

Robot For Assistance

Master Project

ME-GY 996

Presented By:

Karim Chamaa

Presented To:

Dr. Vikram Kapila

Project Description

Building a robot with an assistance duty.

Goals:

- ▶ Build a cheap and independent robot.
- ▶ Assist seniors, children or people with disabilities.
- ▶ Make use of mobile technology.

How It Works?:

Available Solutions

Toyota Human Support Robot (HSR)

Project Description

System Description

4 DOF manipulator

Wifi module

Ultrasonic sensor
(Obstacle avoidance)

Logic level shifter

iRobot Create

Ball grabber

Arduino mega

Ultrasonic sensor (Depth)

Pi camera

Buck converter(5V, 3A)

Raspberry pi

Communication Protocol

USART

USART

USART

Command Type	Character	Action
	f	Forward
	b	Backward
	r	Right 45 Degrees
	e	Right 90 Degrees
	l	Left 45 Degrees
Steering	k	Left 90 Degrees
	t	Rotate 180 Degrees
	s	Stop
	v(0-1)	Accept Encoder Distance
	o	Return Ultrasonic Distance

Mobile Application (Assist Me)

- ▶ Design of a mobile application capable of communicating with the robot via server protocol.
- ▶ User friendly application:
 - ▶ User will select an object at a particular position.
 - ▶ User will visualize the process as the robot move towards the object.

Mobility

Cad Software

Map Design

Outcome

O	O	O	O	O	O	O
O	O	
O	O	O	O	.	.	O
O	.	.	R	.	.	O
O	.	R	O	R	.	O
O	R	.	O	R	O	O
O	R	.	O	R	O	O
O	R	.	O	R	O	O
O	F	.	O	.	S	O
O	O	O	O	O	O	O

Mapping

Mobility (Obstacle Avoidance)

o o o o o o o o o
o F R R R . . o
o o o o O R . o
o . . R R . . o
o . R O . . o o
o R . O . o o o
o R . O . . . o
o S . O . . . o
o o o o o o o o o

Reinitializing Map

o o o o o o o o o
o F R R R . . o
o o o o O R . o
o . . R R . . o
o . R O . . o o
o O R O . o o o
o S . O . . . o
o . . O . . . o o
o o o o o o o o o

Manipulation

Depth
Measurement

Image
Processing

Inverse
Kinematics

Manipulation (Inverse Kinematics)

Link	a	α	d	θ
1	14.5	0	0	$\theta(1)$
2	18.5	0	0	$\theta(2)$
3	18	0	0	$\theta(3)$

```
[ cos(q1 + q2 + q3), -sin(q1 + q2 + q3), 0, 18*cos(q1 + q2 + q3) + (37*cos(q1 + q2))/2 + (29*cos(q1))/2]
[ sin(q1 + q2 + q3),  cos(q1 + q2 + q3), 0, 18*sin(q1 + q2 + q3) + (37*sin(q1 + q2))/2 + (29*sin(q1))/2]
[ 0, 1, 0]
[ 0, 0, 0, 1]
```


Enhancing Manipulation

- ▶ Enhancing manipulation by considering the full 4-DOF range of the manipulator.
- ▶ Implementing a Kinect in order to measure the depth of the object with respect to the manipulator.
- ▶ Obtaining a faster and more efficient mode of pick up.

Enhancing Manipulation

DH-Parameters

DH Table

Link	a	α	d	θ
1	0	90	0	$\Theta(1)$
2	14.5	0	0	$\Theta(2)$
2	18.5	0	0	$\Theta(3)$
3	18	0	0	$\Theta(4)$

Workspace Modeling

Workspace Limits

$0 < X(\text{cm}) < 30$

$-28 < Y(\text{cm}) < 28$

$0 < Z(\text{cm}) < 30$

Enhancing Manipulation

Coordinate Transformation

$${}^M H_B = ({}^K H_M)^{-1} \times {}^K H_B = \begin{bmatrix} 0, 0, 1, z_{bwrtk} - z_{mwrtk} \\ -1, 0, 0, x_{mwrtk} - x_{bwrtk} \\ 0, 1, 0, y_{bwrtk} - y_{mwrtk} \\ 0, 0, 0, 1 \end{bmatrix}$$

Enhancing Manipulation

Obtaining Position of an Object

► Major Steps:

1. Obtain rgb and depth frame from the Kinect.
2. Defining the HSV range representing the color of the object.
3. Applying OpenCV techniques such as: Blurred, hsv and mask(Erode and dilate).
4. Track the centroid of the ball and identify it's pixel location in the rgb and depth image.
5. Apply the necessary equations:

```
x = (i - w / 2) * (z + minDistance) * scaleFactor  
y = (j - h / 2) * (z + minDistance) * scaleFactor  
z = 100/(-0.00307 * rawDisparity + 3.33).
```

6. Coordinate transformation between different frames.

Enhancing Manipulation Recording with a Kinect

RGB image

Grayscale depth

Filtering

RGB depth

Enhancing Mobility

- ▶ Improving mapping techniques
- ▶ Mapping in a real environment.
- ▶ Using **ROS** packages for mapping: "gmapping".
- ▶ Experimenting with LIDAR sensor and a Kinect.

Area to be mapped

Enhancing Mobility LIDAR

- ▶ Experimenting with a LIDAR attached to a mockup robot.
- ▶ Hokuyo URG-04LX LIDAR used for mapping
- ▶ ROS parameters adjusted with respect to the location of the LIDAR.

Mapping

Enhancing Mobility Kinect

- ▶ Mapping using the Kinect onboard.
- ▶ Aiming to achieve accurate results with less noise.

Mapping

Manual Control

- ▶ Making use of a standalone Kinect one in order to manually control the robot.
- ▶ Driving the robot using a virtual steering wheel.
- ▶ Actuating the manipulator and picking up objects using our right arm.

Kinect one

RGB image

Depth image

Manual Control

- ▶ **Virtual steering:** Keep track of the right and left hand position in order to solve for the angle of rotation and well as the speed depending on the depth.
- ▶ **Arm control:** Keep track of the right hand and limit the control of the manipulator within it's workspace boundary

Arm control

Conclusion

- ▶ Provided a robotic solution in order to assist people and pick up objects for them.
- ▶ Hacked and transformed the iRobot create into an assistive robot.
- ▶ Enhanced manipulation using a Kinect.
- ▶ Enhanced the mapping techniques using ROS packages.
- ▶ Extended the work and overrode the robot manually using a standalone Kinect.

Thank You

Questions ?