the Touch Sensor has
program. been pushed and released once.
- /

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797 Automatic Threshold ¢ 33

ariables and Functions

Automatic Threshold rthreshold calculations (cont.)

13. Compile and Download your program to the robot.

3 RobotC - Autothreshold *

File Edit View RGE=Ea ‘Window Help
R = Compile and Dawnload Program FS 13. Compile and Download
[#- Battery & Po SECORRIE Lo i Jensors touchiens Select Robot > COI"an|e and
- C Constructs | Debugger Sensors light3ens Download Program.
(- Display LICK to edit 'wiza
.. Matars AT Brick, Y Ling)
G- Sensors Platfarm Type vl
il Sound Mokors and Sensors Sebuy janeva s
bt Tirming i arkValue;
[+ User Defined Download Firrmsare =umValue;
I =) AT thresholdValue:
o

14. Test the program. After the program starts, the message, “Read Light Now” should appear
on the NXT screen. After the Touch Sensor is pushed and released, the NXT screen should
display the message, “Read Dark Now.” As you did previously, place the robot so that its
Light Sensor is directly over the line, and its chassis roughly parallel with the line so that it is
in good position to track it. When you press the button, the threshold should be calculated,
and the robot should track the line for three seconds.

14a. Read light 14b. Read dark 14c. Autothreshold line track
When the NXT displays “Read Light When the NXT displays “Read Dark The robot should track a line
Now”, record the light surface value. Now”, place the robot in position for three seconds and end the
to track a line. program.
o /

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797 Automatic Threshold 34

| ROBOTC
A {’ N
ariables and Functions
N 54
4 N\
(]
Avutomatic Threshold rthreshold calculations (cont.)
End of Section
This is the complete code for the Automatic Threshold program.
2 task main ()
3 {
4
5 int lightValue;
6 int darkvValue;
7 int sumValue;
8 int thresholdvalue;
9
10 while (SensorValue (touchSensor)==0)
1 {
12 nxtDisplayStringAt (0, 31, “Read Light Now”);
13 }
14
15 lightValue=SensorValue (lightSensor) ;
16
17 waitlMsec (1000) ;
18
19 while (SensorValue (touchSensor)==0)
20 {
21 nxtDisplayStringAt (0, 31, “Read Dark Now”);
22 }
23
24 darkValue=SensorValue (lightSensor) ;
25
26 sumValue = lightValue + darkValue;
27 thresholdvalue = sumValue/2;
28
29 ClearTimer (T1) ;
30
31 while (timel[T1] < 3000)
32 {
nn
- /

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797 Automatic Threshold ¢ 35

1 Fu

Q
o
()
>

-
o

Avutomatic Threshold rthreshold calculations (cont.)

if (SensorValue (lightSensor)

< thresholdValue)
{

motor [motorC]=0;
motor [motorB]=80;

else

motor [motorC]=80;
motor [motorB]=0;

motor [motorC]
motor [motorB]

4

4

=0
=0

The robot now tracks a line with its own calculated threshold, and can advise users what to do,
and when.

N

/
© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797 Automatic Threshold ¢« 36

ROBOTC

\
o 5%
4 N\
Warehouse Challenge
Challenge Description
This challenge provides the lines needed in order to investigate line counting, as well as many
other behaviors. Books and the LEGO Box are used as obstacles, and lines are use for “markers”.
Materials Needed
* Black electrical tape * Ruler (or straight edge)
* Red electrical tape * 3 Books
* Scissors (or cutting tool) ¢ 1 LEGO Box container
Board Specifications
A | |
7/ 9" | |
LEGO
Box
L
IA ’ n o
I~ 39 >|
Note: Diagrams are not drawn to scale
@ Starting area.
@ Goal area.
- /

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Warehouse Challenge

ROBOTC

5
<
Q
=
o

J

bles

~
N

Line Counting quiz

NAME DATE
1 int lastSeen;
2 void forward4Lines ()
3
4 lastSeen = 1;
5 while (countValue < 4)
) {
7 if (SensorValue (lightSensor) < thresholdValue)
8 {
9 motor [motorC] = 50;
10 motor [motorB] = 50;
11 if (lastSeen == 1)
12 {
13 countValue = countValue + 1;
14 lastSeen = 0;
15 }
16 }
17 else
18 {
19 lastSeen = 1;
20 }
21 }
22 |}

1. Explain, in your own words, how the “lastSeen” variable prevents double-counting
of lines in the program above.

2. Explain what the line of code above does.

N /

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797 Line Counting Quiz

ROBOTC
Al N
\C 5
4 N
(] (] L]
Line Counting Counting
In this lesson, we're going to investigate the meaning of this curious line of code:
n=n+1;

Reading it in the normal mathematical sense, this is a contradiction... an impossibility. There's

no number out there that can be one more than itself. Of course, that would be misreading what

the line says entirely. In fact, this is not an equation, but a command in ROBOTC, and a perfecily

sensible one, when you understand what it's really saying.

- /

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797 Line Counting * 1

ROBOT

=)
N w2
4 N

Line Counting counting (cont.)

In this lesson, we’re going to learn how to use a robot to count. Using code we have already
discussed, along with some new stuff, we will find out what we can do with this “line
counting” concept.

Let’s back up a step. Where have we seen something like this before?

motor[motorC] = 50;

...sefs @ motor power setting to the numeric value 50.

motor[motorB] = SensorValue(soundSensor);

...sets a motor power to match the value of a sensor reading.

thresholdValue = sumValue/2;

...sets one variable to be equal to another variable divided by two.

In all of these situations, the command is to set a value to something. To the left of the equal
sign, is the variable or other quantity that is set. To the right of the equal sign, is the value that it
will be set to.

n =n + 1;is part of the same family of commands. It is clearly not meant to say that “n is equal
to n plus one,” but rather that the program should set n equal to n plus one. How does that work?
Well, if n starts at zero, then running this command sets n to be equal to 1. Let’s substitute O for
the n on the right side and see what happens.

n starts at O, so...
n=n++1; becomes N=0+1;

nissetto 1, so now...
n=n+1; becomes N=1+1;

...and n is set to 2, so now...
n=n+1; becomes N=2+1;

And so on! Each time you run the command n=n+1; the value in the variable n is increased by 1!

_ /

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797 Line Counting * 2

ariables and Fu on
K
(]] °
Line Counting counting (cont.)
When would this be useful? Let's examine the warehouse task in more detail.
To get around the warehouse, the robot needs to count lines. Every time you reach a new line,
you add one to the number of lines that you've seen. In command form, that looks like:
count = count + 1;
The new count equals the current count plus one. Commands of the form n = n + 1, like this
count = count + 1, add one to the value of the variable each time the command is executed, and
can be used over and over to count upwards, leaving the current count in the variable each time.
By running this line once each time you spot an object that you want to count, you can keep a
running tally in your program, always stored in the same variable. Your robot can count lines!
This will come in quite handy for this project.
- /

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797 Line Counting * 3

| | ROBOTC

s l/ ,J. ™
‘ariablesand Funclions

e y

4 N

Line Counting Line Counting (Part 1)

In this lesson, we’re going to start teaching the robot to count lines. The eventual goal of this
robot is to have it travel to a certain destination by counting special navigation markers on
the floor.

We have one piece of the puzzle now, we know how to count.
What we still need to figure out are:

* When to count

* When NOT to count

* How fo stop, based on the count

1. Start with your automatic threshold calculation program, the one that asks you to push the
button over light and dark, and then tracks the line.

G: RobotC - SourceCode
5N Edit Wiew Robot Window Help

i 1a. Open and Compile
File > Open and Compile
to open up the program
Autothreshold.

Save Chr+5
Save As...

Print... ChrHP
Prink Previev

Lok ir: | |9 Training 5amples V| Q F =@
) [scothreshold) 1b. Find Autothreshold
33 Find Autothreshold and click on
My Recent g
Mook the program previously saved.
?'_'_'
@,
Deskiop

My Documents

My Computer

File name: |Aut0threshold V| (Open }‘ — Tc. Open Autothreshold

- ’ Press the Open button to open
by Metwork, Files of type: | C Files [".roc:” o cpp.”.nge h:".ngh) W | Cancel the progrorrF: P

_ /

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797 Line Counting * 4

ROBOTC

‘ariables and F

clions

J

N

Line Counting Line Counting (Part 1) (cont.)

2, For this lesson, this program will be saved as, “Linecounter”.

Q RobotC - Autothreshold

=M Edit View Robot Window

Tew Chrlm
Open and Compile
Open Sample Program

Help

=

duto
duto
duto

const tiensors touch
const tSensors light)
FAFVICLICK to edit

E—
Print. .. Chr4P

Print Preview
Page Setup...

Save As

L

Z
3
4
S

task maini)

i
int lightWalue:
int darkValue:

Savein: | 123 Training 5 amplez

¥ Q2 E

N

2a. Save As

Select File > Save As to save
your existing code to a new
file, with a new name.

X

ky Recent
Documents

A

Desklop

2>

fy Documents

=

b
91% |
ER 7
=}

£l

T

E Autothreshold

2b. Name the program
Name the new program file
“Linecounter”.

File name:

My Metwark, Save as type:

‘ Lirnecounte])

v| ([_sae_ |y — 2c. Save the program

C Files [*.roc;”. e cpp;” ngc:™.h;*.ngh)

v T Press the Save button to save the

new program.

/

© Camegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797 Line Counting * 5

| ROBOTC
Pl l/ N
ariables and Functions
N B
e N\
L] (]
Line Counting Line Counting (Part 1) (cont)
Checkpoint
This is what the program should look like before modifications.
2 task main ()
3
4
5 int lightValue;
6 int darkValue;
7 int sumValue;
8 int thresholdvValue;
9
10 while (SensorValue (touchSensor)==0)
11 {
12 nxtDisplayStringAt (0, 31, “Read Light Now”) ;
13 }
14
15 lightValue=SensorValue (lightSensor) ;
16
17 waitlMsec (1000) ;
18
19 while (SensorValue (touchSensor)==0)
20 {
21 nxtDisplayStringAt (0, 31, “Read Dark Now”) ;
22 }
23
24 darkValue=SensorValue (lightSensor) ;
25
26 sumValue = lightValue + darkValue;
27 thresholdvValue = sumValue/2;
28
29 ClearTimer (T1) ;
30
31 while (timel[T1] < 3000)
32 {
33
34 if (SensorValue (lightSensor) < thresholdValue)
35 {
36
37 motor [motorC]=0;
38 motor [motorB]=80;
39
40 }
41
42 else
43 {
44
45 motor [motorC]=80;
46 motor [motorB]=0;
47
48 }
49
50 }
51
52 motor [motorC]=0;
53 motor [motorB]=0;
54
55 }
- %

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Line Counting * 6

ROBOT

(-)
N w2
4 N

Line COUIﬂ'iI‘Ig Line Counting (Part 1) (cont.)

The existing program already has the sensors configured, and finds a nice threshold value so
we don't have to worry about either of those. The task at hand, counting lines, involves looking
for light or dark just like the Line Tracker did. But unlike the line tracker, our robot only needs to
move straight forward, so let’s convert over the parts of the code that do steering.

3. Change the first movement portion of the Line Tracking if-else statement to just make the robot
go straight instead. Remove the other movement-related commands.

28

29 ClearTimer (T1);

30

31 while (timel[T1] < 3000)

32 {

33

34 if (SensorValue (lightSensor) < thresholdValue)
35 {

36

37 motor[motorC]:50;\ . .
3a. Modify this code
38 Eﬂotor [motorB] :5O;J Change b(?t,h motorB

39 and motorC to equal
40 } power levels. We will
41 use 50.

42
43
44
45 motor
46 motor
47

48 }

49

50 }

51
52
53
54
55

motor [motorC]=0;
motor [motorB]=0;

—— 3b. Delete this code
Delete both these sections of code,
which steer the robot in the original
line tracking program.

_ /

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797 Line Counting * 7

| ROBOTC
pasl l/ N
y < »
ariables and Functions
N 4
e N\
L] (] . N
Line Countmg Line Counting (Part 1) (cont.)
Checkpoint
This is what the program should look like after modifying the steering.
2 | task main ()
3| {
4
5 int lightValue;
6 int darkValue;
7 int sumValue;
8 int thresholdvValue;
9
10 while (SensorValue (touchSensor)==0)
11 {
12 nxtDisplayStringAt (0, 31, “Read Light Now”) ;
13 }
14
15 lightValue=SensorValue (lightSensor) ;
16
17 waitlMsec (1000) ;
18
19 while (SensorValue (touchSensor)==0)
20 {
21 nxtDisplayStringAt (0, 31, “Read Dark Now”) ;
22 }
23
24 darkValue=SensorValue (lightSensor) ;
25
26 sumValue = lightValue + darkValue;
27 thresholdvValue = sumValue/2;
28
29 ClearTimer (T1) ;
30
31 while (timel[T1] < 3000)
32 {
33
34 if (SensorValue (lightSensor) < thresholdValue)
35 {
36
37 motor [motorC]=50;
38 motor [motorB]=50;
39
40 }
41
42 else
43 {
44
45 }
46
47 }
48
49 }
- %

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Line Counting * 8

| ROBOTC
va l/ BN
‘ariables and Funclions
N S
4 N

Line Counting Line Counting (Part 1) (cont.)

4. Now let's add the lines to turn on PID control for both motors to help keep the robot moving in
a straight line. If you need a refresher you can review PID in the improved movement section.

2 task main()
BN {
4
5 int lightValue;
6 int darkValue;
7 int sumValue;
8 int thresholdValue;
9
10 nMotorPIDSpeedCtrl [motorC] = mtrSpeedReg;
11 nMotorPIDSpeedCtrl [motorB] = mtrSpeedReg;
12
13 while| (SensorValue (touchSensor)==0)
14 {
15 nxfDisplayStringAt (0, 31, “Read Light Now”) ;
16 }
17
—— 4. Add this code

Add these two lines to turn on PID
control for both motors.

5. Because we do want to look at light and dark for counting purposes, let’s keep the light sensor
if-else statement in place.

31

32 ClearTimer (T1) ;

88

34 while (timel[T1] < 3000)
35 {
- s \
37 if (SensorValue (lightSensor) < thresholdValue)
38 {
&
40 motor [motorC]=50;
41 motor [motorB]=50;
42
43 }
44
45 else
46 {

47
48 }
49
50 }
51

52 }

N /

© Camegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797 Line Counting * 9

\ | ROBOTC
Y, * *
ariables and Functions
\C 54
4 N
L] (] . N

Line Countmg Line Counting (Part 1) (cont.)

6. We're definitely going to be counting (lines), and we don’t have a counter variable, so let’s
create one. It has to be an integer — it’s a numeric value, and it won't have decimals - and
we'll call it “countValue”. After the name, add “= 0” before the semicolon. This statement
declares an integer named “countValue” and assigns it an initial value of 0.

2 task main ()
3
4
5 int lightValue;
6 int darkValue;
7 int sumValue;
8 int thresholdvValue;
9 (int countValue = O;)
10
11 nMotorPIPSpeedCtrl [motorC] = mtrSpeedReg;
12 nMotorPIPSpeedCtrl [motorB] = mtrSpeedReg;
13
14 while (S¢nsorValue (touchSensor)==0)
15 {
16 nxtDigplayStringAt (0, 31, “Read Light Now”) ;
17 }
18
19 lightValpe=SensorValue (lightSensor) ;
20
21 waitlMsed(1000) ;
22
23 while (S¢nsorValue (touchSensor)==0)
24 {
25 nxtDigplayStringAt (0, 31, “Read Dark Now”) ;
26 }
—— 6. Add this code
Declare an integer variable
named “countValue”, with a
value of 0. This variable will
be used to count the number
of lines we have passed.
_ %

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Line Counting * 10

ariables-and Functions
K
L] (] . N
Line Countmg Line Counting (Part 1) (cont.)
Checkpoint
Now, let’s see what we should be doing in terms of counting. Suppose the robot starts running, and...
Light Sensor runs over light Robot crosses first line
Since the robot is running over light, it hasn't reached The robot has crossed its first line, so the line
a line, and the line count should remain at zero. count should now increase to one.
Light Sensor runs over light Robot crosses second line
The robot is running over light again, and The robot has crossed its second line, so the
the line count remains at one. line count increases again fo two.
And so on. |t looks like dark means a line, and that's when we want to count.
Count when dark... “If the light sensor value is lower than the threshold, count.” The adding-one
code should go in the part of the code that is run when the value of the Light Sensor is below
the threshold: inside the {body} of the if-else statement starting on line 38.
- /

© Camegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797 Line Counting * 11

ROBOTC

Variables and Functions
NG >
4 N
. . L] L]

Line Countmg Line Counting (Part 1) (cont.)

7. Put the add-one code countValue = countValue + 1; inthe “seeing dark” part
of the if-else statement. The “else” block of code should remain empty so that the robot
does nothing when it’s over a light area, just like we want.

3z
33 ClearTimer (T1) ;
34
35 while (timel[T1] < 3000)
36 {
37 4 2\
38 if (SensorValue (lightSensor) < thresholdValue)
39 {
40
41 motor [motorC]=50;
42 motor [motorB]=50;
43 (countvValue = countValue + 1;)
44
45 ¢ y,
46
47 else
48 {
49
50 }
51
52 }
53
54 }
—— 7. Add this code
Insert the add-one code here, so that the robot
adds one to the line count whenever it sees dark.
N J

© Camegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797 Line Counting * 12

| ROBOTC
Pl l/ N
ariables and Functions
NS 4
e N\
L] (]
Line Counting Line Counting (Part 1) (cont)
Checkpoint
This is what the program should look like after adding the add-one code.
2 task main()
B {
4
5 int lightValue;
6 int darkValue;
7 int sumValue;
8 int thresholdValue;
9 int countValue = 0;
10
11 nMotorPIDSpeedCtrl [motorC] = mtrSpeedReg;
12 nMotorPIDSpeedCtrl [motorB] = mtrSpeedReg;
13
14 while (SensorValue (touchSensor)==0)
15 {
16 nxtDisplayStringAt (0, 31, “Read Light Now”);
17 }
18
19 lightValue=SensorValue (lightSensor) ;
20
21 waitlMsec (1000) ;
22
23 while (SensorValue (touchSensor)==0)
24 {
25 nxtDisplayStringAt (0, 31, “Read Dark Now”);
26 }
27
28 darkValue=SensorValue (lightSensor) ;
29
30 sumValue = lightValue + darkValue;
31 thresholdvalue = sumValue/2;
32
33 ClearTimer (T1) ;
34
35 while (timel[T1] < 3000)
36 {
37
38 if (SensorValue (lightSensor) < thresholdvValue)
39 {
40
41 motor [motorC]=50;
42 motor [motorB]=50;
43 countValue = countValue + 1;
44
45 }
46
47 else
48 {
49
50 }
51
52 }
53
54 }
- %

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Line Counting * 13

xd Fu

Q
0
(7]
&
o

Line Counting Line Counting (Part 1) (cont.)

End of Section
We've written code that tells the robot when to count.
Still to come: testing and debugging the program.

N

j

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Line Counting * 14

ROBOTC
A N
N 94
4 N\
(] (]]]
Line Counting Line Counting (Part 2)
In this lesson, we’re going to learn how to use a breakpoint to debug the line
counting program.
1. Before we test, we need to add something that will help us determine whether the program
is working or not, before it just reaches the end and erases all the data. Since we have the
debugger on our side, there’s a trick we can use. On the very last line of your program, click
once in the grey bar between the code and the line number. A red circle will appear, marking
the creation of a breakpoint.
motor [motorB] = 50;
countValue = countValue + 1;
L
else
I
i
1. Add breakpoint
Place your cursor next
to the last curly brace,
then click in the grey bar
— to create a breakpoint,
i marked by a red circle.
i
A breakpoint is a spot you designate in your code where the robot should automatically go into a
time-stop state, as it did while using the step command. The advantage to using a “breakpoint”
rather than the “step” approach allows your robot to run the program at normal speed until the
program reaches the break point.
2. Compile and Download the program to the robot to begin the test!
&3 RobotC - lineCounter *
File Edit Wiew REESIS Window Help
De 2. Compile and Download
®-Battery & Pow RIS L ade tSen=ors touchSe Robot > Compile and
- C Construcks Debugger tSensors light3e Download Program
- Display LICE to edit 'wi
@-Makars MAT Brick 3
- Sensars Platform Type N aini) 1
- ound lightValue;
&-Timing Motors and Sensors Setup srkvalue:
- User Defined Download Firmmware sumValue:
] =) IntthresholdValue;
- /

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Line Counting * 15

RO

Variables and Functions

N

N

Line Counting Line Counting (Part 2) (cont.)

3. Open up the Debugger, then select both the Global Variables and the NXT Devices options so
both these windows are visible.

File Edit iew WWindow Help
O = n Download Program FS
[#- Battery & Po Recompile Program F? =t t3ensors lightSensor

-

Conskructs t_CLiensors rtonchiensor 3a. View Debugger
it Debug Windaws | '/CLICK to edit 'wizard'

: Select Robot > Debugger to open
ko maing) .
NKT Birick » up the Program Debug window.

nt lightWValue:

13
Platform Type nt darkValue;

Motors and Sensors Setup

[#- User Defined nt sumialue:
File Edit Wiew Window Help
| O = n Downlaad Prograri Fo

[#- Battery & Po Recompils Program & =t tSensors lightSensor

- C Constructs Debugger =t tSensors touch3ensor

isplay i £ 'wizard' . .
i (EE:‘;' Variables) 3b. View Debugger Windows
2YICes .
- Sensors MXT Brick NN Select Robot > Debug Windows
- Sound nt lightValue; and select both Global Variables

-

Platform Type

£ Tirving i i - ht darkValue: and NXT Devices.
[User Defined LT ANGARIRONS Setp ht suriValue;

4. Start the program, then follow the prompts on the NXT screen to press the Touch Sensor to
store the values of light and dark surfaces in the variables lightValue and darkValue. The
second time you press the Touch Sensor, the robot should begin moving forward.

=1C] = marfpsadlag:
STH] = werdpsadbsg; R e

chlensor) ==)

ELI proor Lostac B

1 a5

m ai

» LgiATalan = DesewvTeles (3 Tenses i r

2 wmit LBnme {1000 - i

F-a "

24 i 1

5 ;

27 ‘.

m "
4a. Find lightValue 4b. Find darkValuve
Push the Touch Sensor while the robot’s Wait 1 second, position the robot with the Light
Light Sensor is over a light area. Sensor over the first line and positioned to go

forward, and press the Touch Sensor again. As
soon as the Touch Sensor is pressed, the robot will
begin to move forward, counting lines as it goes.

N\

/

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Line Counting * 16

Veariables and Functions

Line Counting Line Counting (Part 2) (cont.)

Checkpoint

Since the line tracker we originally borrowed the code from was the Timer version, this behavior
should run for a set amount of time, then hit the breakpoint. The program state freezes when it
hits the breakpoint, so the motors keep running — they were running when we froze the program,
so they’ll keep running because there’s nothing to tell them to stop.

— Breakpoint
This dialog tells you
that your program
has reached the
breakpoint you set.

Jensar) < ThresholdYalus)

5. Observe the variables window, and find the value of your variable “countValue”, which should
be the number of lines your robot passes over. The number of lines the robot has passed
appears to be... negative 13,487.

Global ¥ariables
Wariable

light alue
dark! alue
sum* alue
threzholdy alue
county alue

|— 5. Observe “countValue”

Observe the value of the last
variable, “countValue” in the
Global Variables window.

- J

© Camegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797 Line Counting * 17

ariables and Funclions

Line Counting Line Counting (Part 2) (cont.)

6. Run the program again with the robot connected, this time watching to the value of the
variable “countValue” in the variable window as the robot runs.

Wale

Fi
-
BEA,

Checkpoint

Look what happens to the variable “countValue.” It doesn’t move when we're over light, which

it shouldn't. But when you place it over the dark line and press the Touch Sensor it counts more
than once — thousands of times, actually. The number gets so big that it confuses ROBOTC and
wraps around into the negative numbers!

Counting more than once is the same problem we had when we were trying to detect the Touch
Sensor press to read Thresholds! Remember back when the program zipped through both
readings too quickly because the Touch Sensor was still held when the program reached the
second check?

Flashback: Counting too fast
Back in the Automatic Thresholds section, you had another situation where the robot
counted too many times, too quickly, and did not work correctly as a result.

- J

© Camegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797 Line Counting * 18

Variables and Functions
4 N
[] [] . N
Line Countmg Line Counting (Part 2) (cont.)
It looks like the same thing is happening here, but about 10,000 times worse. Per second.
Index| Variable Walue
3| light'/alue 56
4| darkValue 21
5| sumValue 77
E| thresholdV alue 38
7| countValue BEES
Let’s look at what happens when the robot crosses a dark line. It checks the if-condition, which is
true, and adds one to the variable “countValue”.
32
33 ClearTimer (T1) ;
34
35 while (timel[T1] < 3000)
36 {
37
38 (if (SensorValue (lightSensor) < threshold\/alue)\
39 {
40
41 motor [motorC]=50;
42 motor [motorB]=50;
43 countValue = countValue + 1;
44
45 \J J
46
47 else
48 {
49
50 }
51
52 }
53
54 }
—— If (condition)
The robot checks the condition.
When it is true, it adds one to the
value of “countValue.”
\ J

© Camegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797 Line Counting * 19

ROBOTC

ables and FUIJI

clions

N/

32
33
34

36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53

Line Counting Line Counting (Part 2) (cont.)

Then it skips the else, and moves back up to the top of the while() loop.

ClearTimer (T1) ;

35| (while (timel[T1] < 3000))

54 |}

1

if (YensorValue (lightSensor) < thresholdValue)
{

motor [motorC]=50;
mofor [motorB]=50;
coyntValue = countValue + 1;

else

—— Top of the while() loop

After adding one to “countValue”,
the robot moves back to the top
of the while() loop.

N

32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53

N

54 |}

Then it does what it did before: it checks the condition... which is still true even on this second
pass because the sensor is still over the line, and adds another 1 to “countValue”.

ClearTimer (T1) ;

while (timel[T1] < 3000)
{

(if (SensorValue (lightSensor) < threshold\/alue)\

{

motor [motorC]=50;
motor [motorB]=50;
countValue = countValue + 1;

U J

else

If (condition) again...
The robot again checks the
condition, which is still true,
and adds one to the value
of “countValue.”

/

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Line Counting * 20

ariables-and Functions
K
L] L] . N
Line Countmg Line Counting (Part 2) (cont.)
The robot keeps cycling through the while loop over and over again, and keeps adding one
to “countValue” every time it does. And this is the problem: the robot is seeing, and hence
counting, the same black line for what seems to be thousands of cycles in the amount of
time it takes to pass over it.
End of Section
We've found the problem: the robot counts one black line thousands of times when we only
want to count the line only once. In the next lesson you will use a variable to put a stop to the
double counting.
- /

© Camegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797 Line Counting * 21

ROBOTC

Y, 4 >
Variables and Functions
\C /
4 N
Line Counting Line Counting (Part 3)
We need to find some way to make the robot count the line only once.
i -
¥ oty ks BEER,
In the Autothreshold program, we solved the problem by putting in a one second delay to allow
you to take your finger off the button before the program moves to the next line of code.
2 task main()
3| {
4
5 int lightValue;
6 int darkValue;
7 int sumValue;
8 int thresholdValue;
9
10 while (SensorValue (touchSensor)==0)
11 {
12 nxtDisplayStringAt (0, 31, “Read Light Now”) ;
13 }
14
15 lightValue=SensorValue (lightSensor) ;
16
170 (waitiMsec(1000);)
18
19 while (SensorValue (touchSensor)==0)
20 {
21 nxtDisplayStringAt (0, 31, “Read Dark Now”);
22 }
23
24 darkValue=SensorValue (lightSensor) ;
25
26 sumValue = lightValue + darkValue;
27 thresholdvalue = sumValue/2;
28
N J

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Line Counting * 22

Variables and Functions
\C 54
4 N
L] L] . N
Line Countmg Line Counting (Part 3) (cont.)
A one-second pause worked well for the button-pushing situation, but is it really appropriate
here? What if the lines are close together? The robot could miss a lot of lines in that one second
gap. Or what if the line is really huge? It would still count more than once.
Multiple close lines Single thick line
The robot should count all of these lines If a line is thick enough for whatever reason,
separately, but could potentially drive over all of the robot may still not get past it before
them during the “don’t count again” period, and counting again, and it would be counted twice.
end up counting them as only one line.
It looks like we'll have to come up with something more creative. We could look at this line as
being made up of several distinct regions: one light region where you come in from, a dark
region, and then another light region.
Anatomy of a Line
A line is composed of a
light region, followed by a
H H dark region, followed by
ng ht Reglon "\ another light region.
Dark Region ~_
Light Region ~_
- /

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Line Counting * 23

ROBOTC

\

/

N

Line COUIﬂ'iI‘Ig Line Counting (Part 3) (cont.)

Why not let the robot count only on the transition from light to dark? If you look at this picture
there is only one light to dark transition per line. And exactly one. So you can count every line
and never count the same line twice. What we want to count is not “seeing dark”, but “seeing
the transition to dark.”

Light Region\

Dark Region_\

Light Region\

&

What does this transition look like? The transition is when you used to be seeing light, as in the
picture below left, and now are seeing dark, as in the picture below center.

Light Region—__ Light Region—__ Light Region—__

Dark Region —__ Dark Region -__ Dark Region «__

Light Region-—___ Light Region-__ Light Region—__

But how do we keep track of that?2 What we need is a variable to store the color of the region
that we saw last.

0

int lastSeen.

N

~

/

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797 Line Counting * 24

| | ROBOTC
ariables-and Funclions
o 5
4 N\
L] L] . N
Line Countmg Line Counting (Part 3) (cont.)
In this lesson, we’re going to learn how to make our line counter count a line only once, by
counting only the transition to dark. A variable will be used to keep track of the previously
seen color.
1. Declare a new integer variable, int, and call it “lastSeen”.
2 task main()
BN
4
5 int lightValue;
6 int darkValue;
7 int sumValue;
8 int thresholdvValue;
9 int countValue = 0;
10 (int lastSeen;) 1. Modify code
11 Declare a new integer variable
called “lastSeen”.
Checkpoint
We'll decide now that “lastSeen” is going to have 0 in it if the last thing it saw was dark, and
a 1 in it if the last thing it saw was light. This is an arbitrary choice, but one that must be kept
consistent after this point!
0 = dark
L]
1 = light
- /

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797 Line Counting * 25

ROBOTC

padi N

NC /

4 N
H M L] L]

Line COUI‘“’II‘IQ Line Counting (Part 3) (cont.)

2. Just before the while() loop, start the value of lastSeen at 1 (which is “light”) so that we are
able to count the first line

30

31 sumValue = lightValue + darkValue;

32 thresholdvalue = sumValue/2;

33

34 ClearTimer (T1) ;

35 (lastseen = 1;) 2. Modify code
36 Assign the variable
37 while (timel[T1] < 3000) “lastSeen” the value
38 { of 1 just before the
39 while() loop.

40 if (SensorValue (lightSensor) < thresholdValue)

41 {

42

43 motor [motorC]=50;

44 motor [motorB]=50;

45 countValue = countValue + 1;

46

47 }

3. The rest of the program needs to make sure this variable stays up to date. In the block of code
corresponding to the “dark” area of the if-else loop, add the line “lastSeen = 0;” And in the
block for the “light” area (inside the else block), add the line “lastSeen =1;".

30
31 sumValue = lightValue + darkValue;
32 thresholdvalue = sumValue/2;
33
34 ClearTimer (T1) ;
35 lastSeen = 1; 2. Modify code
36 Assign the variable
37 while (timel[T1] < 3000) “lastSeen” the value
38 { of 1 just before the
39 while() loop.
40 if (SensorValue (lightSensor) < thresholdValue)
41 {
42
43 motor [motorC]=50;
44 motor [motorB]=50;
45 countValue = countValue + 1;
46 (lastSeen = 0;) 3a. Modify code
47 Assign the variable
48 } “lastSeen” the value
49 of 0 in the “dark” area
50 clse of the if-else structure.
51 {
52 lastSeen = 1;) 3b. Modify code
53 } Assign the variable
54 “lastSeen” the value
55 } of 1 in the “light” area
56 of the if-else structure.
57 }
N %

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Line Counting * 26

Variables and Funcfions

Line Counting Line Counting (Part 3) (cont.)

4. Save, compile and download the program to the robot to see how we are doing. Bring up
the Debugger, the Global Variables Window and the NXT Device Control Display.

Debuggers

Program Debug

$Iq;l$|:|

f-@ﬁf

CECL[mOEsrC] = mitrSpesdReg:
dlErl[matord] = mtrSpesdReg)

14

15 whils (SensccValue (touchdenssc) == 0)

16 [

17

18)

18

20 lightValue = SersocValue {140htd Raad Valses fom NET

21

22 waic 1Maee { 1000) ¢ Hecdi| § ﬂIH;LJEM'!F_SH

23 A [1] 0 OFFFosy Fon Il

24 vhile (SemsceValue (touchSensor)] 0 00FFfesil | Speed | Ide
1] 0 OFFIFoal 0]]

« 31, "REag

[LightSe

Compile and Download
rebagg $180 & the program, then make
0 = ré —| sure the debugger

windows are still open.

Checkpoint
Run the robot, but pick it up and hold it over either the dark or light areas. Whenever
it's over the dark area, “lastSeen” should be 0. Whenever it's over the light area, “lastSeen”

should be 1.

lastSeen = O;

elae
i

laacSeen = 1:
1

metor [matech)] = 507
49 ccuntValus = countValug #
lastiesn = O3

o ld¥falue = susWalos/ 2! a =
Timer(T1]

f=|
(Eimel[TI] < 3000)
EemactValus [LightSensoc) theeaks

Robot held over Light Robot held over Dark

When the Light Sensor is held over the When the Light Sensor is held over the
light area, the lastSeen variable in the dark line, the lastSeen variable in the
Global Variables window should be 1. Global Variables window should be 0.

N

J

© Camegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797 Line Counting * 27

ROBOTC
Pl N
N 5
4 N
H M L] L]
Line COUI‘“’II‘IQ Line Counting (Part 3) (cont.)
5. A light-to-dark transition will be marked by a “last seen” color of light, and a “currently
seeing” color of dark. Therefore, the counting must be in the seeing-dark portion of the code,
but should also check that the “lastSeen” value is light, a value of 1.
Create an if-else structure (beginning with the line “if (lastSeen == 1)” around the existing
code. The “else” portion is actually optional, and is left out here to save space.
30
31 sumValue = lightValue + darkValue;
32 thresholdvalue = sumValue/2;
33
34 ClearTimer (T1) ;
35 lastSeen = 1;
36
37 while (timel[T1] < 3000)
38 {
39
40 if (SensorValue (lightSensor) < thresholdValue)
41 {
42
43 motor [motorC]=50;
44 motor [motorB]=50;
45
46 if (lastSeen == 1)
47 {
48 countValue = countValue + 1; 5. Modify code
49 lastSeen = 0; Create an if structure
50 } which checks if the
51 variable “lastSeen”
52 } is equal to 1. The
53 add-one code should
become its {body}.
54 else
55 {
56 lastSeen = 1;
57 }
58
59 }
60
61 }
_ %

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Line Counting * 28

ariables and Funchions

Line Counting Line Counting (Part 3) (cont.)

6. Save, download, and run. Watch the count variable in your program as the robot travels
over lines, and with any luck, the count will match the number of lines!

ClemzTimms (TL) 2 Success

lastdesn = 17 The robot now travels for 3 seconds, counting
T RT3 SHOD gpproprioﬂely only when i'f.hos reached a new
i] line (a light-to-dark transition).

Observe the value of “countValue” in the
debug window for each position of the robot
shown below.

motor [motorc] = S0
moror [eoTorE] = 50

16 if{lastSeen == 1)
[

ClearTimez (T1):
ilascdesn = 17

vhile{cimel[T1] < JODO

motor [motocc] = S0
moCor [eoTorE] = 50

16 if{lastSeen == 1)
I

ClearTimms (T1):
lascdesn = 15

vhileieimel[T1] < JO0O
L]
if (SensorvValus|lighey
i

motor [motocc] = S0
moror [eoTorE] = S0

16 if{lastieen == 1)
!

- J

© Camegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797 Line Counting * 29

| ROBOTC
Pl l/ N
ariables and Functions
NS 4
e N\
L] (]
Line Counting Line Counting (Part 3) (cont)
Checkpoint. This is what the program should look like after all your modifications.
2 task main()
BN
4
5 int lightValue;
6 int darkValue;
7 int sumValue;
8 int thresholdvValue;
9 int countValue = 0;
10 int lastSeen;
11
12 nMotorPIDSpeedCtrl [motorC] = mtrSpeedReg;
13 nMotorPIDSpeedCtrl [motorB] = mtrSpeedReg;
14
15 while (SensorValue (touchSensor)==0)
16 {
17 nxtDisplayStringAt (0, 31, “Read Light Now”) ;
18 }
19
20 lightValue=SensorValue (lightSensor) ;
21
22 waitlMsec (1000) ;
23
24 while (SensorValue (touchSensor)==0)
25 {
26 nxtDisplayStringAt (0, 31, “Read Dark Now”) ;
27 }
28
29 darkValue=SensorValue (lightSensor) ;
30
31 sumValue = lightValue + darkValue;
32 thresholdvalue = sumValue/2;
33
34 ClearTimer (T1) ;
35 lastSeen = 1;
36
37 while (timel[T1] < 3000)
38 {
39
40 if (SensorValue (lightSensor) < thresholdValue)
41 {
42
43 motor [motorC]=50;
44 motor [motorB]=50;
45
46 if (lastSeen == 1)
47 {
48 countValue = countValue + 1;
49 lastSeen = 0;
50 }
51
52 }
53
54 else
55 {
56 lastSeen = 1;
57 }
58
59 }
60
61
N : Y

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Line Counting * 30

Line Counting Line Counting (Part 3) (cont.)

End of Section

We've covered the first two items we need for our line counting program.
In the next section, we'll learn how to stop.

Still to come...

V(When to count

Z(When NOT to count

How to stop

N

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

/

Line Counting * 31

| | ROBOTC

s L ,J, ™
‘ariables and Funclions

e y

4 N

ROBOTC

N/

N

Line Counting Line Counting (Part 4)

N

In this lesson, we’re going to learn how to make our line counter stop when it has passed over
a specific number of lines, instead of stopping after a specific amount of time has elapsed.

The Line Tracking code we originally borrowed was the Timer version, which works by
running while the elapsed time value is less than the time limit. Right now it loops until
3000 milliseconds have passed. What we really want is for this robot to move until it has

passed 7 lines.

35
34
85
36
37
38
39
40
41

42
43
44
45
46
47
48
49
50
51

52
53
54
59
56
57
58
59
60
61

ClearTimer (T1) ;
lastSeen = 1;

(while (timel[T1] < 3000))
{

if
{

}

(SensorValue (lightSensor) < thresholdValue)

motor [motorC]=50;
motor [motorB]=50;

if (lastSeen == 1)
{
countValue

= countValue + 1;
lastSeen = 0;

else

{
}

lastSeen = 1;

While loop

The (condition) in the
while loop determines
whether the move-
and-count behavior
continues, or whether
the program moves on
to the next behavior.

/

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Line Counting * 32

ariables and Funclions

Line Counting Line Counting (Part 4) (cont.)

1. Replace the “Timer < 3000” condition with “countValue < 7”.

33

34 ClearTimer (T1) ;

35 lastSeen = 1;

36

37 G\rhile (countValue < 7)) 1. Modify code

38 { Change the condition
39 the while() loop checks
40 if (SensorValue (lightSensor) < thresholdValue) from “Timer < 3000”
41 { to “countValue < 7”.
42

43 motor [motorC]=50;

44 motor [motorB]=50;

45

46 if (lastSeen == 1)

47 {

48 countValue =
49 lastSeen = 0;
50 }

51

52 }

53

54 else

55 {

56 lastSeen = 1;
57 }

58

countValue + 1;

2. Make sure your table has at least seven lines on it.

- J

© Camegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797 Line Counting * 33

ariables and Funcfions

N

Line Counting Line Counting (Part 4) (cont.)

3. Save, download and run.

j

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Line Counting * 34

| ROBOTC
Pl l/ N
ariables and Functions
NS 4
e N\
L] (]
Line Counting Line Counting (Part 4) (cont)
End of Section If this is what your program looks like, you've finished the line counting program!
2 task main()
BN
4
5 int lightValue;
6 int darkValue;
7 int sumValue;
8 int thresholdvValue;
9 int countValue = 0;
10 int lastSeen;
11
12 nMotorPIDSpeedCtrl [motorC] = mtrSpeedReg;
13 nMotorPIDSpeedCtrl [motorB] = mtrSpeedReg;
14
15 while (SensorValue (touchSensor)==0)
16 {
17 nxtDisplayStringAt (0, 31, “Read Light Now”) ;
18 }
19
20 lightValue=SensorValue (lightSensor) ;
21
22 waitlMsec (1000) ;
23
24 while (SensorValue (touchSensor)==0)
25 {
26 nxtDisplayStringAt (0, 31, “Read Dark Now”) ;
27 }
28
29 darkValue=SensorValue (lightSensor) ;
30
31 sumValue = lightValue + darkValue;
32 thresholdvalue = sumValue/2;
33
34 ClearTimer (T1) ;
35 lastSeen = 1;
36
37 while (countValue < 7)
38 {
39
40 if (SensorValue (lightSensor) < thresholdValue)
41 {
42
43 motor [motorC]=50;
44 motor [motorB]=50;
45
46 if (lastSeen == 1)
47 {
48 countValue = countValue + 1;
49 lastSeen = 0;
50 }
51
52 }
53
54 else
55 {
56 lastSeen = 1;
57 }
58
59 }
60
61
N : Y

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Line Counting * 35

| ROBOTC

Pl L TN
ariables |

N/
N

Patterns of Behavior quiz

NAME DATE

1. In your own words, define a behavior.

2. Which of the following keywords begins a function declaration?
a. task
b. int
€. main

d. func

3. Use the following code to answer the questions below.

void specialFunction (int p)
{

motor [motorC] = p/2;
motor [motorB] p/2;
waitlMsec (100*p) ;

task main ()

{

1

2

3

4

5

6 }
7

8

9

10 specialFunction (50) ;

11

a. What behavior would running this program caus your robot to exhibit?

a. How could you get specialFunction to move for 1 second?

_ /

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797 Patterns of Behavior Quiz

SIS -

SR N I -

-

trerryrreryr

Patterns of Behavior Behaviors

In this lesson, you will learn how the various ways of navigating the warehouse environment
break down into a common set of sub-behaviors.

A typical task for the inventory robot may be to retrieve the object in aisle five. How can the
robot get there? The robot is not yet advanced enough to determine its own path, so it will
require human assistance to find a route. For example:

Destination
The robot must navigate to this
location to retrieve an item.

Path

A human programmer chose
this path for the robot (others
were also possible).

In order to follow the path above, the robot needs a way to orient itself in the warehouse
environment. With the irregular spacing between shelves, distance may not be reliable. Instead,
the robot must rely on the floor markings.

Landmarks

This robot will rely on floor
markings to help it find its way
along the path.

/

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797 Patterns of Behavior © 1

Patterns of Behavior Behaviors (cont)

below. How can the robot get there?

Let’s view a typical task for the robot. Suppose the object it needs to get to is at the X on the map

blue route... green one?

We could get there by following this ... or perhaps this yellow one, or this

N

/

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Patterns of Behavior ¢ 2

Patterns of Behavior Behaviors (cont)

Let’s focus on the first (blue) path. What does the robot need to do in order to follow this path?
The large behavior breaks down nicely into smaller behaviors.

Blue Path

Forward 4 Lines
Turn Left

K Forward 3 Lines
Ti Right
| - urn Rig

Forward 2 Lines

[

The green path can also be broken down easily into smaller behaviors.

- Blue Path Green Path
(\ Forward 4 Lines Forward 6 Lines
a Turn Left Turn Left
Forward 3 Lines Forward 3 Lines
- Turn Right Turn Left
|8 ('\ Forward 2 Lines Forward 2 Lines

_ /

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797 Patterns of Behavior * 3

‘Variables and Functions

Patterns of Behavior Behaviors (cont)

Perhaps most interestingly, these two paths seem to share some common sub-behaviors...

- Elue Path Green Path
<\ Forward 4 Lines Forward 6 Lines
(Turn Left Turn Left)
(Forward 3 Lines Forward 3 Lines)
- Turn Right | Turn Left
I ('\ (Forward 2 Lines Forward 2 Lines)

Shared behaviors
These sub-behaviors
appear in both of the
larger behaviors.

End of Section

This repeating of sub-behaviors is no coincidence. The smaller behaviors actually represent
common actions in the warehouse environment, and so they will likely show up in any number

of tasks there. C languages like ROBOTC include structures called “functions” that are made to
capitalize on exactly this kind of patterned reuse of commands to make your code more adaptable,
readable, and reusable. In the next few sections, you will learn to build and use a set of functions to
allow rapid construction and reorganization of behaviors to get around the warehouse.

_ /

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797 Patterns of Behavior * 4

Patterns of Behavior Creating and Using Functions

‘ In this lesson, you will learn how to create and use functions for two of the simplest behaviors.

In the last video, we identified several key simple behaviors that, when combined, will make up
the complex behavior of moving to the destination shown here.

Blue Path

Forward 4 Lines
Turn Left
Forward 3 Lines
Turn Right

* - Q\A Forward 2 Lines

For each of these simple behaviors, we are going fo create a function which encapsulates the
behavior in a single, reusable package. Declaring a function basically means you're creating
your own command in the language of ROBOTC, so you can already begin to see how
powerful this technique will be once you master it....

_ /

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797 Patterns of Behavior * 5

N

‘Variables and Functions

Patterns of Behavior Creating and Using Functions (cont.)

1. Open ROBOTC and start a new program.

Edit WYiew Robot Window Help

1. Create new program
pen and Compile Select File > New to create a
new program.

Open Sample Program
Save Cirl+S
Save As...

Brint... Cirl+P
Print Preyview
Page Setup...

Print Setup...

2. Create the familiar task main, but don’t put anything in it yet.

1| task main ()

2| {

3 2. Add this code

4 Add a task main() {}.
5| }

3. At the top of your program, before task main(), make some space for your functions.

L [\ 3. Create space

2 J Add a few blank lines
: above task main

88 task main() where your functions

4 { will go.

5

6

7 }

/

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797 Patterns of Behavior * 6

‘Variables and Functions

Patterns of Behavior Creating and Using Functions (cont.)

4, Create the basic skeleton of a function called “turnLeft”. “void” is a keyword used to begin the
declaration of the function, much like “task” in task main, and similarly, the function includes a
pair of curly braces that will contain the commands in the function body.

1 (void turnLeft ()\ 4. Add this code
2| ¢ J This code creates a
new function called
3 turnLeft(), and leaves
4 a space between the
curly braces to put
5 its commands.
6| }
7
8 task main ()
9 {
10
11
12 }

5. Place the commands for a left turn behavior between the function’s { } braces. This version of
the left furn uses the rotation sensor to determine when the robot has turned far enough. See
Sensing > Line Tracking > Line Tracking (Rotation, Pt. 1 and Pt. 2) for a review of this sensor.

1 void turnlLeft ()
o | 5. Add this code
| Add the commands
3 e N\ for a left turn behavior,
4 nMotorEncoder [motorB] = 0; b?f‘;veen *h? curly braces
. t tion.
5 while (nMotorEncoder [motorB] < 160) ot fhe new tunction
6 { The function will run the
_ . commands between its
7 motor [motorC] = =507 braces when it is called,
8 motor [motorB] = 50; just as task main runs
9 } the commands between
its braces when the main
10 program is run.
U motor [motorC] = 0; The left turn itself resets
12 motor [motorB] = O; the rotation sensor, then
13 . J turns until the wheel has
rotated a set amount,
14} then stops both motors.
15
16 task main ()
17 {
18
19
20 }
N %

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797 Patterns of Behavior * 7

‘Variables and Functions

main task.

volid turnlLeft ()

Patterns of Behavior Creating and Using Functions (cont.)

6. You have created the function turnlLeft, and specified the commands that it should run when
called (a Rotation Sensor-controlled left turn). To use the function, simply call it by name in the

1

2 {

3

4 nMotorEncoder [motorB] = 0;
5 while (nMotorEncoder [motorB] < 160)
6 {

7 motor [motorC] = -50;
8 motor [motorB] = 50;
9 }

10

11 motor [motorC] = O;

12 motor [motorB] = O;

13

14 }

15

16 task main ()

17 |

18

19 [turnLeft();]

20

21 }

6. Add this code
Call the function
turnLeft () by
name, followed by a
semicolon, to run it.

Mew
Open and Compile
(Open Sample Program

<33 RobotC - SourceCode *
GIEN Edit View Robot ‘Window Help

Chrl4+m

7. Save your program, download, and run.

?

EEEE Ctrl+3

id turnLeft()

THOLOLENCOder [motoEB] = Of

Prink Chrlep while (nMotorEncoder [motorE] < 160)
L
Prink
My Documents
by Computer
Filz name: ‘ functionT est) A | Save
by Metwork, Save as lype: C Files [*.roc” o cpp:” ngo”™ he".ngh) b | Cancel

N

7a. Save As
Go to the File menu and
select “Save As...”

7b. Name the program
Give this program the name
“functionTest”.

7c. Save the program
Press Save to save the program
with the new name.

/

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Patterns of Behavior ¢ 8

:iéga Qi::

N

Patterns of Behavior Creating and Using Functions (cont.)

Checkpoint

You have created the function turnLeft and told your program to run it in the main task. Does the

robot do what you wanted?

Robot running the leftTurn() function
The robot seems to do what we wanted...

7. We said that one of the major advantages of functions was their reusability. Let’s see it in
action. Add another left turn, separated from the first one by a 1 second wait.

void turnlLeft ()

{

nMotorEncoder [motorB] = 0;
while (nMotorEncoder [motorB] < 160)
{
motor [motorC] = -50;
motor [motorB] = 50;
}
motor [motorC] = O;
motor [motorB] = O;

task main ()

{

turnLeft () ;

waitlMsec (1000) ; |

turnLeft () ; J

6. Add this code
Add another call
to turnLeft(),
separated from the
first one by a

1 second delay.

J

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Patterns of Behavior ¢ 9

Ies ::

N

Patterns of Behavior Creating and Using Functions (cont.)

9. Download and run again.

Robot running two leftTurn() functions
The robot turns once, then waits, and makes a second 90 degree turn.

10. The use of the turnLeft() function to encapsulate the turning behavior in a custom command
seems to work welll Now, create one for the right turn, right below the turnLeft() function.

void turnlLeft ()

{
nMotorEncoder [motorB] = 0;
while (nMotorEncoder [motorB] < 160)
{
motor [motorC] = -50;
motor [motorB] = 50;
}
motor [motorC] OF
motor [motorB] = O;
}
. . N\
void turnRight ()
{
nMotorEncoder [motorC] = 0;
while (nMotorEncoder [motorC] < 160)
{
motor [motorC] = 50;
motor [motorB] = -50;
}
motor [motorC] OF
motor [motorB] = O;
}
J

10. Add this code
Create a function
called turnRight(),
below turnLeft(). It
should be almost
identical, but with a
right-turn behavior
inside it instead.

J

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Patterns of Behavior ¢ 10

void turnlLeft ()
{

nMotorEncoder [motorB] = 0;
while (nMotorEncoder [motorB] < 160)
{

motor [motorC] = -50;
motor [motorB] = 50;
}
motor [motorC] = O;
motor [motorB] = O;
}
void turnRight ()
{
nMotorEncoder [motorC] = 0;

while (nMotorEncoder [motorC] < 160)
{

motor [motorC] = 50;
motor [motorB] = -50;
}
motor [motorC] = O;
motor [motorB] = O;

task main ()

{

turnLeft () ;
waitlMsec (1000) ;

Patterns of Behavior Creating and Using Functions (cont.)

11. Change the second left turn to a right turn instead. What should the robot do now?

(turnRight();)

N

11. Modify this code
Change the second
leftTurn() call to a
rightTurn() call instead.

j

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Patterns of Behavior ¢ 11

nctions |

S - -

b gk Ty b gk

Patterns of Behavior Creating and Using Functions (cont.)

12. Download and run again.

Robot running lefiTurn() then rightTurn()
The robot turns once, then waits, and turns the opposite direction back to the place where it started.

End of Section

You now have two of the most common warehouse (and movement, in general) behaviors written
as functions. You have also seen the ease with which these functions can be treated as commands
in the ROBOTC language to allow their rapid reuse in a situation like the warehouse where they
will be seen over and over again.

In the next lessons, you will move these two functions from their current location in the test
program (functionTest) into the main program, and complete the remaining behaviors.

_ J

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797 Patterns of Behavior ¢ 12

Patterns of Behavior variables and Functions (Part 1)

In this lesson, you will transfer your two turning behaviors into the program from earlier
Warehouse activities, and create functions for the remaining behaviors in the program.

The two turning behaviors you've created are useful, but disconnected from the rest of the
Warehouse program we've been working on. Functions only work in the programs they are
declared in, and right now, ours are in a test program called functionTest. Let’s start this
lesson by moving them into the main program file, and then we'll work on turning the other
behaviors in the program into functions.

1. Highlight and copy the two functions in your “functionTest” program.

void turnLeft () Ta. Highlight code
Highlight both functions

and all their associated
code as shown.

nMotorEncoder [motorB]
while (nMotorEncoder [motc

0 NO~ O AW N =

160)

obotC - functionTest.c ®

View FRobaob Windaow Help

motor [motorC]

motor [motorB] Undo Typing

_uk

Select Edit > Capy to

put the highlighted
| oo Coofionration bo Clinhoard | code on the clipboard.

_ /

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797 Patterns of Behavior * 13

‘Variables and Functions

2. Open your L

SN Edit Wiew Robot

Save As...

Prink...
Print Preview

<3 RobotC - SourceCode

ineCounter program.

window Help

Chrl+-3

Chrl4+p

2a. Open and Compile

File > Open and Compile
to open up the program
LineCounter.

Page i_ ?“L':

e

My Documents

T=] Caorg T
[£] LabyrinthPID
Ej LabyrinthPrecise

il
E

=1 T T

P

Ej LineTrackz

Ej linetrackin
E:] limetrackin)
E] LineTracl

Ej LinaTrack,

nker

V| r Open

["ree e epp:” nge:” k" nah)

w | [Cancel

Patterns of Behavior variables and Functions (Part 1) (cont.)

2b. Find LineCounter
Find LineCounter and click on
the program previously saved.

2c. Open LineCounter
Press the Open button to open
the program.

3. Paste your functions just above the task main code in the LineCounter program.

N

C]:py Configuration ko Clipboard

Auto | const tSensors touchSensor (tSensors) S1;
Auto const tSensors lightSensor = (tSensors) S2;
!)
2
3
4 task main ()
<
6
7 int lightValue;
8 int darkValue; Tl Yiew Fobob Window Help
? int sumValue; Undo Paste Crrl+
10 int thresholdValue;
11 int ~~n1ntValue = 0-

l— 3b. Paste

Select Edit > Paste to
put the copied code
into this program.

3a. Place
cursor here

Place your cursor

on the line just
above task main
so your pasted
code will go
there.

/

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Patterns of Behavior ¢ 14

‘Variables-and Functions
(]
Patterns of Behavior variables and Functions (Part 1) (cont.)
Checkpoint
And just like that, your program has access to both functions. The rest of the task main could
use some cleaning via functions, though, so let’s do that next.
The other two functions we’ll need to create are:
* Threshold calculation
* Moving forward for specific numbers of lines
4. Create the structure for the findThreshold() function. Put it at the top of the program, above
the newly-pasted turnLeft() function.
Auto | const tSensors touchSensor = (tSensors) S1;
Auto const tSensors lightSensor = (tSensors) S2;
1| void findThreshold ()
24 {
8
4 4. Add fhis‘ code
Add the basic
5 structure for the
6|) ﬁndThreshold()
\ y function that we
7 are about to
8 void turnleft () create.
2 {
10
11 nMotorEncoder [motorB] = 0;
12 while (nMotorEncoder [motorB] < 160)
13 {
14 motor [motorC] = -50;
15 m~"~r[motorB] = ""-
N %

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797 Patterns of Behavior * 15

‘Variables and Functions

38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71

70

N

task main ()

int lightValue;

int darkValue;

int sumValue;

int thresholdValue;
int countValue = 0;
int lastSeen;

nMotorPIDSpeedCtrl [motorC] = mtrSpeedReg;
nMotorPIDSpeedCtrl [motorB] mtrSpeedReg;

while (SensorValue (touchSensor)==0)
1

nxtDisplayStringAt (0, 31, “Read Light Now

lightValue=SensorValue (lightSensor) ;
waitlMsec (1000) ;

while (SensorValue (touchSensor)==0)
1

Patterns of Behavior variables and Functions (Part 1) (cont.)

5. Highlight all the lines currently in task main that have to do with automatic threshold
calculation, and cut them to the clipboard using the Edit > Cut command.

”y o.
)7

nxtDisplayStringAt (0, 31, “Read Dark Now”) ;

darkValue=SensorValue (lightSensor) ;

sumValue = lightValue+t+darkValue;
thresholdvalue = sumValue/2;

ClearTimer (T1) ;

lastSeen = 1;
Urdo Paste

Copy

L view Robot Window Held

Select Edit > Cut

5a. Highlight code
Highlight the code
that performs the
automatic threshold
measurement and
calculation.

to remove the
highlighted code
from the program
and put it on the
clipboard.

/

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Patterns of Behavior ¢ 16

‘Variables and Functions

6. Paste the lines into the {body} section of the findThreshold() function.

Patterns of Behavior variables and Functions (Part 1) (cont.)

Copy Configuration to Clipboard

Auto . const tSensors touchSensor = (tSensors) S1;
Auto | const tSensors lightSensor = (tSensors) S2;
1 void findThreshold()
2 {
3 | 6a. Place
; - - cursor here
4 @ W Yiew Fobob Window Help Place your cursor
on the line between
5 Unda Paste Chrl+ findThreshold()’s
6 } curly braces so your
7 pasted code will go
. there.
8 void turnLeft ()
6b. Paste

Select Edit > Paste to
put the copied code
info this program.

But first, let’s finish writing the other functions.

Auto const tSensors touchSensor = (tSensors)
Auto | const tSensors lightSensor (tSensors)

N

Checkpoint. Finding a threshold is now as simple as telling the program to findThreshold () ;.

1 void findThreshold/()

B {

3

4 while (SensorValue (touchSensor)==0)
5 {

6 nxtDisplayStringAt (0, 31, “Read Light Now”) ;
7 }

8

9 lightValue=SensorValue (lightSensor) ;
10

11 waitlMsec (1000) ;

12

13 while (SensorValue (touchSensor)==0)
14 {

15 nxtDisplayStringAt (0, 31, “Read Dark Now”) ;
16 }

17

18 darkValue=SensorValue (lightSensor) ;
19

20 sumValue = lightValuetdarkValue;

21 thresholdvalue = sumValue/2;

22

23 | }

S g
S2;

/

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Patterns of Behavior ¢ 17

Patterns of Behavior variables and Functions (Part 1) (cont.)

7. Create the structure for the forward7Lines() function. Put it just under the findThreshold()
function, outside its last closing brace.

const tSensors touchSensor = (tSensors) S1;
const tSensors lightSensor (tSensors) S2;
volid findThreshold ()

{

while (SensorValue (touchSensor)==0)

{
nxtDisplayStringAt (0, 31, “Read Light Now”) ;
lightValue=SensorValue (lightSensor) ;
walitlMsec (1000) ;
while (SensorValue (touchSensor)==0)
{
nxtDisplayStringAt (0, 31, “Read Dark Now”);

darkValue=SensorValue (lightSensor) ;

sumValue = lightValuet+darkValue;
thresholdvValue = sumValue/2;

}

(void forward7Lines ()\

{

7. Add this code
Add the basic
structure for the
findThreshold()

} function that we are
\ J about to create.

void *+murnLeft ()

N

j

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797 Patterns of Behavior * 18

N

‘Variables and Functions

Patterns of Behavior variables and Functions (Part 1) (cont.)

8. Highlight all the lines currently in task main that have to do with moving forward for a given
number of lines, and cut them to the clipboard using the Edit > Cut command. Delete the
unneeded ClearTimer command that’s still in this portion of the code.

76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
28
94
95
96
97
98
99
100
101
102
103
104

ClearTimer (T1);
lastSeen

:1’-

(countValue

(lastSeen ==

countValue
lastSeen

thresholdValue)

countValue + 1;

L Yiew Robot Window Held
Undo Paste

D

Copy

- i : i

8a. Delete this code

Remove the leftover
ClearTimer command
that is in this section.

8b. Highlight code
Highlight the code
that performs the line
counting and forward
movement based on
lines crossed.

8c. Cut

Select Edit > Cut
to remove the
highlighted code
from the program
and put it on the
clipboard.

/

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Patterns of Behavior ¢ 19

™

and Functions

S U S S -

b gk Ty b gk

Patterns of Behavior variables and Functions (Part 1) (cont.)

9. Paste the lines into the {body} section of the forward7Lines() function.

volid forward7Lines ()

L

9a. Place

cursor here

Place your cursor
on the line between

Fa[Yiew Fobob CWindow Help

Undo Paste Chrl+ forward7Lines()’s
Zan't Fedo Chrl+ curly braces so
} your pasted code
Lk Chel will go there.
void turnLeft ()] Chrl+

9b. Paste

' - - Select Edit > Paste to
Copy Configuration to Clipboard out the copied code

Paste Configuration from Clipboard into this program.

Checkpoint
You now have a function that lets you move forward for 7 lines at a time. Save your
program, but dont download yet.

void forward7Lines ()

{
lastSeen = 1;

while (countValue < 7)

{

if (SensorValue (lightSensor) < thresholdValue)
{

motor [motorC]=50;
motor [motorB]=50;

if (lastSeen == 1)
{
countValue

= countValue + 1;
lastSeen = 0;

}

else

{
lastSeen = 1;

}

_ j

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797 Patterns of Behavior ¢ 20

N

‘Variables and Functions

Patterns of Behavior variables and Functions (Part 1) (cont.)

Your program now has access to two additional behaviors: findThreshold() and forward7Lines(),
which we have just extracted into separate functions. In addition, we have the two behaviors we
imported from our test file, turnLeft() and turnRight(). All that remains now is to tell the task main
to run them in the desired order... right?

10. Call the new functions in task main. Finding the threshold comes first, followed by the
movement forward for 7 lines. We'll wait to see if that works before we put in the turns.

= mtrSpeedReg;
mtrSpeedReg;

86 task main ()

87 {

88

89 int lightValue;

90 int darkValue;

91 int sumValue;

92 int thresholdValue;

93 int countValue = 0;

94 int lastSeen;

95

96 nMotorPIDSpeedCtrl [motorC]
97 nMotorPIDSpeedCtrl [motorB]
98

99 findThreshold() ;)

100 forward7Lines () ; J

101

102

103 }

10. Add this code
Tell your robot to run
the findThreshold(()
and forward7Lines()
functions as part of its
main program.

11. Save, download, and run. An error message will appear, indicating that something is
not right... let’s see if we can find what's going wrong.

R tl ok

Window Help

iZompile and Download Program

Fecompile Program

Debugger

F&

F7

11. Compile and Download
Compile and download your program,
but be ready for unusual resuls...
continue on to the next step.

/

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Patterns of Behavior ¢ 21

‘Variables and Functions

Patterns of Behavior variables and Functions (Part 1) (cont.)

Checkpoint
= Error!
|SE Something is wrong
RobotC . | with the program.

Q iZode generation not performed, Errors during compilation,

K

Scope: How broadly applicable a value should be

The problem with your program has to do with a property of variables called scope. Scope
determines how broadly applicable a value should be. The variables in your program are
all declared in task main. But the actual code that's trying to use them is outside task main,
in separate functions. They cannot “see” the variables because they are only accessible within
task main. It seems silly to us now that this should be the case, but scope actually plays a vital
role in letting functions run without interfering with each other.

void findThreshold ()
{

1
2
3
4 while (SensorValue (touchSensor)==0)

S {

6 nxtDisplayStringAt (0, 31, “Read Light Now”);
7 }

8

9

(lightValue%SensorValue (lightSensor) ;

—— Scope
The variable lightValue is declared in task main, so the function
findThreshold() cannot see it to use it. This causes an error
when you try to compile and download the program.

09

86 task maij
87 |

88

89 (int lightvalue;)

Nevertheless, for now, we're going to take a very heavy-handed approach to solving this problem.
We're going to move the variables so that they are visible to all functions and tasks by making
them global. This has advantages and disadvantages, but for now, we’re going with it.

_ /

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797 Patterns of Behavior * 22

‘Variables and Functions

Patterns of Behavior variables and Functions (Part 1) (cont.)

12. Highlight all the lines currently in task main that declare variables needed by the functions,
and cut them to the clipboard using the Edit > Cut command.

85

86 task main () 12a. Highlight code

87 | Highlight the code that

88 declores' variables in
task main.

89 ' lightVvalue

90 ' darkValue

91 ' sumValue

92 ' thresholdvValue

93 ' countValue

94 ' lastSeen

95

96 nMotorPIDSpeedCtrl [motorC] = mtrSpeedReg;

97 nMotorPIDSpeedCtrl [MOLOrB]| = :

98 Yiew FRobab Window Hel

99 findThreshold() ; Undo Paste

100 forward7Lines () ;
Select Edit > Cut

Copy to remove the
highlighted code
from the program
and put it on the
clipboard.

_ /

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797 Patterns of Behavior * 23

‘Variables and Functions

Patterns of Behavior variables and Functions (Part 1) (cont.)

13. Paste the lines at the top of the program, outside all the functions, but just below the Motor
and Sensors auto-generated lines.

N

Auto | const tSensors touchSensor = (tSensors) S1;
Auto | const tSensors lightSensor = (tSensors) S2;
1
2 @ 9a. Place
3 cursor here
.) Place your cursor
4 void findThreshold () on the line above
5 | the findThreshold()
. declaration so your
6 while (SensorValue (t Sensor)==0) pasted code will go
7 { Yiew FRobot Window Help there.
8 nxtDisplayStrino? Undo Paske b+
C]Jp';.-' Configuration bo Clipboard
I— 9b. Paste
Select Edit > Paste to
put the copied code
info this program.
Checkpoint

All your variables are now declared “globally”, and therefore will be visible to all of the
functions and tasks in the program. This will have side effects down the line, but for now,
it will get us the result we want.

Auto const tSensors touchSensor = (tSensors)
Auto const tSensors lightSensor = (tSensors)

1

2 int lightValue;

3 int darkValue;

4 int sumValue;

5 int thresholdValue;

6| int countValue = 0;

/ int lastSeen;

8

9 void findThreshold ()

10 {

11

12 while (SensorValue (*nuchSensor)==0)

S g
S2;

/

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Patterns of Behavior ¢ 24

Ies ::

-

Patterns of Behavior variables and Functions (Part 1) (cont.)

End of Section

Download and run your program. The robot should now run exactly seven lines, then stop, using
functions. The result isn't any different from what you've seen before, but you know that under
the hood, your program is much more powerful and expandible now, and you are now ready

to finish solving the warehouse problem. In the next lesson, you will program the remaining
necessary functions for the warehouse.

/

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797 Patterns of Behavior * 25

‘Variables and Functions

Patterns of Behavior variables and Functions (Part 2)

In this lesson, you will learn to adjust the behaviors to fit the actual path you want to take in
the warehouse, and make a few additional refinements as necessary.

And now, let’s return to the path we want to take through the warehouse. The needed behaviors
(in addition to finding the threshold, which isn’t shown) are:

Blue Path
Forward 4 Lines
Turn Left
W Forward 3 Lines
Turn Right
K —~ (\ Forward 2 Lines

=

/.,

Our currently programmed behaviors are:

findThreshold (), which finds a threshold
forward7Lines (), which travels forward for 7 lines
turnLeft (), which turns the robot 90 degrees to the left
turnRight (), which turns the robot 90 degrees to the right

It looks like we have a fair number of changes to make, so let’s get started.

_ /

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797 Patterns of Behavior * 26

N

Patterns of Behavior variables and Functions (Part 2) (cont.)

1. The current forward-for-lines goes for 7 lines, but the path requires a 4, a 3, and a 2. Start by
modifying the 7-line behavior to be a 4-line behavior.

(void forward4Lines()) Ta. Modify

{ this code
Change the name of
the function to indicate
lastSeen = 1; its new behovigr: going
forward for 4 lines,
instead of 7.

while (countValue <

{ 1b. Modify
this code
.] Th ber of li
if (SensorValue (lightSensor) < thresholdValue) ajgﬁ:ﬁ;%ﬁﬁ
{ loop's (condition) is
what determines how
many lines the robot

motor [motorC]=50; watches for. Change
_ this number from 7

motor [motorB]=50; lines to 4 lines.

if (lastSeen == 1)

{

countValue = countValue + 1;
lastSeen = 0;

else

{

lastSeen = 1;

j

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797 Patterns of Behavior ¢ 27

‘Variables and Functions

Yo

94 | task main ()
95 | {

96

97

98

100 nMotorPIDSpeedCtrl [motorB]
101

Patterns of Behavior variables and Functions (Part 2) (cont.)

2, Adjust your task main to run the new forward-for-4-lines function, and add all the other
behaviors which we will need, even if they haven’t been written yet. Note those for later.

99 nMotorPIDSpeedCtrl [motorC] = mtrSpeedReg;
mtrSpeedReg;

102 findThreshold() ;
103 (forward4Lines () ;
104 turnLeft () ;

105 forward3Lines () ;
106 turnRight () ;

2a. Modify this code
Change the old
forward-for-7-lines
command to the new
forward-for-4-lines one.

~— AN

107 forward2Lines () ;

2b. Add this code
Add the appropriate

108 function calls for the
remaining behaviors,
109 } even the ones where
we haven’t written the
actual functions yet.
Checkpoint

Our functions are in place to perform each of the behaviors we identified in our initial plan.
Three of them, forward4Lines, turnLeft, and turnRight are already written. Let’s finish up the others.

/.,

N

v .
Blue Path 102 findThreshold() ;
(Forward 4 Lines 103 forward4Lines () ,)
urn 104 turnLeft () ;
W Forward 3 Lines (5 forward3Lines () ;
— p—— Tum Right 106 turnRight () ;
'(6\ R 107 forward2Lines () ;
. 102
-

/

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797 Patterns of Behavior * 28

N

‘Variables and Functions

Patterns of Behavior variables and Functions (Part 2) (cont.)

3. The remaining two behaviors, forward3Lines() and forward2Lines() are very close relatives of
the existing forward4Lines(). Copy the forward4Lines() function, and paste two copies of it,
which we will turn into the 3-line and 2-line behaviors in the next step.

3z
B8]
34
35
36
37
38
39
40
41
42
43
44
45
46
47
49
50
51 lastSeen =
52]
53
54
55
56
57
58
59
60
61

62
AR

volid forward4Lines ()

while (countValue < 4

if (lastSeen ==

lastSeen = 1;

)

1)

countValue =

O,

countValue + 1;

thresholdValue)

3a. Highlight code
Highlight the
forward4Lines()
function, including
its curly braces

and everything
between them.

L[View Robot Window Held

_uk

=)

aske

-,

Undo Typing

ooy Confiouration bo Cliohoard |

.—— 3b. Copy

Select Edit > Capy to
put the highlighted
code on the clipboard.

/

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Patterns of Behavior ¢ 29

N

‘Variables and Functions

Patterns of Behavior variables and Functions (Part 2) (cont.)

4, Paste two copies of the behavior right after the original.

25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
M
42
43
44
45
46
47
48
49
50

if (SensorValue (lightSensor) < thresholdValue)
{
motor [motorC]=50;
motor [motorB]=50;
if (lastSeen == 1)
{
countValue = countValue + 1;
lastSeen = 0;
}
}
else
{
lastSeen = 1;
}
} 4a. Place
cursor here
Place your cursor
} on the line below
the forward4Lines|)
declaration so your
(l) pasted code will
go there.
void turnLeft ()
{
Fa[Yiew Fobob CWindow Help
Unda Paste (8 View Robot Window Help
Undo Paste Zkrl+

C]:up';.f Configuration o Cliph

l— 4b. Paste

Select Edit > Paste to
put the copied code
info this program.

C]Jp';.-' Configuration to Cliphoard

|— 4c. Paste again
Paste a second copy
of the same code right
after the first one.

/

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Patterns of Behavior ¢ 30

Inc

ction

S - -

S I -

b gk

void forward4Lines ()

Patterns of Behavior variables and Functions (Part 2) (cont.)

5. You have three copies of the same behavior. Change two of them to 3-line and 2-line versions.

{
lastSeen = 1;

while (countValue < 4)

{

if (SensorValue(lightSensor) < thresholdVa
{

motor [motorC]=50;
motor [motorB]=50;

if (lastSeen == 1)

{

countValue = countValue + 1;
lastSeen = 0;

}
}

else
{
lastSeen = 1;

}

}

void forward3Lines ()

{
lastSeen = 1;

while (countValue < 3)
{

if (SensorValue(lightSensor) < thresholdVa
{

motor [motorC]=50;
motor [motorB]=50;

if (lastSeen == 1)

{

countValue = countValue + 1;
lastSeen = 0;

}
}

else
{
lastSeen = 1;

}

}

void forward2Lines ()

{
lastSeen = 1;

while (countValue < 2)

if (SensorValue(lightSensor) < thresholdvVa

motor [motorC]=50;
motor [motorB]=50;

if (lastSeen == 1)

{

countValue = countValue + 1;
lastSeen = 0;

}
}

else
{
lastSeen = 1;

}

N

void forward4Lines ()

{
lastSeen = 1;

while (countValue < 4)
{

(void forward3Lines ())—
s

lastSeen = 1;

while (countValue <
{

(void forward2Lines ())—
{

lastSeen = 1;

while (countValue <@—
{

~ Modify this code
Change the second
forward-for-lines
behavior to do 3 lines,
and the third behavior
to do 2 lines.

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

j

Patterns of Behavior ¢ 31

Ies ::

N

Patterns of Behavior variables and Functions (Part 2) (cont.)

Checkpoint

Save, download, and run. The robot will scoot along for 4 lines and turn, just as planned...
and then, mysteriously, stop.

Stuck?

The robot seems to stop

after the second command.
What's it waiting for2

The program has a few bugs. This is normal, programs seldom work perfectly on the first try,
especially after making big changes like the ones we just did. Continue on to begin fixing them!

J

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797 Patterns of Behavior ¢ 32

N

‘Variables and Functions

Patterns of Behavior variables and Functions (Part 2) (cont.)

6. The problem seems to have occurred in the forward3Lines() function, but remember that errors
in this function will need to be corrected in its two twins as well. It turns out there are two things

keeping this robot from moving on.

64
65
66
67
68
69
70
71
72
73
74
75
76
77

64
65
66
67
68
69
70
71
72
73
74
75
76
77

88

96

void forward3Lines ()

{

lastSeen = 1;

()

while (countValue < 3)

{

if (SensorValue (lightSensor) < thresholdValue)
{

motor [motorC]=50;
motor [motorB]=50;

if (lastSeen == 1)

volid forward3Lines ()

{

lastSeen = 1;

Move only on dark?

We didn't really give this much thought,
but this bug has been here the whole time.
The robot only starts moving if it's seeing
dark, because it doesn't reach the motor
commands otherwise.

(ﬁcountValue = 0;)

J

while (countValue < 3)

{

motor [motorC]=50;]

motor [motorB]=50; J

if (SensorValue (lightSensor) < thresholdValue)
{

volid forward4Lines ()

volid forward2Lines ()

Missing reset

An ugly side effect of
using global variables
is that they are shared
between functions even
when you don’t want
them to be.

This means that
countValue is still

4 from the 4-line
command that is run
earlier in the program.
The while loop will
immediately kick out
without running any
additional lines!

6a. Add this code
This line resets the value
of countValue to a fresh
count of O lines for this
new movement.

6b. Modify this code
Move the motor lines
out of the “dark”
portion of the code and
put them just outside
the if-else statement

so they run regardless
of whether the robot is
seeing light or dark.

6¢c. Repeat

Make the same changes
in the 4-line and 2-line
versions of the function.

/

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Patterns of Behavior ¢ 33

nctions |

S - -

b gk Ty b gk

Patterns of Behavior variables and Functions (Part 2) (cont.)

Checkpoint
That should solve the stopping problem. Now, let’s look at one other issue that you may have seen.

Clearance

The robot is clearly
biased toward the

side of the corridor. If
it proceeds along this
path, it will hit the wall.

7. The robot needs to back up a little before each turn. Add the appropriate movement
code to both turning functions.

volid turnlLeft ()

' N\
nMotorEncoder [motorB] = 0O;
while (nMotorEncoder [motorB] < -100)
{
motor [motorC] = -50; e e bk o
motor [motorB] = -50; little away from the line
} before turning.
\\§ J
nMotorEncoder [motorB] = 0O;
while (nMotorEncoder [motorB] < 160)
{
motor [motorC] = -50;
motor [motorB] = 50;
}
motor [motorC] = 0;
motor [motorB] = O; 7b. Repeat

Make the same change
in the right turn function.

- void turnRight ()

_ J

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797 Patterns of Behavior ¢ 34

- Ies

SIS IS - B

b gk Ty b gk H Ty

End of Section

from start to finish.

yellow path, all you would have to do is switch two lines in task main!

findThreshold() ;
forward4Lines () ;
turnLeft () ;
forward3Lines () ;
turnRight () ;
forward2Lines () ;

findThreshold () ;
- forward6Lines () ;
turnlLeft ()
forward3Lines () ;
turnlLeft ()
forward2Lines () ;

findThreshold () ;
forward2Lines () ;
turnLeft () ;
forward3Lines () ;
turnRight () ;
forward4Lines () ;

-

Patterns of Behavior variables and Functions (Part 2) (cont.)

Save, download, and run your program. At long last, the robot should complete its path

So why did we go through all this extra trouble to write functions instead of just putting all the
code in the main task? Ask yourself for @ moment what changes it would take to your program
to use the green or yellow paths instead: the simplicity of reuse will speak for itself... to use the

/

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Patterns of Behavior ¢ 35

N

‘Variables and Functions

Patterns of Behavior variables and Functions (Part 3)

In this lesson, you will learn how to use functions with parameters to expand their reusability

beyond the level of simple copy-and-paste.

There's still one thing about these functions that could stand to be improved. As it is right now,
you have fo write a new function every time you want to go a different distance. There is a better
way. Consider first, what the actual difference in code is between the three functions below:

void forward4Lines ()
{
countValue = 0;
lastSeen = 1;

while (countValue < 4)

motor [motorC]=50; {
motor [motorB]=50;

ot ETY

{ void forward3Lines ()

countValue

if (SensorValue (light lastSeen = 1;

{ while (countValue < 3)
if (lastSeen == 1) {
{ motor [motorC]=50;

motor [motorB]=50;

0;

void forward2Lines ()
{
countValue = 0;
lastSeen = 1;
while (countValue < 2)
{
motor [motorC]=50;
motor [motorB]=50;

if (SensorValue (lightSensor)
} {

if
{

(lastSeen == 1)

countValue =
lastSeen = 0;
}
}
else
{
lastSeen = 1;
}

countValue + 1;

nsor) < thresholdValue)

countValue + 1;

< thresholdvValue)

The anwer: one number.

The difference

These three huge functions differ only in
one place: a single number that they use to

check how many lines they should run for.

/

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Patterns of Behavior ¢ 36

N

‘Variables and Functions

Patterns of Behavior variables and Functions (Part 3) (cont.)

We need to take advantage of this somehow. We can do it using a feature of functions
called parameters. A parameter is a “placeholder value” that you can use in a function’s
declaration to stand for a value that you will specify in the function call. Because you call a
function separately every time you want it to run, this means you can specify a different value

for the placeholder parameter every time!

(your value here!))

1. Save your program as “warehouseParameters”.

Edit Wiew Robot ‘Window Help
Mew Chrl+m k74

Open and Compile

id turnlLeft ()
Open Sample Program

Chrl+s
THSTOrENCOaer [MOtorE] = U7

Print Chrl4p while (nMotorEncoder [motorB] < 160)
L

Print
My Documents

y Computer
File name: (warehouseParameters ' b ‘ Save }I—
by Metwork, Save as lype: C Files [".roc:”.c cpp.”.nge:” h:".ngh) b Cancel

Ta. Save As
Go to the File menu and
select “Save As...”

7b. Name the program
Give this program the name
“warehouseParameters”.

7c. Save the program
Press Save to save the program
with the new name.

2. Delete two of your forward-for-lines functions.

66 (void forward3Lines ())
67 | 1
68
69 countValue = 0;
70 lastSeen = 1;
71
72 while (countValue < 3)
. J
99 | void forward2Lines ()
100 | {
101
102 countValue = 0;
103 lastSeen = 1;
104
105 while (countValue < 2)
=== -

2a. Delete these functions
Delete both the
forward3Lines() and
forward2Lines() functions.

Make sure you catch all the
code inside them, and the
closing braces at the ends.

/

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Patterns of Behavior ¢ 37

N

‘Variables and Functions

Patterns of Behavior variables and Functions (Part 3) (cont.)

3. Modify your remaining forward-for-lines function to be a general-purpose parameter version.

3‘
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

(void forwardLineinnt numLinesD

lastSeen = 1;
countValue = 0O;

3a. Modify this code
Rename the remaining

function to have a more
general name.

while (countValue < numLines)]

{

if (SensorValue (lightYensor)

{

motor [motorC]=50;
motor [motorB]=50;

if (lastSeen == 1)
{
countValue =
lastSeen = 0;
}

countVal

3b. Modify this code
Creating a parameter
looks a lot like a
variable declaration,
placed between the
parentheses that follow
the function name.

The parameter
“numLines” is created
< thresholdValue) hereasan integer,
and can be used as a
placeholder anywhere
in the function {body}.

Its value is not
specified here at all.

It will (and must) be
provided by the task
that calls this function.

ue + 1;

Placeholding using Parameters

\

3c. Modify this code
Put the placeholder
parameter “numLines”
here in place of the
value that we want to
be able to fill in.

Function declaration:
In the function declaration, the presence of a parameter is announced by declaring
it, variable-style, between the (parentheses) following the function name. The
parameter can then be used like a value in the rest of the function.

Parameters are like temporary placeholder variables that give the programmer
the ability to “substitute” a value inside the function, without actually rewriting the

function each time. They require attention in two places: the function declaration,
and the function call.

void forwardLines (int numLines)

[

Parameter declared
“numLines” is now usable as
a placeholder in the function.

(continued on next page...)

/

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797 Patterns of Behavior * 38

‘Variables and Functions

Patterns of Behavior variables and Functions (Part 3) (cont.)

4. Modify your main task to take advantage of the new parameter.

110

111

112

113 nMotorPIDSpeedCtrl [motorC] = mtrSpeedReg;

114 nMotorPIDSpeedCtrl [motorB] = mtrSpeedReg;

115

116 findThreshold () ;

117 (forwardLines (4) ;) 4. Modify this code
118 turnLeft () ; Change the function
119 forwardLines (3) ; ?;S:?c;fi:g:?c!ymmch
120 turnRight () ; your new function.
121 forwardLines (2) ; In the (parentheses),
122 place the value that you
123 } want the parameter to

use for that run.

Checkpoint. Visualize the substitution that is happening with your parameter.

. Substitution
108 task main () The value 4 is placed in the
109 { (parentheses) when the function

is called, so the value 4 takes
the place of placeholder

117 forwardLinesl\(4)); “numlLines” everywhere it

appears in the function.

33 void forwardLinesQint numLinesD

34 |

35

36 lastSeen = 1; 4

37 while (countValue < -rumbines)
38 {

Placeholding using Parameters (cont.) \

\

Function call:

The value of the parameter is specified separately each time the function is run. A

value is included in the (parentheses) following the function name when called, and

becomes the value of the placeholder in the function’s {body} code!

) Parameter supplied
forwardLines (4) ; The numeric value 4 will take
T the place of “numLines”
\ J

- /

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797 Patterns of Behavior * 39

Patterns of Behavior variables and Functions (Part 3)

End of Section
Save, download, and run your program. The robot should complete its path from start to finish.

Take a moment to reflect on what you have done here. You haven’t solved a simple problem
using complex tools. You've solved a whole family of problems, and created easy-to-use
tools that will make it simple to follow any of the paths your robot might need to take through
the warehouse.

Your robot is beginning to reach a higher level. You are no longer limited to simply performing
single tasks. Your programs, through the use of sensor information and the reuse of their own
code in parameterized functions, are beginning to solve the actual problems that underlie the
tasks, instead of just the single cases. This approach is many times more powerful, and your
understanding of it marks your entry into the real world of programming. Congratulations.

_ J

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797 Patterns of Behavior * 40

