On Board Vision System for Swarm
Robotics
By: Ezra Idy
Professor: Vikram Kapila
Date: 9/4/18

Table of Content:

Acknowledgement
Abstract
1. Introduction
2. Hardware
2.1 TurtleBot3
2.2 LIDAR
2.3 XBee
2.4 Camera Sensor
2.5 Arena
3. Servo Camera System
3.1 Servo Motor
3.2 First Design
3.3 ROS RQT
3.4 Servo Movement
3.5 Robot Tracking
3.6 Formation Control
4. 360° Camera System
4.1 360° Attachment
4.2 First Design
4.3 Second Design
4.4 ROS RQT
4.5 360° Dewarping
4.6 Thresholding
4.7 Robot Tracking
4.8 Formation Control
5. Issues
5.1 Lighting
5.2 Range
5.3 Time Delay
5.4 Blind Spot
6. Conclusion
6.1 Future Work
6.2 Conclusion
References
Appendix

e e N N B R)

[NSZN NS I (S I (ST (O I \O I \O I (S B \O T \O I \O I S I \S B e e e e e e e e s
O ANV N DR RN, OOXINNUNWWWND—~O oo

Acknowledgement:

I would first like to thank Professor Vikram Kapila for providing me with the space and
resources needed to complete the project. I would also like to thank Sai Prasanth
Krishnamoorthy for allowing me to take part and contribute in his swarm project. I would also
like to thank him for all the help and advice he has provided me over the span of the project.

Lastly I would like to thank my fellow lab mates for the constant support that they provided me.

Abstract:

The aim of this project was to create a hybrid swarm system that can move into different
formations, using different approaches for neighbor detection and identification. The TurtleBots
that were used for this project had all the necessary onboard sensors needed to complete the
tasks. The robots operated through the Robotic Operating System, ROS, and they used OpenCV
to address tasks related to image processing and object detection. The two distinct approaches of
neighbor detection included a servo motor camera system and a 360° camera system. Both
systems were able to detect and identify the neighboring objects surrounding the agents. The
agents in both systems were also able to move into the desired formation through the help of

human interaction and a user interface.

1. Introduction:

In the past decade the field of swarm robotics has taken huge strides in both research and
industrial fields. As described in [1], a swarm robotics system is “the study of how large number
of relatively simple physically embodied agents can be designed such that a desired collective
behavior emerges from the local interactions among agents and between the agents and the
environment.” In a swarm robotics system, multiple robots need to communicate and collaborate
with each other in order to accomplish a given task. Furthermore, when discussing swarm
robotics, one must consider two distinct systems of communication: a centralized swarm robotic
system and a decentralized swarm robotic system. Each system is desirable depending on the

parameters of the environment as well as the application of the swarm system.

In a centralized swarm system, the swarm agents are connected to a central computer, where the
central computer is tasked with processing the data collected from the swarm agents as well as
monitoring the tasks of the agents. Using an external sensor, usually connected to the central
computer, the agents are able to locate themselves relative to their environment and move to their
intended location. Because each agent needs to be connected to the central computer, it is
undesirable to scale a centralized swarm system to a large number of agents, thus there is a limit
to the number of agents that could be present in a centralized swarm system. Another challenge
centralized systems have to face is if a shutdown occurs within the central computer. Since all
the agents are connected to the central computer, if the central computer is down the agents are
unable to continue with their assigned task. Therefore, centralized systems are ideal for
environments that are predetermined and known, such as warehouses or malls, where external

sensors can be placed to monitor the agents, and where a central computer can be nearby to

process and analyze the data. However, this type of system is undesirable when the environment

is unknown to the swarm system, such as in search and rescue areas.

In the case mentioned above, a decentralized swarm system may be of better use. As the name
implies, a decentralized swarm system has no central computer monitoring the agents in the
field. Each agent is its own entity, and has its own onboard sensors and microcontrollers to
process the data collected from the environment. Using their many sensors, the agents are able to
interact with each other and the environment in order to complete the necessary goal. Since there
is no connection to a centralized computer, the number of agents acting in the system can be
increased with little effect on the performance of the swarm. Although, a decentralized system
addresses the drawbacks of a centralized system, the system still faces its own issues. One such
issue is that the swarm agents are only aware of their local tasks. Since there is no central
computer and external sensors monitoring the system, the agents are unaware of global task
assigned to the swarm. Instead, each agent completes a system of local tasks that when combined
will lead to the completion of the systems global task. Thus if one agent goes down, the system
will still operate and agents will still complete local tasks; however the global task of the system
will still be jeopardized.

Based on the results obtained from [2], swarm robotics systems are still in their early stages
despite the major advances. [2] breaks down real world swarm robotic systems into eight issues.
It also shows that 77% of the research in swarm robotics only focuses on four of the eight issues.
The aim of this project is to create a hybridized swarm system that tackles most of the issues
expressed in [2], especially the issues that are under researched. This project also compares the

performance of a servo motor camera swarm system design to that of a 360° camera swarm

system design. The swarm system created is a hybrid system, thus it has characteristics of both a
centralized and decentralized swarm system. The agents in the swarm are decentralized by
nature, however an on looking supervisor can act as a central figure and task the agents to change

into different formations.

2. Hardware

2.1 TurtleBot3:

Figure I: Front and side view of a TurtleBot3 with no attachments

The TurtleBot3 is a new generation mobile robot that is modular, compact, and customizable [3].
Created by Robotis, the TurtleBot3 is equipped with both an OpenCR board as well as a
Raspberry Pi 3 board. The robot is a differential drive mobile vehicle, and uses Dynamixel
X-Series motors to drive its fixed wheels. With no customized attachments, the robot’s only
sensor is a 2D LIDAR sensor. One can see the front and side view of the TurtleBot3 in Figure 1

above.

2.2 2D LIDAR Sensor:

Figure 2: 2D LIDAR sensor

A LIDAR, Light Detection and Ranging, is a sensor that uses light as a pulsed laser to measure
variable distances [4]. With the data obtained from the LIDAR, one can map and receive
information about the surrounding area. The LIDAR sensor was critical to the system, and acted
as the primary sensor of the swarm agents. With the sensor, each robot was able to collect and

process information about the surrounding environment. Using the data obtained from the

LIDAR, one was able to obtain the polar coordinates of objects relative to the agent, as well as
track multiple objects that were being detected. However, the sensor was unable to determine
the identity of the objects being detected, such as the difference between an obstacle in the
environment and a neighboring swarm agent. Thus, in order to further understand the

surrounding environment, additional sensing was needed through the help of a secondary sensor.

2.3 XBee:

Figure 3: XBee device

The XBee sensor, shown in Figure 3, was used to allow the robots to arrange themselves in
different formations. Each swarm agent was given an XBee that could receive the appropriate
information from an external user. The protocol that was being used by the XBee was known as
Protocol 802. With Protocol 802 the XBees acted as a radio system, thus when the host sent the
signal for the desired formation all the agents that were in the vicinity were able to receive the

formation command as long as they were tuned to the correct frequency.
2.4 Camera Sensor:

A Raspberry Pi camera V2 was used for the vision system of the TurtleBot3 swarm agents, and
acted as the secondary sensor for the swarm agents. The image produced by the camera had a
resolution of 1280X960. With the camera system, the swarm agents were able to identify and
label the objects obtained from the LIDAR sensor. Thus, the agents could determine whether the

objects detected by the LIDAR were fellow agents or surrounding obstacles. This was done with

the use of the AprilTag fiducial markers located on the neighboring agents. AprilTag markers are
a robust and flexible visible fiducial system that allow full 6DOF localization of features from a
single image [5], and can be seen on the agents in Figure 7 and Figure 13. Thus, when the
camera detected an AprilTag marker on a neighboring object, the object was recognized as a
neighboring agent within the given system. Using the Raspberry Pi camera, two distinct camera
systems were designed when trying to implement a vision system on the agents: a servo motor

camera system and a 360° camera system.

2.5 Arena:

Figure 5: Arena

Testing was done in a well-lit room. The agents were operating on a 5°X5’ grid made from

interlocking tiles as shown in Figure 5 above.

3. Servo Motor Camera System:

The servo motor camera system consisted of a Raspberry Pi camera attached to an X-Series
Dynamixel motor. When the LIDAR detected an object within the set range of the sensor, the
servo motor would move to the angle at which the object was detected. Once the camera was at
the correct angle, the camera would take an image and processes it to determine the identity of
the fellow neighbor. The camera was angled slightly downward, as shown in Figure 7, so that the
lens was in line with the AprilTag markers located on the sides of the neighboring agents. The
image taken with the camera was a high resolution image, having a size of 1280X960 and around

1.2 Megapixels.

3.1 Servo motor:

Figure 6: Dynamixel X-Series motor

The servo motor used for the servo motor camera system design was a X-Series Dynamixel
motor. The Dynamixel X-Series is a new line-up of high performance networked actuator
module [6]. The motor came with various feedback and control methods. It was able to be
customized using the OpenCR board provided by Robotis. Unlike the X-Series motors used for
the differential drive of the robot, the motor used for the camera system was programmed to the

position control setting, and the max velocity and max torque were adjusted accordingly. With

10

this system design, another moving part was added to the TurtleBot3, thus making the agents

more complex.

3.2 First Design:

Figure 7: Servo camera system mount

Figure 7 above displays the complete design for the servo motor camera mount. The mount was
designed so that the camera and motor were hovering above the LIDAR sensor. One can see that
the Raspberry Pi camera was angled slightly downward in the mount design. This design choice
allowed for a reduction in the camera range, as well as to a line the camera with the AprilTag
markers which were placed on the side of the TurtleBot3 agents, as shown in Figure 8. However,
with this design approach, the camera mount was blocking the back of the LIDAR, thus creating
a blind spot located behind all the agents. Also, in order to keep the camera wire from breaking,
a restriction was placed on the servo motor. Thus the servo motor could only move from a range
of -135° to 135°. Lastly, due to the high resolution of the image, the range of the neighbors had

to be adjusted accordingly.

Figure 8: TurtleBot3 with servo camera system attachment

11

Figure 8 above shows the TurtleBot3 with the servo motor camera attachment. As mentioned

earlier, the AprilTag markers were located on the side of the robot alongside the XBee

3.3 ROS RQT:
. .
sulimege
prepm—| Pgenpepr—_
aprlag_celectord S >
e — —f— 1 lopditag detectord)
Iapritag detector3tag detections ™t R 7_ _ / v —
——— T T D fag_packaged Info |—— 7-7rmu;k_!lm_ﬂ?ul(!ui?\r-' s/
e — [T ep————
T ostoplcanos s2amsinees - — —
- Irasplcam podefmageicompressed D i
P ——oo— -
(_imslampote T [herge 31522 \SP2AABIE T fenvs pnge .
- ™ hespiam nodeicamera kfo " T ¥ — L (tian Mok | N
- Huttiebot3 dagnostics
T e — e e — Al - 2
U C Maser_var 29940 1520426874178 _7_'»—»{MMM¢M}—-(_"MNMN 292 1524211125 ik tached A _/
s is | e T - T - ! o

Figure 9: RQT Graph of the servo motor camera system

Figure 9 above displays an overview of the data processing happening within each agent in the
system. The LIDAR data is sent to the cam merge node through the scan topic shown above. As
the information moves from node to node, the data is being processed so that when it reaches the
cam_merge node, the data is in the correct format. Once in cam merge the servo motor can
move to the angle of an object detected from the LIDAR. Meanwhile, the camera image and
information is being sent to the cam merge node as well. While in cam merge the image is
made into a still image and then sent to the apriltag detector3 node to check to see if an
AprilTag marker has been detected. If detected, the markers information is sent back to
cam_merge, so that the LIDAR data can be updated. Once all objects have been detected one can
insert Xbee communication devices and start doing linear formation control. The XBee signal is
sent through the xbee com node thus allowing the formations to change. When receiving
specific commands the formation node will adjust the velocity of the TurtleBot3 so that the

agents can enter the desired formation.

12

3.4 Servo Motor Movement:

Using the angle information provided from the LIDAR, the servo motor was able to move to the
correct position. Due to the design, the servo motors movement was limited to only rotate

between -135° and 135°. This limit was placed to protect the camera wire from snapping.'
3.5 Agent Tracking:

When the LIDAR detected an object, the object was given an identity of 99, which indicated that
the object was considered unknown. When an unknown object appeared, the servo motor would
rotate so that the camera was in the direction of the unknown object. Once at the correct location,
the camera would take an image and try to identify an AprilTag marker. If a marker was detected
within the image, the identity of that object would then change to the AprilTags unique number
and that object would be considered as another agent in the swarm. However, if a marker was not

detected, the object would be considered an obstacle with an identity of 999.
3.6 Formation Control:

The one dimensional linear formation control implemented on the system operated using a
proportional controller. Once all the neighboring objects were identified, the agents were able
move into the desired formation that was being broadcasted. The formation control being used
modeled a rooted out branching graph theory approach, thus all the agents moved in accordance
to the leader agent located in the middle. The different formations can be seen in Figures 10
below. Since the system was using a decentralized system method for detecting neighboring

objects, the swarm continued to move, and change formations, even if some agents were lost.

! The code for the movement of the servo motor can be found in the Appendix as Code 1.

2 The code for the agent tracking of this system can be found in the Appendix as Code 2.

13

a) Formation 1

b) Formation 2

£

c¢) Formation 3

Figure 10: Formations

14

4. 360° Camera System:

The 360° camera system consisted of a Raspberry Pi camera placed underneath a 360° fisheye
lens. When the LIDAR detected an object within the given range, the camera would take an
image of the surrounding area. If an Apriltag marker was detected, the angle of the marker would
be compared to the angle obtained from the LIDAR data. Due to the many transformations done
to the image, the resolution was very poor. The dimensions of the image was 1180X200 and had

around 0.2 Megapixels.
4.1 360° Attachment:

Unlike the servo motor camera system, the 360° camera system required no moving parts to
detect for swarm agents in the area. With the 360° camera system the agents obtained a full 360°
image, allowing for all the nearby objects to be detected within one image. The image was then

remapped and dewarped, in order for the AprilTag markers to be detected with ease.

Figure 11: 360° adapter

Figure 11 above shows the 360° adapter used for the second camera based system. The adapter
was taken from an iPhone case. Once the 360° lens was separated from the case, a bezel was
used to smooth out the rough edges, so that the piece could sit nicely on the camera lens. Figure
12 below shows the part that was designed to hold the 360° adapter. The part shown in the figure

below was used for both designs of the 360° camera system.

15

Figure 12: 360° adapter holder

4.2 First Design:

When creating the pieces needed for the 360° camera system, inspiration was taken from the
servo motor system’s camera mount design. Thus, the camera was placed on top of the agent and
the AprilTag markers were meant to be placed on the side of the agent. When implementing the
first design, the camera was shown to detect the tags at up to 0.25 meters. While testing the
design, the markers were unable to be detected due to the poor resolution of the camera and due
to the low placement of the markers on the neighboring agents. Thus, a redesign of the camera

mount had to be made. The first camera mount can be seen in Figure 13 below.

Figure 13: First 360° Camera mount design
4.3 Second Design:

When designing the second mount all the flaws that were present in the first design were
considered. With this new design, the AprilTag markers were placed between the camera system

and the LIDAR, which can be seen in Figure 16. By placing the markers closer to the camera,

16

they were able to be seen well within the range of the cameras detection. As one can see in
Figure 14, the redesign was mostly hollow allowing for easy placement and assembly of the
camera. Although the redesign solved the issues of the first design, it also came with some minor
issues. Since the 360° adapter holder was needed to be placed on top of the mount shown in
Figure 14, side flaps were created. These side flaps created shadows over the side markers,
making it hard for the camera to detect them. Thus, an add-on-piece was created to avoid further

complications of the design. The piece can be seen in Figure 15.

Figure 14: Second 360° Camera mount design

The add-on-piece was created to help extend the side AprilTag markers so that there won’t be a
shadow interfering with the detection. Due to the design of the camera mount the add-on-piece
was able to be inserted like a puzzle piece. The piece was custom made to fit nicely with the
camera mount. The pieces were also designed to be compatible with both the right and left side

of the agent, making it a standard part.

Figure 15: AprilTag marker add-on-piece

17

Figure 16 below shows the side and front view of the TurtleBot3 with the 360° camera system
attachment. Due to the sensitivity of the LIDAR, all camera mounts had to be black. The
add-on-piece was also printed in black which allowed for better processing of the AprilTags,

especially when applying thresholding.

b1 3

Figure 16: TurtleBot3 with 360° camera system attachment

4.4 ROS RQT:

-
. . i, S - ;‘_;:ug.ﬂ,m.,m': >
. —— % PR e rode -] s ve [_mimi__io:}-’@"r/,j 77
e s =T T fmerging node - i imageicompressed L
Crspiam oo 3| e o Y |
e o : =
S S) N

Figure 17: RQT Graph of the 360° camera system

Figure 17 above displays an overview of the data processing happening within each agent in the
swarm. The LIDAR data is sent to the merging node through the scan topic shown above. As the
information moves from node to node, the data is being processed so that when it reaches the
merging node, the data is in the correct format. Meanwhile, the camera image and information is
being sent to the merging node as well. Before reaching the node however, the image is sent to
the adapter node were it is processed and dewarped using OpenCV. While in the merging node
the image is made into a still image and then sent to the apriltag detector3 node to check to see

if an AprilTag has been detected. If detected, the AprilTag information is sent back to the

18

merging node, so that the LIDAR data can be updated. Lastly an XBee signal can be sent
through the xbee com node thus allowing the formations to change. When receiving specific
commands the formation node will adjust the velocity of the TurtleBot3 wheels so that the

robots can enter the desired formation.
4.5 360° Dewarping:

Figure 18 below displays the image taken from the Raspberry Pi camera when using the 360°
adapter. The issue with the image below is that the edges bend due to the adapter being a fisheye
lens. Another issue was that the Cartesian position and orientation information received from the
AprilTag markers were wrong due to the transformation of the image by the adapter. Thus, in
order for the AprilTags to be read properly, the image needed to be dewarped. In order to dewarp
the image, a remapping was applied. Thus, the pixels within the appropriate boundary would be
remapped to allow for a rectangular image [6]. The boundary for the remapping can be seen in
Figure 18 below. Lastly, the dewarped image can be seen in Figure 19. Since there is a known
blind spot with the camera design, some shifting of theta was needed to make sure that the image

was split at the blind spot.

Figure 18: Applying boundaries to the image

19

(x=592, v=35) ~ R:71 G:77 B:7S

Figure 19: Dewarped image

Once the image was dewarped, the AprilTag marker can give the pixel coordinates within the
dewarped image. Using the x-position of the AprilTag pixel coordinates and knowing the width
of the dewarped image, one could calculate the angle at which the AprilTag was located. Lastly,
in order to track the robot the angle of the AprilTag needed to be compared to the angle given by

the LIDAR.?

4.6 Thresholding:

Even when the image was dewarped, the camera had issues detecting the AprilTag markers due
to the lighting of the environment, the poor image resolution, and the distance between the
agents. To help with the detection binary thresholding was applied to the image [7].
Thresholding is the concept of converting a colored, or grayscale, image into a black and white
image, by providing a limit on the color value of every pixel in the image. By doing this, the
pixels in the image will either be 0 or 255, black or white respectively. Since the camera was
only being used to detect the AprilTag markers, a color image as shown in Figure 19 was not
needed. One could obtain similar or better results with a black and white image. As shown in
Figure 20, the threshold point was not 127. The number for the threshold point was obtained

through trial and error for the environment in which testing was done. Through testing, it was

® The code for dewarping the image can be found in the Appendix as Code 3.
20

seen that when using 80 as the threshold point, the agents were able to detect the AprilTag

markers more easily and the range of the detection was able to extend to around ~0.3 meters.*

(x=1056, v=80) ~ .0

Figure 20: Threshold image, with cut-off at 80

4.7 Robot Tracking:

Since the angles were calculated using the pixel position in the dewarped image, as well as with
the LIDAR, all that was needed to accomplish tracking was to compare the given angles to each
other. Due to the location of the two sensors, as well as the different approaches in calculating
the angles it was necessary to apply a tolerance to account for some errors. Thus a tolerance was
set to 6.5°, however usually the angles only had a 1° degree difference as shown in the figure
below.

In Figure 21, one can see that the LIDAR detected the object at an angle of 91.432°, while the
camera detected an AprilTag marker at an angle of 92.09°. Since these angles are well within the
tolerance range, the object’s identity changed from 99 to the AprilTag ID which was 0. Once the
object was identified, the identity wouldn’t change unless the object was lost to the LIDAR.
Thus, as long as the BlobID remained the same, the identified object would remain identified.
Furthermore, all confirmed obstacles are reset to unconfirmed objects with every 20 iterations of

the code. This was done in case the identity of a neighboring agent was overlooked.’

* The code for thresholding can be found in the Appendix as Code 4.
®> The code for robot tracking can be found in the Appendix as Code 5.

21

e /home/saifcatkin_ws/src/turtlebot3/turtlebot3_bringup/launch/turtlebot3_robot_360

File Edit View Search Terminal Help

[INFO] [15 2

[INFO] [1 60,2 1z - -0.802 | Y - 0.223 | BlobID - ©.000000 |
Distance : 90.56 tity - 0.000000

[INFO] [15

- -0.006 | Y - 0.226 | BlobID - ©.000000 |
.432 | Identity - 0.000000

Figure 21: Robot detection

4.8 Formation Control:

The formation control implemented on the agents operated using a proportional controller. When
the neighboring agents were detected, the agents would move into formation depending on what
formation was being broadcasted. The formation control being used modeled a rooted out
branching graph theory approach, thus the agents would be following the leader, located in the
middle. The different formations are shown in Figures 22. Since the system was a decentralized
system, the agents would continue to move into formation even if some agents were unable to

detect the leader. Lastly the swarm moved in a linear one dimensional formation.

a) Formation 1 b) Formation 2

22

¢) Formation 3

d) Formation 4

Figure 22: Formations

23

5. Issues:

Although the robots were able to move into formation and identify the surrounding neighbors,
there were still pressing issues that should be noted.

5.1 Lighting:

Lighting will always an issue when working with any vision system. In order for the AprilTag
markers to be detected quickly and properly, the camera required an appropriate amount of
lighting in the environment. Furthermore, due to constant transformations that were taking place,
the 360° camera system required an even better source of lighting to detect the AprilTags. The
servo motor system also required lighting for detection, however not as much as the 360° system,

since the images taken were at a higher resolution.
5.2 Range:

Since the servo motor camera system was using a high resolution image, the range at which it
could detect AprilTags was much greater than that of the 360° camera system. Although not
formally tested, the servo motor camera system was able to detect AprilTags ~2 meters away,
while the 360° camera system was only able to detect AprilTags ~0.24 meters away. When
applying thresholding to the 360° camera system the range increased slightly to ~0.3 meters. The
reduction in the range was due to the poor resolution of the image after so many transformations
have been applied. Due to the servo motor system having a larger range of detection, limitations
needed to be applied so that objects were not being falsely identified. Thus, although poor, the

range of the 360° camera system was a decent range for which a neighbor could be classified.

24

5.3 Time delay:

Another issue that was faced when working with the two-different systems were the time delays
necessary for the images to be processed. With the servo motor system, the movement of the
servo motor took a couple of seconds to get into the necessary position and then the camera
needed a couple of seconds to take and process the image. The servo motor then had to repeat the
functionality for all the objects detected by the LIDAR before the agents could move into
formation. With the 360° camera system, all objects detected with the LIDAR were in the same
image, and the angles of the two devices were compared. Since the 360° system only cared for
robot detections the tracking time would theoretically be much quicker. However, there was still
a time delay that took place within the 360° camera system. The delay happened when the agents
were initiated. The dewarping node took a while to load, thus the robots would not start tracking
until the camera was up and running. Also due to the poor resolution of the image, it could be
some time before the agents were detected. However, since all surrounding obstacles get
processed at the same time, in an environment where a lot of objects are being detected, the 360°

camera system would theoretically be much faster than the servo motor camera system.
5.4 Blind Spots:

Both systems had a blind spot located in the back of the agents. This blind spot was due to the
placement of the camera on top of the LIDAR. Since the camera stand blocked the LIDAR at the
back of the agent, a blind spot would occur and the neighbor could not be detected if placed
directly behind the robot. The servo motor system had a larger blind spot than the 360° system,
due to the safety of the camera wire. However, by creating a blind spot, limitations were applied

to both swarm systems.

25

6. Conclusion:

6.1 Future Work:

Although the agents successfully achieved formation using both of the camera system designs,
improvements could still be made to account for the many different issues mentioned in the prior
section. While working with the Raspberry Pi camera and the AprilTag detection node, it was
clear that proper lighting was needed in order for detections to occur. Thus the environment in
which the robots can operate must be unique. One possible way to fix this issue is to create a
thresholding with a feedback loop. Thus, the thresholding criteria will be able to be adjusted to
allow for detection optimization in an environment. However, by doing so the time delay of the
robots might increase. Another possible improvement is to redesign sturdier camera mounts that

can help reduce the blind spot.
6.2 Conclusion:

The project demonstrated a swarm system achieving linear formation control using two different
vision system. Both systems were able to achieve the desired formations, and the agents were
able to detect their fellow neighbors. The 360° camera system achieved detection without any
extra moving parts, with a decreased detection time, and with poorer image resolution. However,
the max range of the neighbor was drastically decreased, when compared to the servo motor
system. The 360° system also worked better in a busier environment, since the camera took an
image of the total surroundings as opposed to individual objects. Both systems could be
considered novel approaches to a vision based swarm robotics system. Furthermore, both
systems were able to interact with humans in an abstract manner, using the XBee communication

device.

26

References:

[1] E. Sahin, “Swarm robotics: from sources of inspiration to domains of application,” in Swarm
Robotics Workshop: State-of- the-Art Survey, E Sahin and W. Spears, Eds., Lecture Notes in
Computer Science, no. 3342, pp. 10-20, Berlin, Germany, 2005.

[2] Barca, Jan Carlo, and Y. Ahmet Sekercioglu. “Swarm Robotics Reviewed.” Robotica, vol.
31, no. 03, 2012, pp. 345-359., doi:10.1017/s026357471200032x.

[3] Cortina, Alfredo, et al. “TurtleBot 3 Burger [US].” ROBOTIS,
www.robotis.us/turtlebot-3-burger-us/.

[4] US Department of Commerce, and National Oceanic and Atmospheric Administration.
“What Is LIDAR.” NOAA's National Ocean Service, 1 Oct. 2012,
oceanservice.noaa.gov/facts/lidar.html.

[5] Olson, Edwin. “AprilTag: A Robust and Flexible Visual Fiducial System.” 2011 IEEE
International Conference on Robotics and Automation, 2011,
doi:10.1109/icra.2011.5979561.

[6] “X Series.” ROBOTIS, www.robotis.us/x-series/.

[7] “Image Transformation.” Learning OpenCV, by Gary Bradski and Adrian Kaehler, O'Reilly
Media, 2015, pp. 162-163.

[8] “Overview - Panorama Generation from the Periphery of a Fisheye.” Atria Logic,
www.atrialogic.com/dewarping.php.

[9] “Image Processing.” Learning OpenCV, by Gary Bradski and Adrian Kaehler, O'Reilly Media,
2015, pp. 135-141.

27

Appendix:

def command_servol(angle):
global current
if angle = 135:

angle = 135
elif angle = -135:
angle = =135

motor_command = {angle + 188) * 4895/ 360
pub3.publish(motor_command)

Code 1: Moving servo motor to detected object

28

def check_detections():
global current
global previous
global april_info
global current_image
global cam_info_def
global currently_checking
global checking
global cam_info_initialized, cam_initialized
global count

current_working = current
previous_working = previous

#update the values of detected IDs from previous detections
for ®x in range(@,len{current)):
current_id = current[x] [2]
#rospy. loginfo("previous")
#rospy. loginfolprevious)
for ¥ in rangel(@, len{previous)):
if previous([y][2] == current_id:
current [x] [5] = previous[y][5]
#rospy. loginfo("current")
#rospy. loginfo{current)
#Check ID for all detections on 99
if len{current) = @:
for ®» in rangel(@, len{current})):
if current([x] [5] == 99:
if not checking:
if cam_initialized and cam_info_initialized:
command_servo({current[x] [4])
#rospy.loginfo("Sent camera command")
#wait for refreshed image
count = @
while count = 6:
#rospy. loginfo("waiting")
pass

sent_image = current_image
cam_info_sent = cam_info_def

cam_info_sent.header = sent_image. header
publ.publish{sent_image)
pub2.publish{cam_info_sent)
currently_checking = current[x] [2]
checking = True

previous = current

Code 2: Robot tracking with servo motor camera system

29

def Map (Ws,Hs,Wd, Hd,R1,R2,Cx,Cy):
map_x = np.zeros((Hd,Wd),np. float32)
map_y = np.zeros((Hd,Wd),np. float32)
for y in range(@, int(Hd-1)):
for ®x in range(@, int(Wd-1)):
r=(float{y)/float(Hd) }*(R2-R1}+R1

theta = (float{x)/float(Wd)}=*2.8+np.pi + np.pi #shift warping so that it starts from 1B@, picture

splits at back.
%5 = Cx+r*np.sin{theta)
¥S = Cy+r*np.cos{theta)
map_x.itemset((y,(x) % (Wd - 1)), int({x5))
map_y.itemset({y,(x) % (Wd - 1)), int{y5))
return map_x, map_y

def dewarp (img,xmap,ymap):
return cvz.remap(img, xmap,ymap,cv2.INTER_LINEAR)

Code 3: Remapping of fisheye lens [5]

result dewarp(image, =map, ymap)

thresh Ba

im_bw = cvZ.threshold(result,thresh,255,cv?.THRESH_BINARY) [1]
pub.publish{bridge.cv2_to _compressed imgmsg{im bw))

Code 4: Thresholding

30

def identify_angles({ap_tags, blobs, old_blobs, tolerance=&):

ret = list({blobs) # copy blobs to return
tag_angles = [t[1] for t in ap_tags]
blob_angles = [b[4] for b in blobs]
#rospy. loginfo({blob_angles)
#rospy. loginfo({tag_angles)
for j in range{len(blob_angles)):

for i in range(len{tag_angles)):

tag_id = ap_tags[i] [@]

if they are the same
if tag_angles[i] == blob_angles[j]:
compare = tag_angles[i] - blob_angles[j]

else:
compare = blob_angles([j] - tag_angles[i]

if compare == tolerance:

ret[j1[5] = int(tag_id)
break
else:
if old_blobs[j][2] == blobs[j]l[2]:
ret[j][5] = old_blobs[j][5]
old_blobs = blobs
ret[j]1[5] = 999
#return ret
return ret

Code 5: Robot tracking with 360° camera system

31

def xbeeCallback(data):
global T
global current
str = data.data
if str.isdigit():
mode = int (str)
if mode ==
f= 0
elif mode == 7:
T =8.2
2lifT mode == H:
for x in curremt:
if x[4] = @:
T =-8.15
elif x[4] = 8:
T = 8.15
2liT mode ==
for x in current:
if x[4] = @:
T = @8.15
elif x[4] = @:
T = -8.15

def formation():
global mode,current,cmd_wvel, foundM, e, T

current_working = current
if current_working:
foundd = False
for ¥ in current_working:

if x[5] = @:
#rospy. loginfol(™hi")
dist = x[@]

foundN = True

delta_x = dist
cmd_wel.linear.x = kp = (delta_x + e — f)

ifT cmd_vel.linear.x = @.1:
cmd_wvel.linear.x = @.1

elif omd_vel. linear.x < —8.1:
cmd_vel.linear.x = —-8.1

Code 6: Formation control

32

