RobotC Programming for
LEGO Mindstorms NXT

SOURCES:

Carnegie Mellon

Dacta

Lego

Timothy Friez

Miha Stajdohar
miha.stajdohar@fri.uni-lj.si

Loading Firmware

* Robots require “Operating Systems” to run
properly

« ROBOTC has it's own Operating System,
called Firmware.

e The firmware must be loaded onto the
robot controller before.

Downloading the Firmware

e Three Steps to downloading firmware

— 1. Make sure your platform type is correct
« ROBOTC — Robot Menu — Platform Type — FRC

— 2. Make sure your robot is powered on and in
Programming mode.

e Onthe FRC, hold the “PROG” button until two LEDs become
orange.

— 3. Download the firmware

 ROBOTC — Robot Menu — Download Firmware — “FRC VM
0724 .hex”

Programming in

RobotC for

practical robotic
applications

ROBOTC Fundamentals

e Every program starts with a “task main”

— Exception: Competition Template programming
* The “task main” is taken care of you behind the scenes.

task main()
{

}

Example RobotC Programs:

forward and spin for motors
void forward() {

motor[motorA] = 100;
motor[motorB] = 100;
}
void spin() {
motor[motorA] = 100;
motor[motorB] = -100;

Example RobotC Program -
BEHAVIOR

task main() {
SensorType[S4] = sensorSONAR;
forward();
while(true) {
1T (SensorValue[S4] < 25)
spin();
else forward();
}
}

Explain the role of behaviors in robot programming

Syntax and statements

Programs consist of a number of statements.
Statements tell the robot controller what to do.
Motor[portl] = 127; Is a statement

All statements end with semicolons “:

Proper syntax (semicolons, brackets, etc) is very
Important.

Detailed programming IS necessary

 Robots are dumb by nature.
— They will only do what they are told.

* A robot will run forever unless told to stop.

e Motor|[portl]
e Motor[port2]

127
127

 Robots will also only execute code once unless
told otherwise. (a loop!)

Comments in ROBOTC

« Comments are very important for memory
and understanding

Code conventions. Lower Case and
Uppercase.

Text written as part of a program is called code.
You type code just like you type normal text.

1.
2.

3.

Keep in mind that capitalization is important to the computer.

4. Replacing a lowercase letter with a capital letter (or a capital letter
with a lowercase letter) will cause the robot to become confused.

motor[port3] = 127;

waltlMsec (3000) ;

Capitalization
Capitahization {paying attention to UPFERCASE vs.
lowercase) 1s important in ROBOTC.,

If you capitalize the ‘T" in task, ROBOTC

no longer recognizes this command.

Code COLO

1. Asyoutype, ROBOTC will try to help you out by coloring the words
it recognizes.

2. Ifaword appears in a different color, it means ROBOTC
recognizes it as an important word in the programming language.

a command and turns blue.

I| task pesat Code coloring
9 ROBOTC automathcally colors key words
that it recognizes.

J C thi fl tahzed “task” d

L L A ompare this correctly-capitalized “task” comman
4 motor | port 3] = 127; with the incorrectly-capitalized version in the
5 waitlMsec (3000) ; previous example. The correct one 1s recognized as
6

motor [port3] = 127;
waltlMsec (3000) ;

Statements

1. Statements are instructions for the robot.

2. The most basic kind of statement in ROBOTC simply gives a command to the
robot.

3. The motor[port3] = 127; statement in the sample program you downloaded
IS a simple statement that gives a command.

4. Itinstructs the motor plugged into Motor Port 3 to turn on at full power.

Simple statement
A straightforward command to the robof,

task main /()

This statement tells the robot to turn on the
moter attached fo motfor port 3 at full power.
;)

A [0

(waitlﬁ58c{3300};

e Simple statement (2)
This 15 also a simple statement.
) It tells the robot to wait for 3000
milliseconds (3 seconds).

1
2
3
4 (Hﬁtﬁr[pDIZBJ = 1
5
6
7

Order the Statements

1. Statements are run in order as quickly as the robot is
able to reach them.

2. Running this program on the robot turns the motor on,
then waits for 3000 milliseconds (3 seconds) with the
motor still running, and then ends.

on (1st command)]. The robot then immediately
begins a three second wait (2nd command)

while the motors remain on.
} End

End

When the program runs cut of statements
and reaches the } symbeol in task main, all
motors stop and the pregram ends.

Il | task main{()
2 Sequence
3 | Statements run in English reading order
_ I {left-to-nght, top-to-bottom). As scon as
4 1st motor [port3] = 127; a command is complete, the next one runs.
5 o2nd wait IMsec { 3000 } . These two statements cause the motors fo turn
! - oS0 V22UV
&
7

RobotC Rules: role of semicolon

1. How did ROBOTC know that motor[port3]= 127 and
waitlmsec[3000] were two separate commands.

2. Was it because they appeared on two different lines?

o 1- . Whitespace
Lask main () Spaces, tabs, and line breaks are
{ generally unimportant to ROBOTC and
() the roboft.

motor [port3] = 127; @ They are somefimes needed fo separate
words in multi-word commands, but

waitlMsec (3000) r'@ are otherwise ignored by the machine.

=

~ o N oW =

—r

*No.

*Spaces and line breaks in ROBOTC are only used to separate words from each
other in multi-word commands.

sSpaces, tabs, and lines don’t affect the way a program is interpreted by
the machine.

ROBOTC Rules: the role of spacing

1. So why ARE they on separate lines?
— Forthe programmer.

2. Programming languages are designed for humans and
machines to communicate.

3. Using spaces, tabs, and lines helps human
programmers read the code more easily.

4. Making good use of spacing in your program Is a very
good habit for your own sake.

ool S A D T No Whitespace

CLask maln () {MOTOXT [}_:"-—Jl LD] To ROBOTC, this program 1s the same as
127 ;,waitlM=sec (3000) ;} the last one. To the human programmer,
however, this i1s close to gibberish.

1
2

Whitespace 1s used to make programs
readable to humans.

Punctuation! Semicolons!

But what about ROBOTC?

How DID it know where one statement ended and the other
began?

3. Itknew because of the semicolon (;) at the end of each line.

4. Every statement ends with a semicolon. It’s like the period at
the end of a sentence.

task main ()

{ — Semicolons
Like perods in an English sentence,
semicalons mark the end of every

motor[port3] = 12 G ROBOTC statement.
waitlMsec (3000 }@

= O N ks W =

Punctuation Pairs: Matching Parentheses

1. Punctuation pairs, like the parentheses and square
brackets in these two statements, are used to mark off

special areas of code.

2. Every punctuation pair consists of an opening
punctuation mark and a closing punctuation mark.

3. The punctuation pair designates the area between them
as having special meaning to the command that they
are part of.

S oS) Punctuation pair: Square brackets []
t_'db'"‘“ main () The code written between the square brackets
of the motor command indicates which motor
the command should use. In this case, it 15 the
motor on port 3.

Punctuation Pairs: Square Brackets

e (R SR) [U T e B

s - Punctuation pair: Parentheses (
ask main() The code *.wiﬁepn between the p:::ren’rl":eses
of the waitlMsec command tell it how
many milliseconds to wait before starting a
new command. In this case, 1t warts 3000
milliseconds, or three seconds.

1. Different commands make use of different kinds of paired punctuation.

2. The motor command uses square brackets and the waitlMsec

command uses parentheses.

3. Thisis just the way the commands are set up.

You will have to remember to use the right punctuation with the right
commands or plan.

= O~ N e L kD —

Control Structures

Simple statements do the work in ROBOTC, but control structures
do the thinking.
Control structures (or control statements) are pieces of code that
control the flow of the program’s commands, rather than issue
direct orders to the robot.
~ , N |
task main{() Control structure: task main
(7 J The control structure task main directs the
1 program to the main body of the code. When you
click the Start butten in ROBOTC or turn on the
motor [}?3"33’1"? 3] = 127; robot, the program immediately goes to task main
) -:ﬂ_it 1Mse { 3000 } o and runs the code it finds there.
Wi 1Msec (2000) ;
The left and nght curly braces { } belong fo the task
main structure. They surround the commands which
, } will be run in the program.

1. One important control structure is task main.
2. Every ROBOTC program includes a special section called task main.

3. This control structure determines which code the robot will run as part of the

main program.

Control Structures

-

while (SensorValue (touchSensor) == 0) Control structure: while loop
s The while loop repeats the code
{ between ifs curly braces { } s
motor [port3] = 127; long as certain conditions are met,
motor [FZHZ}J’_‘T.E 1 = 127; MNormally, statements run only
} once, But with o while loop, they
__/ can be told to repeat over and

over for as long os you want!

Comments: write your code incrementally

Comments are text that the program ignores.

A comment can contain notes, messages, and symbols that may help a

human, but would be meaningless to the robot.

ROBOTC simply skips over them. Comments appear in green in

ROBOTC.

1 [’ / Motor port 3 forward with 100% powe ':)—

Comments: // Single line
Any section of text that follows a
[/ (two forward slash characters)
on a line is considerad to be o
comment. Any text to the left of
the // 15 treated as normal code.

Comments: /* Any length */

A comment can be created in ROBOTC
using another type of paired punciuation,
which starts with /* and ends with */
This type of comment can span multiple
lines, so be sure to include both the
opening and closing marks!

Motor Commands

Motor[port] = speed,;

Motor — tells the controller we want to use
a motor (PWM) port

[port] — tells the controller what port to use
— [portl], [port2], [port3], ..., [portl6]

= speed; - assigns a value to the motor
telling it what speed to travel

- 127 is full forward, -127 is full reverse,0 Is stop

Using Joysticks

e To control your robot using a joystick axis or
a button, use these functions

e frcRF[port] — gets the value from a
joystick axis
— [port] — pl1 v, pl X, p1_wheel, ... p2_x,...p3_X,
etc.

 frcOlJoystickButtons[port]

— [port] — oiButtonPort1Buttonl through oiButtonPort4Button4

Slowing motors down

ROBOTC lets you use math functions to control
your motors speed

Motor[portl] = (127 / 2);

— This would actually set the motor to 63.5... rounded
down to 63.

You can use this when accessing sensor values
and joystick values also

Motor[portl] = (frcRF[pl_y] / 2)

— This joystick input is now divided by 2 before being
sent to the motor.

Using Loops

A Loop will help a portion of your code
execute repeatedly, until told to stop.

while(true == true)

{

motor[portl] = frcRF[pl_v];
motor[port2] = frcRF[p2 v];
}

e This code will cause the motors to respond
to the joystick values forever.

— The loop reads (while true Is equal to true)

Analog Sensors

* Very easy to read analog sensor values
— SensorValue[port]

— [port] =inl,in2,in3 ... IN16
while(SensorValue[inl] < 10)

{
motor[portl] = frcRF[pl v];
motor[port2] = frcRF[p2 v];
+

* This program will run until an analog sensor on
port 1 sees a value of less than 10.

* Analog sensor values can range from 0 to 1023

Digital Sensors

» Digital sensors are a little more complex

— First you have to decide if you want the sensor port to
be an input or output
— frcDigitallODirection[port] = condition;
e port—piol, pio2, pio3, ... piol8
« condition—dirlnput or dirOutput
— Second you have read or assign the value

— frcDigitallOValue[port]
 |fan input, this will read the value (either a 1 or 0)

 |f an output, you can assign the value usinga 1 or O.
— frcDigitallOValue[port] = 1; // turns on the digital output port

Relays

 Relays are easy to control. There are 4
states possible for each relay:

— frcRelay[port] = condition;
— [port] — relayl, relay2, relay3 ... relay8

— conditions:
 relayFwd — Sets the relay to forward
 relayRvs — Sets the relay to reverse
 relayOff — Sets the relay to a off (float) state
 relayBrake — Sets the relay to a braking (short) state

	RobotC Programming for LEGO Mindstorms NXT
	Loading Firmware
	Downloading the Firmware
	Programming in RobotC for practical robotic applications
	ROBOTC Fundamentals
	Example RobotC Programs: forward and spin for motors
	Example RobotC Program - BEHAVIOR
	Syntax and statements
	Detailed programming is necessary
	Comments in ROBOTC
	Code conventions. Lower Case and Uppercase.
	Code COLOR
	Statements
	Order the Statements
	RobotC Rules: role of semicolon
	ROBOTC Rules: the role of spacing
	Punctuation! Semicolons!
	Punctuation Pairs: Matching Parentheses
	Punctuation Pairs: Square Brackets
	Control Structures
	Control Structures
	Comments: write your code incrementally
	Motor Commands
	Using Joysticks
	Slowing motors down
	Using Loops
	Analog Sensors
	Digital Sensors
	Relays

