
RobotC Programming for
LEGO Mindstorms NXT
Carnegie Mellon
Dacta
Lego
Timothy Friez
Miha Štajdohar
miha.stajdohar@fri.uni-lj.si

SOURCES:

Loading Firmware

• Robots require “Operating Systems” to run
properly

• ROBOTC has it’s own Operating System,
called Firmware.

• The firmware must be loaded onto the
robot controller before.

Downloading the Firmware
• Three Steps to downloading firmware

– 1. Make sure your platform type is correct
• ROBOTC – Robot Menu – Platform Type – FRC

– 2. Make sure your robot is powered on and in
Programming mode.

• On the FRC, hold the “PROG” button until two LEDs become
orange.

– 3. Download the firmware
• ROBOTC – Robot Menu – Download Firmware – “FRC VM

0724.hex”

Programming in
RobotC for

practical robotic
applications

ROBOTC Fundamentals
• Every program starts with a “task main”

– Exception: Competition Template programming
• The “task main” is taken care of you behind the scenes.

task main()
{

}

Example RobotC Programs:
forward and spin for motors

void forward() {
motor[motorA] = 100;
motor[motorB] = 100;

}

void spin() {
motor[motorA] = 100;
motor[motorB] = -100;

}

Example RobotC Program -
BEHAVIOR

task main() {

SensorType[S4] = sensorSONAR;

forward();

while(true) {

if (SensorValue[S4] < 25)
spin();

else forward();

}

}
Explain the role of behaviors in robot programming

Syntax and statements
• Programs consist of a number of statements.

• Statements tell the robot controller what to do.

• Motor[port1] = 127; is a statement

• All statements end with semicolons “;”

• Proper syntax (semicolons, brackets, etc) is very
important.

Detailed programming is necessary
• Robots are dumb by nature.

– They will only do what they are told.

• A robot will run forever unless told to stop.

• Motor[port1] = 127;
• Motor[port2] = 127;

• Robots will also only execute code once unless
told otherwise. (a loop!)

Comments in ROBOTC

• Comments are very important for memory
and understanding

• // - Single Line Comment

• /*
• Multiple line comments
• */

Code conventions. Lower Case and
Uppercase.

1. Text written as part of a program is called code.
2. You type code just like you type normal text.

3. Keep in mind that capitalization is important to the computer.

4. Replacing a lowercase letter with a capital letter (or a capital letter
with a lowercase letter) will cause the robot to become confused.

Code COLOR
1. As you type, ROBOTC will try to help you out by coloring the words

it recognizes.

2. If a word appears in a different color, it means ROBOTC
recognizes it as an important word in the programming language.

Statements
1. Statements are instructions for the robot.

2. The most basic kind of statement in ROBOTC simply gives a command to the
robot.

3. The motor[port3] = 127; statement in the sample program you downloaded
is a simple statement that gives a command.

4. It instructs the motor plugged into Motor Port 3 to turn on at full power.

Order the Statements
1. Statements are run in order as quickly as the robot is

able to reach them.
2. Running this program on the robot turns the motor on,

then waits for 3000 milliseconds (3 seconds) with the
motor still running, and then ends.

RobotC Rules: role of semicolon
1. How did ROBOTC know that motor[port3]= 127 and

wait1msec[3000] were two separate commands.
2. Was it because they appeared on two different lines?

•No.
•Spaces and line breaks in ROBOTC are only used to separate words from each
other in multi-word commands.
•Spaces, tabs, and lines don’t affect the way a program is interpreted by
the machine.

ROBOTC Rules: the role of spacing
1. So why ARE they on separate lines?

– For the programmer.

2. Programming languages are designed for humans and
machines to communicate.

3. Using spaces, tabs, and lines helps human
programmers read the code more easily.

4. Making good use of spacing in your program is a very
good habit for your own sake.

Punctuation! Semicolons!
1. But what about ROBOTC?
2. How DID it know where one statement ended and the other

began?
3. It knew because of the semicolon (;) at the end of each line.
4. Every statement ends with a semicolon. It’s like the period at

the end of a sentence.

Punctuation Pairs: Matching Parentheses
1. Punctuation pairs, like the parentheses and square

brackets in these two statements, are used to mark off
special areas of code.

2. Every punctuation pair consists of an opening
punctuation mark and a closing punctuation mark.

3. The punctuation pair designates the area between them
as having special meaning to the command that they
are part of.

Punctuation Pairs: Square Brackets

1. Different commands make use of different kinds of paired punctuation.

2. The motor command uses square brackets and the wait1Msec
command uses parentheses.

3. This is just the way the commands are set up.

• You will have to remember to use the right punctuation with the right
commands or plan.

Control Structures
1. Simple statements do the work in ROBOTC, but control structures

do the thinking.

2. Control structures (or control statements) are pieces of code that
control the flow of the program’s commands, rather than issue
direct orders to the robot.

1. One important control structure is task main.

2. Every ROBOTC program includes a special section called task main.

3. This control structure determines which code the robot will run as part of the
main program.

Control Structures

Comments: write your code incrementally
1. Comments are text that the program ignores.

2. A comment can contain notes, messages, and symbols that may help a
human, but would be meaningless to the robot.

3. ROBOTC simply skips over them. Comments appear in green in
ROBOTC.

Motor Commands

• Motor[port] = speed;
• Motor – tells the controller we want to use

a motor (PWM) port
• [port] – tells the controller what port to use

– [port1], [port2], [port3], …, [port16]
• = speed; - assigns a value to the motor

telling it what speed to travel
- 127 is full forward, -127 is full reverse,0 is stop

Using Joysticks
• To control your robot using a joystick axis or

a button, use these functions

• frcRF[port] – gets the value from a
joystick axis

– [port] – p1_y, p1_x, p1_wheel, … p2_x,…p3_x,
etc.

• frcOIJoystickButtons[port]
– [port] – oiButtonPort1Button1 through oiButtonPort4Button4

Slowing motors down

• ROBOTC lets you use math functions to control
your motors speed

• Motor[port1] = (127 / 2);
– This would actually set the motor to 63.5… rounded

down to 63.
• You can use this when accessing sensor values

and joystick values also
• Motor[port1] = (frcRF[p1_y] / 2)

– This joystick input is now divided by 2 before being
sent to the motor.

Using Loops

• A Loop will help a portion of your code
execute repeatedly, until told to stop.
while(true == true)
{
motor[port1] = frcRF[p1_y];
motor[port2] = frcRF[p2_y];
}

• This code will cause the motors to respond
to the joystick values forever.
– The loop reads (while true is equal to true)

Analog Sensors

• Very easy to read analog sensor values
– SensorValue[port]
– [port] = in1,in2,in3 … in16
while(SensorValue[in1] < 10)
{
motor[port1] = frcRF[p1_y];
motor[port2] = frcRF[p2_y];
}

• This program will run until an analog sensor on
port 1 sees a value of less than 10.

• Analog sensor values can range from 0 to 1023

Digital Sensors

• Digital sensors are a little more complex
– First you have to decide if you want the sensor port to

be an input or output
– frcDigitalIODirection[port] = condition;

• port – pio1, pio2, pio3, … pio18
• condition – dirInput or dirOutput

– Second you have read or assign the value
– frcDigitalIOValue[port]

• If an input, this will read the value (either a 1 or 0)
• If an output, you can assign the value using a 1 or 0.

– frcDigitalIOValue[port] = 1; // turns on the digital output port

Relays

• Relays are easy to control. There are 4
states possible for each relay:
– frcRelay[port] = condition;
– [port] – relay1, relay2, relay3 … relay8
– conditions:

• relayFwd – Sets the relay to forward
• relayRvs – Sets the relay to reverse
• relayOff – Sets the relay to a off (float) state
• relayBrake – Sets the relay to a braking (short) state

	RobotC Programming for LEGO Mindstorms NXT
	Loading Firmware
	Downloading the Firmware
	Programming in RobotC for practical robotic applications
	ROBOTC Fundamentals
	Example RobotC Programs: forward and spin for motors
	Example RobotC Program - BEHAVIOR
	Syntax and statements
	Detailed programming is necessary
	Comments in ROBOTC
	Code conventions. Lower Case and Uppercase.
	Code COLOR
	Statements
	Order the Statements
	RobotC Rules: role of semicolon
	ROBOTC Rules: the role of spacing
	Punctuation! Semicolons!
	Punctuation Pairs: Matching Parentheses
	Punctuation Pairs: Square Brackets
	Control Structures
	Control Structures
	Comments: write your code incrementally
	Motor Commands
	Using Joysticks
	Slowing motors down
	Using Loops
	Analog Sensors
	Digital Sensors
	Relays

