
Self-balancing robot
A Project Report

Group:

NING HU

ZEXIN LI

Under the guidance of

 VIKRAM KHAPILA
(Professor, Department of Mechanical & Aerospace Engineering)

in partial fulfilment for the course

of

ADVANCED MECHATRONICS ​(ME – GY 6933)

for

MECHATRONICS AND ROBOTICS ENGINEERING

of

TANDON SCHOOL OF ENGINEERING

11201, 6 MetroTech Center, Brooklyn, NY 11201

contents
A Project Report 1

Group: 1

1. INTRODUCTION 2

2. IMPLEMENTATION 2

3. Self-balancing robot 2

3.1 working principle and Software design 2

3.2 model 4

3.3 FILTER 9

3.4 Result and conclusion 10

4. Red ball tracking 10

4.1 General principle 10

4.2 Core code 11

4.3 Communication with robot 11

1. INTRODUCTION
To make a robot which can balance itself on two wheels. There will be only one axle

connecting the two wheels and a platform will be mounted on that .There will be another
platform above it. The platform will not remain stable itself. Our job will be to balance the
platform using distance sensors and to maintain it horizontal. At first we have decided to just
balance the robot on its two wheels .If the platform inclines then microcontroller (in this case it
is Arduino) will send signals to motors such that motors would move forward or backward
depending on the inclination direction and extent. So if the platform tilts forward then motors
will run forward and backward to keep the platform horizontal. For this we will need to code the
Arduino in order to perform job according to this.

The motor driver is powered by 12V power supply. The PWM sent to the motor driver
has low voltage=0V and high voltage=5V. The motor driver L298N scales it to the range low
voltage=0V and high voltage=12V (motor driver is used because motors need 12 V to run. Also
they need high current. Microcontroller output ports cannot supply 12 V and high current). Then
this PWM is applied across the motor .so ,if the robot tilts such that height of sensor 1 decreases
, then accordingly output PWM will be such that (output PWM will be positive) motors will run
to accelerate the robot to sensor 1 side. Because of this this acceleration robot will experience a
torque (due to pseudo force in the non inertial frame) that will oppose the torque due to gravity
and it will bring the robot platform back to the horizontal level .Change in the difference value.
The modified part of code measures difference (bet sensor1 value and sensor2 value) regularly

after some fixed interval (10 milliseconds). So the change in difference(i.e., difference- previous
difference) is considerable. We have not used I (integration) here in the PID control as we found
P+D sufficient to balance the robot.

2. IMPLEMENTATION
1 Arduino Uno R3
2 Sensor shield
3 H bridge
4 Dc motor
5 MPU6050
6 Joystick
7 NRF24L01
8 Battery
9 Rasberry PI3
10 Red ball

3. Self-balancing robot
3.1 working principle and Software design
1)working principle

2) Software design

3.2 model
 1) modeling and PID control

Fig1 force analysis

 According to kinematic balance principle , (a(t) means wheel acceleration)

 (1)× ×X(t) ×sin θ(t) (t)×cos θ(t) l
dt2
d θ(t)2

= l + g − a

Because the range of is close to 0 , .(t)θ in θ(t) ≈θs os θ(t) ≈1c

Therefore , the (1) will be

 (2)× ×X(t) ×θ(t) (t)l
dt2
d θ(t)2

= l + g − a

After Laplace transfer , (because of static , a(t) is equal to 0)

 (3)×s ×θ(s) ×X(s) ×θ(s)l 2 = l + g

θ(s)
X(s) = l

l×s −g2

Accoreding to (3) transfer function , its pole points are

 Sp = ±√ l
g

Because one of poloe points are on the right of s-plane , this system is unstable based
on nyquist stability criterion.

In order to solve it , PID control is a method .

PID controller is in laplace transfer.kp + S
KI + S * KD

The new system model is in the following :

Closed-loop transfer function is θ(s)
X(s) = 1

1+(k + +S K)×p S
KI * D

l
l×s −g2

For this closed-loop system , its pole points (A in the pic is the system transfer function ,
p means pole points ; Kp=112 , Ki=1.4 Kd=1800)

There are three pole points (the numbers in circle) . What’s more , two of them are at
the left of s-plane and one is at the Virtual axis. According to nyquist stability criterion , this
system is stable(system whose all pole points at left of s-plane is stable)

In the coding , PID control is in the following:

Notice(Turn_speed and Run_speed are controlled by joystick)

3.3 FILTER

 In the code , the filter is in the following:

the formula in the square is complementary filter.

3.4 Result and conclusion
A self-balancing robot was designed and manufactured as desired with limited

resources possible. It was able to balance smoothly with a maximum tilt error of 5
degrees. Range of payload and its height for which it balances was quantified. Maximum
angle of tilt for balancing was also determined through various experiments. However
there are some limitations. Such technology is suitable only for flat ground. In order to
make it work on slant surface, the angle of slant needs to be fed into the system, either
manually or using some intelligence

4. Red ball tracking

4.1 General principle

 In order to achieve the performance that the red ball can be followed by the
robot but stop when the distance is close enough. Some computer vision work should
be carried out.

 Red ball tracking based on Open CV platform. By using the HSV image we
caputure, Open CV can find the contour of red ball. Then we can aquire the radius of the
contour using cv2.minEnclosingCircle() command.

 Now the radius has been calculated,then:

 if radius > a(red ball is close enough to the camera), do nothing
 if radius<=a(robot need move forward), transmit a signal from rpi to arduino.

4.2 Core code

Appendix​:

cv2.findContours(): find every red area in the image;
max(): find the red area with maximum space;
minEnclosingCircle(): find a circle that can cover the given area with minmum

area, and return the radius of the circle;
cv2.moment: calculate the image moment and find the center of the image.

4.3 Communication with robot

In order to combine the robot with computer vision, the communication is
essential. Because we don’t need a heavy job based on the communication, our project
apply serial communication between the Arduino borad(Robot part) and Raspberry
PI(Open CV part).

