

Introduction to Projectile Motion

By

Dane Kurian

1. Introduction

You have probably watched a ball roll off a table and strike the floor, or threw a ball into the air and observed how it soared up and then returned back down. What determines where it will land? Could you predict where it will land? In this experiment, you will roll a ball down a ramp and determine the ball's velocity with a pair of Photogates. You will use this information and your knowledge of physics to predict where the ball will land when it hits the floor.

2. Background

Projectile motion is the motion describing the motion of falling objects, or projectiles. Essentially this lab describes the science behind things such as rockets and cannon balls. The 3 aspects of linear motion: acceleration, velocity, and displacement are very important to the understanding of projectile motion. Projectile motion, unlike the previous lab which was 1 dimensional, is 2 dimensional, and therefore displacement, velocity, and acceleration exist in both directions.

Acceleration:

- Acceleration in the x-axis (side to side) is zero since there is nothing like rockets to push the projectile
- Acceleration in the y-axis (up and down) is caused by gravity and is a standard acceleration anywhere on earth; since this acceleration is the same all over the world it is given a special symbol: "g". "g" is the acceleration that an object falling towards the earth has, its magnitude is -9.81 m/s^2

Velocity

- Velocity in the x-axis will remain the same from beginning to end. Basically $velocity_{initial} = velocity_{final}$
- Velocity in the y-axis is constantly changing because of the acceleration "g" the velocity at any given time can be expressed by the equation $v_o = v_i + a(t)$, where v_o is the final velocity, v_i is the initial velocity, $a = g = -9.81 \text{ m/s}^2$, and t is the time at which the object is traveling at v_o

Distance

- Distance in the x-axis will continually increase so long as the object stays in the air and is governed by the following equation: $x_o = x_i + v_i(t) + \frac{a}{2}(t^2)$, where v_i is the initial velocity, $a = 0 \text{ m/s}^2$ since this is measuring the acceleration on the x-axis, t is the time at which the object is traveling at x_o , x_o is the distance the object has traveled, and x_i is the starting position from a given reference point.

- Distance in the y-axis is also governed by the equation $x_o = x_i + v_i(t) + \frac{a}{2}(t^2)$, however in this instance $a = g = -9.81 \text{ m/s}^2$

3. Objective:

- Have student gain familiarity with the concepts of projectile motion.
- Measure the velocity of a ball using two Photogates and computer software for timing.
- Apply concepts from two-dimensional kinematics to predict the impact point of a ball in projectile motion.
- Take into account trial-to-trial variations in the velocity measurement when calculating the impact point.

4. Equipment List

- Power Macintosh or Windows PC	- LabPro or Universal Lab Interface
- Logger Pro	- 2 Vernier Photogates
- Ping Pong Ball	- Masking Tape
- Plumb Bob	- 2 ring stands and 2 clamps
- Target	- Ramp

5. Experimental Procedure

1. Set up a low ramp made of angle molding on a table so that a ball can roll down the ramp, across a short section of table, and off the table edge as shown in Figure 1.
2. Position the Photogates so the ball rolls through each of the Photogates while rolling on the horizontal table surface (but *not* on the ramp). Approximately center the detection line of each Photogate on the middle of the ball. Connect Photogate 1 to the DG 1 of the ULI or DIG/SONIC 1 of the LabPro and Photogate 2 to the corresponding second port. To prevent accidental movement of the Photogates, use tape to secure the ringstands in place.
3. Mark a starting position on the ramp so that you can repeatedly roll the ball from the same place. Roll the ball down the ramp through each Photogate and off the table. Catch the ball as soon as it leaves the table. **Note:** Do not let the ball hit the floor during these trials or during the following velocity measurements. Make sure that the ball does not strike the sides of the Photogates. Reposition the Photogates if necessary.
4. Open the file in the Experiment 8 folder of Physics with Computers. A data table and two graphs are displayed; one graph will show the time required for the ball to pass through the Photogates for each trial and the other will display the velocity of the object for each trial.

5. You must enter the distance, Δs , between Photogates in order for Logger Pro to calculate the velocity. The program will divide this distance by the time interval Δt it measures to get the velocity ($v = \Delta s / \Delta t$). Carefully measure the distance from the beam of Photogate 1 to the beam of Photogate 2. (It may be easier to measure from the leading edge of Photogate 1 to the leading edge of Photogate 2.) To successfully predict the impact point, you *must* enter an accurate measurement. Enter the distance into Logger Pro by selecting Data Collection from the Setup menu, then clicking the Sampling tab. Change the number in the Distance Between Gates field to the correct distance in meters. Click

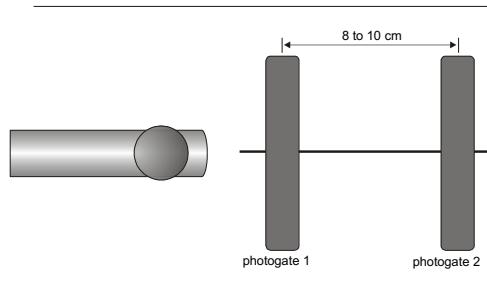


Figure 2

6. Click . Check to see that the Photogates are responding properly by moving your finger through Photogate 1 and then Photogate 2. Logger Pro will plot a time interval (Δt) value for each instance you run your finger through Photogate 1 or Photogate 2. Click , then click again, to clear the trial data and prepare for data collection.

7. Roll the ball from the mark on the ramp, through both Photogates, and catch the ball immediately after it leaves the table. Repeat nine times. Take care not to bump any of the Photogates, or your velocity data will not be precise. After the last trial, click to end data collection. Record the velocity for each trial number in the data table.

8. Inspect your velocity data. Did you get the same value every time? Determine the average, maximum, and minimum values by clicking once on the velocity vs. time graph and then clicking the Statistics button, . What one value would be most representative of all ten measurements?

9. Carefully measure the distance from the table top to the floor and record it as the table height h in the data table. Use a plumb bob to locate the point on the floor just beneath the point where the ball will leave the table. Mark this point with tape; it will serve as your *floor origin*.

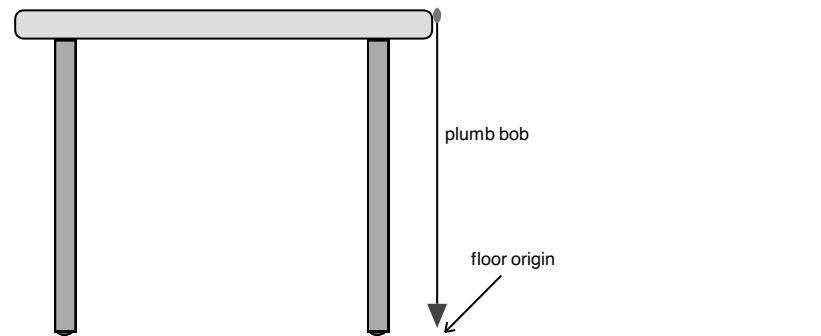


Figure 3

10. Use your velocity value to calculate the distance from the floor origin to the impact point where the ball will hit the floor. You will need to algebraically combine relationships for motion with constant acceleration

$$\Delta x = v_{0x}t + \frac{1}{2}a_x t^2$$

$$\Delta y = v_{0y}t + \frac{1}{2}a_y t^2$$

First, simplify the equations above. What is the value of the initial velocity in the vertical direction (v_{oy})? What is the acceleration in the horizontal direction (a_x)? What is the acceleration in the vertical direction (a_y)? Remember that the time the ball takes to fall is the same as the time the ball flies horizontally. Use this information and the simplified equations to calculate how far the ball should travel horizontally during the fall.

Mark your predicted impact point on the floor with tape and position a target at the predicted impact point. Be sure the impact point is along the line of the track.

11. To account for the variations you saw in the Photogate velocity measurements, repeat the calculation in Step 10 for the minimum and maximum velocity. These two additional points show the limits of impact range that you might expect, considering the variation in your velocity measurement. Mark these points on the floor as well.

12. After your instructor gives you permission, release the ball from the marked starting point, and let the ball roll off the table and onto the floor. Mark the point of impact with tape. Measure the distance from the floor origin to the actual impact and enter the distance in the data table.

DATA TABLE

Trial	Velocity (m/s)		
1		Maximum velocity	m/s
2		Minimum velocity	m/s
3		Average velocity	m/s
4		Table height	m
5		Predicted impact point	m
6		Minimum impact point distance	m
7		Maximum impact point distance	m
8		Actual impact point distance	m
9			
10			

6. Results

On the Data Table, the velocity for trials 1 through 10 should be relatively the same, if any value shows great variation from the others then simply discard that value and take it again. The maximum velocity should occur just before the ball hits the floor. Minimum velocity occurs as the ball is leaving the table. Average velocity is calculated by $\frac{\Delta x}{\Delta t}$. Table height is data acquired by experimenter. Impact point will occur some distance away from the table and can be calculated with the distance formula. The variable factors of the impact point are the height of the table and the elevation of the ramp. Actual impact points are to be acquired through experimentation.

7. Analysis/Questions

1. Should you expect any numerical prediction based on experimental measurements to be exact? Would a *range* for the prediction be more appropriate? Explain.

2. Was your actual impact point between your minimum and maximum impact predictions? If so, your prediction was successful.
3. You accounted for variations in the velocity measurement in your range prediction. Are there other measurements you used which affect the range prediction? What are they?
4. Did you account for air resistance in your prediction? How would air resistance change the distance the ball flies? Increase or decrease the distance? Explain.
5. What type of motion is occurring when the slope of a velocity *vs.* time graph is not zero? Test your answer using the Motion Detector.

8. References