
Social Distancing Sheild for COVID-19 – 2.0
Modeling and Designing

Manthan Pawar

New York University,

Tandon School of Engineering

Brooklyn, New York

mvp321@nyu.edu

Zewen Wu

New York University

Tandon School of Engineering

Brooklyn, New York

zw2420@nyu.edu

Abstract— Novel Coronavirus disease 2019, known as

COVID-19 hit the humanity om global scale and was

announced as a global pandemic by World Health

Organization (WHO). The coronavirus is thought to

spread mainly from person to person. This can happen

between people who are in close contact with one

another. Droplets that are produced when an infected

person coughs or sneezes may land in the mouths or

noses of people who are nearby, or possibly be inhaled

into their lungs. Understanding how the virus spreads

reinforces the importance of social distancing and

other health-promoting behaviors. Because COVID-

19 spreads from person to person, reducing the ways

people come in close contact with each other is

essential. According to Centers for Disease Control

and Prevention (CDC) guidelines, to practice social or

physical distancing, you should stay at least 6 feet (2

meters) from other people. In these dark times,

everyone needs wants to get out, and the key to start

the economy back again is keeping those social

distancing norms and work simultaneously. Therefore,

we are proposing a prototype of a device which will

help people keeping these social distancing norms. The

device will notify the user if there is someone inside the

6ft radius from the person wearing it. That way the

user can know that he/she needs to get distant from

someone. The device is cap which can convert itself

into a face shield, one of the most important Personal

Protective Equipment (PPE) used against the fight of

coronavirus, when a person is detected inside the

radius of 6 ft from the person wearing it.

Keywords— COVID-19, Social Distancing, Centers

for Disease Control and Prevention (CDC), Pandemic,

Restart Economy, Personal Protective Equipment (PPE),

Face Sheild, Cap.

I. INTRODUCTION

Coronaviruses are an extremely common cause of colds

and other upper respiratory infections. COVID-19, short

for "coronavirus disease 2019," is the official name given

by the World Health Organization to the disease caused

by this newly identified coronavirus. People of any age

should take preventive health measures like frequent hand

washing, physical distancing, and wearing a mask when

going out in public, to help protect themselves and to

reduce the chances of spreading the infection to others.

Recently published research found that on average, the

time from exposure to symptom onset (known as the

incubation period) is about five to six days. However,

studies have shown that symptoms could appear as soon

as three days after exposure to as long as 13 days later.

These findings continue to support the CDC

recommendation of self-quarantine and monitoring of

symptoms for 14 days post exposure. The coronavirus is

thought to spread mainly from person to person. This can

happen between people who are in close contact with one

another. Droplets that are produced when an infected

person coughs or sneezes may land in the mouths or noses

of people who are nearby, or possibly be inhaled into their

lungs.

A person infected with coronavirus — even one with no

symptoms — may emit aerosols when they talk or breathe.

Aerosols are infectious viral particles that can float or drift

around in the air for up to three hours. Another person can

breathe in these aerosols and become infected with the

coronavirus. Therefore, everyone should cover their nose

and mouth when they go out in public.

Coronavirus can also spread from contact with infected

surfaces or objects. For example, a person can get

COVID-19 by touching a surface or object that has the

virus on it and then touching their own mouth, nose, or

possibly their eyes.

Need of Face Shield for everyone:

 Study done by National Institute of Allergy and

Infectious Diseases' Laboratory of Virology in the

Division of Intramural Research in Hamilton; Montana

helps to answer this question. The researchers used a

nebulizer to blow coronaviruses into the air. They found

that infectious viruses could remain in the air for up to

three hours. The results of the study were published in

the New England Journal of Medicine on March 17, 2020.

Face shield offer more effective protection

against coronavirus than masks and should be worn by

the public whenever they leave home, according to US

physician and epidemiologist Michael Edmond.

Edmond, an infectious diseases physician and hospital

epidemiologist in Iowa City, USA, has been advocating

the use of face shields on his blog.

He believes the simple devices are more effective than

masks at protecting the eyes, nose and mouth from Covid-

19 infection and praised efforts by architects and

designers to manufacture the devices as "one of the silver

linings of this pandemic". According to him, every person

should have the face shield.

II. PROPOSED SOLUTION

Our main idea is a sun cap whose shade converts into a

face shield when it detects a presence of human within 6ft

radius from the user and notifies the user. The device has

two main components, the Shield Cap and the remote. We

are using 3 microcontrollers, details of which will be

discussed further.

The Remote:

The remote comprises of an Arduino Uno, a few

interactive components such as LEDs and switches to

control the shield cap.

Shield Cap:

The cap comprises of Arduino Nano and Raspberry Pi,

shield actuator, Pi cam, PIR and some other components.

The remote controls the Shield cap. Switch on switch off

commands and Shield calibration command can be given

through the remote to the cap. The device detects if there

is someone within 6ft behind the user. If there is someone

within 6ft, the device flaps the shield down and warns the

user about the presence of someone 6ft behind him/her.

The device has a Pi cam and Passive Infrared Sensor (PIR

Sensor). Both detect the human motion. Sometimes Pi

cam detects unwanted motion. Therefore, we are using

data from both the sensors to decide if the system. ether it

was human motion or not. The data from both the sensors

is used in AND relation so that it increases the reliability

of the system. Once the motion is detected, the Pi cam

detected actual distance of the subject from the user is

used to decide whether the distance is safe of no. The

vibration motor in the pocket and the LED on the cap tells

the user that the distance is lower than 6 ft. Based on the

intensity of vibration and LED brightness, criticality of

the distance is represented. The LCD shows the

information of motion detection and the distance. A servo

motor is used to flap down the shield. Also, the user has a

switch in his hand which he can use to directly trigger the

shield. A potentiometer is used to Set up the user-defined

rotation angle of servo motor of the shield. Currently we

are implementing only the sensing of human from behind

as lack of resources. Our actual proposal for the final

project is that we will have a servo-actuated platform over

which he Pi cam will be mounted that continuously

rotated and scans for motion in 360 degree.

Bill of Material of Major Components:

Components Price

Arduino UNO 12.99

Arduino NANO 7

Raspberry Pi 61.7

Pi CAM 8.77

Passive Infrared Sensor (PIR

Sensor)
9.95

Servo Motor 12.95

Potentiometer 0

Radio Transmitter nRF24L 6.69

HC05 8.99

Switches 0

LEDs 0

Cap 9.99

Breadboard 4.95

Total 143.98

III. HARWARE PROTOTYPE

Following components are used in the prototype:

The Remote:

1. Arduino UNO

2. Switches

3. LEDs

4. Radio Transmitter nRF24L

The remote controller is based on an Arduino UNO. It is

the only interface between the device and the user. There

are two switches, button A and button B. Buttons A and

B control the functionality of the device as mentioned in

the User Interface and Control section. Button B is the one

that can terminate the device after the current progress and

back to the initial state of the device. Green LED on the

remote indicates the time that user can set the rotation

angle of the shield depending on personal preference.

These two LEDs can simply be replaced by a two-color

LED for the future development. RGB LED represents

the state once the device starts working. Theoretically,

this LED can be removed, as for the final product, it is

unnecessary, while it is able to reflect if the

communication between two microcontrollers has been

set up properly.

Radio Transmitter nRF24L is used on the remote side to

communicate between the Arduino UNO of the remote

controller and Arduino nano of the Cap Module 1 where

the second Radio Transmitter nRF24L module is used.

Depending on which button and when the button is

pressed, the UNO send command to NANO to turn the

system on/off, go into calibration mode so on and so forth.

Cap Module 1:

1. Arduino NANO

2. Servo Motor

3. Potentiometer

4. Radio Transmitter nRF24L

5. HC05

Arduino NANO on the Cap module acts as a slave which

takes command from the Raspberry Pi and Arduino Uno.

The solution to the communication between Arduino Uno

and Arduino Nano has been introduced in the previous

section. For communication between NANO and

Raspberry Pi, we have used HC-05 Bluetooth module.

According to the command from Raspberry Pi, NANO

triggers the servo which actuates the shield and then send

the current state back to Arduino UNO to control the LED

indicator.

Also, according to the command from UNO, NANO starts

performing the calibration process. For calibration we are

using a potentiometer to manipulate the value of angle

between the shield and horizonal. Which means the shield

has user defined actuation for the flap.

Cap Module 2:

1. Raspberry Pi

2. Pi CAM

3. Passive Infrared Sensor (PIR Sensor)

Raspberry Pi, which is integrate with a Pi Camera, is the

master device giving the controlling commands to NANO.

Pi Camera detects the human motion using image

processing. Since there is no RGB-D camera designed for

the current prototype, the distance measuring algorithm

adapts pinhole camera model, which allows Pi camera to

estimate the distance of the human from the camera.

However, machine learning what we used is not accurate

enough. Therefore, we decided to implement PIR sensor

along with the Pi Camera. Date from both used in

manipulating the decision.

Pinhole Camera Model

The triangle similarity goes something like this: Let’s say

we have a marker or object with a known width W. We

then place this marker some distance D from our camera.

We take a picture of our object using our camera and then

measure the apparent width in pixels P. This allows us to

derive the perceived focal length F of our camera:

F = (P x D) / W

For example, let’s say we place a standard piece of 8.5 x

11in piece of paper (horizontally; W = 11) D = 24

inches in front of my camera and take a photo. When we

measure the width of the piece of paper in the image, we

notice that the perceived width of the paper is P = 248

pixels.

My focal length F is then:

F = (248px x 24in) / 11in = 543.45

As we continue to move my camera both closer and

farther away from the object/marker, we can apply the

triangle similarity to determine the distance of the object

to the camera:

D’ = (W x F) / P

Again, to make this more concrete, let’s say we move my

camera 3 ft (or 36 inches) away from my marker and take

a photo of the same piece of paper. Through automatic

image processing we are able to determine that the

perceived width of the piece of paper is now 170 pixels.

Plugging this into the equation we now get:

D’ = (11in x 543.45) / 170 = 35in

Or roughly 36 inches, which is 3 feet.

About PIR sensor:

A passive infrared sensor (PIR sensor) is an

electronic sensor that measures infrared (IR) light

radiating from objects in its field of view. They are most

often used in PIR-based motion detectors. PIR sensors are

commonly used in security alarms and automatic lighting

applications.

PIR sensors detect general movement, but do not give

information on who or what moved. For that purpose,

an active IR sensor is required.

IV. USER INTERFACE AND CONTROL

At the current stage, there is not a communication

constructed between the prototype and mobile device,

which means all components have to be assembled on the

cap. In this case, to optimize the usability, User Interface

has to be designed as simple as possible. Therefore, only

two buttons and a rotary encoder has been designed for

users to activate the system and adjust the setting. The

overall procedure of user interface can be specified as: a)

turn on the power; b) press button A (green LED will be

on, which indicates that the user can start set the rotation

angle of the mask based on personal preferences); c)

rotate the rotary encoder to adjust the setting (the default

rotation angle is 90 degree); d) press button A to activate

the system; e) press button B so that the system will return

to its initial state (Green LED will be off and button B can

be pressed anytime during the progress). Here, referring

to the first figure in Section IV, button A is the push

button on the top while button B is the push button at the

bottom.

Other than UI designed for the product, a closed-loop

control system has been designed for the prototype. When

the system is in progress, it receives signals from button

A, ultrasonic sensor and PIR sensor continuously. The bus

contains these three signals will be pushed to the

controller which is designed to generate the input signal

for the servo motor. The position of the servo motor will

be integrated to the bus which is the input for the

controller. The control system, while it was being

implemented can be considered as a finite state machine,

referring to the design of digital logic circuit.

To be specific, except procedures that has been introduced

above, if button A is either be pushed or a motion within

6 feet has been detected, the mask is expected to be

actuated down. Otherwise, the system will remain in the

current state. Similar strategy has been applied to state 3.

One thing should be noted that, if the state switch is

caused by the state of button A, moving back to state 2

can only be triggered by the state of button A, which has

been realized by introducing a flag, which is either an

input or an output in the state machine.

V. PROGRAM

Remote: Arduino UNO Program:
#include <SPI.h>

#include <nRF24L01.h>

#include <RF24.h>

#define led_pin 2

#define led_pin_1 3

#define button_pin 5

#define button_pin_1 4

#define red_pin 8

#define green_pin 7

#define blue_pin 6

RF24 radio(9, 10); // CE, CSN

const byte address[][6] = {"00001",

"00002"}; //Byte of array

representing the address. This is the

address where we will send the data. This

should be same on the receiving side.

int count = 0;

int count1 = 0;

boolean button_state = 0;

boolean button_state_1 = 0;

boolean last_button = 0;

boolean last_button_1 = 0;

void setup() {

 pinMode(led_pin, OUTPUT);

 pinMode(led_pin_1, OUTPUT);

 pinMode(blue_pin, OUTPUT);

 pinMode(green_pin, OUTPUT);

 pinMode(red_pin, OUTPUT);

 pinMode(button_pin, INPUT);

 pinMode(button_pin_1, INPUT);

 Serial.begin(9600);

 radio.begin();

//Starting the Wireless communication

 radio.openWritingPipe(address[1]);

//Setting the address at which we will

receive the data

 radio.openReadingPipe(1, address[0]);

 radio.setPALevel(RF24_PA_MIN); //You

can set it as minimum or maximum

depending on the distance between the

transmitter and receiver.

 Serial.println("test");

}

void loop()

{

 delay(5);

 radio.stopListening();

 button_edge_detection();

 delay(5);

 radio.startListening();

 if(radio.available())

 {

 char test;

 radio.read(&test, sizeof(test));

 Serial.println(test);

 if(test == '0')

 {

 digitalWrite(led_pin, HIGH);

 digitalWrite(led_pin_1, LOW);

 digitalWrite(blue_pin, 0);

 digitalWrite(red_pin, 0);

 digitalWrite(green_pin, 0);

 }

 else if(test == '1')

 {

 digitalWrite(led_pin_1, HIGH);

 digitalWrite(led_pin, LOW);

 }

 else if(test == '2')

 {

 digitalWrite(led_pin_1, LOW);

 digitalWrite(blue_pin, 0);

 digitalWrite (green_pin, 255);

 digitalWrite (red_pin, 0);

 }

 else if(test == '3')

 {

 //digitalWrite(led_pin_1, LOW);

 digitalWrite(blue_pin, 255);

 digitalWrite (red_pin, 255);

 digitalWrite (green_pin, 0);

 }

 }

}

void button_edge_detection()

{

 button_state = digitalRead(button_pin);

 button_state_1 =

digitalRead(button_pin_1);

 //

 if(button_state == HIGH && last_button

== LOW)

 {

 count ++;

 }

 if(button_state_1 == HIGH &&

last_button_1 == LOW)

 {

 count1 ++;

 }

 if (count % 2 !=0)

 {

 if (count1 % 2 !=0)

 {

 const char text[] = "11";

 //Serial.println(text);

 radio.write(&text, sizeof(text));

//Sending the message to receiver

 }

 else

 {

 const char text[] = "10";

 //Serial.println(text);

 radio.write(&text, sizeof(text));

 }

 }

 else

 {

 if (count1 % 2 !=0)

 {

 const char text[] = "01";

 //Serial.println(text);

 radio.write(&text, sizeof(text));

//Sending the message to receiver

 }

 else

 {

 const char text[] = "00";

 //Serial.println(text);

 radio.write(&text, sizeof(text));

 } //Sending the

message to receiver

 }

 last_button = button_state;

 last_button_1 = button_state_1;

 //Sending the message to receiver

}

Cap Module 1: Arduino NANO Program:
#include <SPI.h>

#include <nRF24L01.h>

#include <RF24.h>

#include <Servo.h>

#include "SoftwareSerial.h"

#define outputA 2

#define outputB 3

#define Servopin 6

#define potpin 7

SoftwareSerial BTserial(5, 4);

RF24 radio(9, 10); // CE, CSN

Servo myservo;

const byte address[][6] = {"00001",

"00002"};

boolean button_state = 0;

int button_last = 1;

int button_1_last = 1;

int button = 0;

int button_1 = 0;

int button_A = 0;

int button_B = 0;

int state = 0;

int count = 0;

int count1 = 0;

int count2 = 0;

int count3 = 0;

int count4 = 0;

int counter = 0;

int val;

int servo_angle = 90;

int flag = 0;

char c = ' ';

unsigned long previousMillis = 0;

void setup() {

 pinMode (outputA,INPUT);

 pinMode (outputB,INPUT);

 Serial.begin(9600);

 radio.begin();

 //Setting the address at which we will

receive the data

 radio.openWritingPipe(address[0]);

 radio.openReadingPipe(1, address[1]);

 radio.setPALevel(RF24_PA_MIN);

//You can set this as minimum or maximum

depending on the distance between the

transmitter and receiver.

 BTserial.begin(38400);

 Serial.println("BTserial started at

38400");

 myservo.attach(Servopin);

 delay(1000);

}

void loop()

{

 delay(5);

 radio.startListening();

 if (radio.available())

//Looking for the data from two buttons

 {

 serialcommunication();

 char text[2] = "";

//Saving the incoming data

 radio.read(&text, sizeof(text));

//Reading the data

 radio.read(&button_state,

sizeof(button_state)); //Reading the

data

 if(text[0] == '1')

 {

 button = 1;

 }

 else if(text[0] == '0')

 {

 button = 0;

 }

 if(text[1] == '1')

 {

 button_1 = 1;

 }

 else if(text[1] == '0')

 {

 button_1 = 0;

 }

 }

 if (button != button_last)

 {

 button_A = 1;

 count++;

 }

 else

 {

 button_A = 0;

 }

 if (button_1 != button_1_last)

 {

 myservo.write(0);

 Serial.println("State Change");

 count1 ++;

 button_B = 1;

 state = 0;

 delay(1000);

 }

 else

 {

 button_B = 0;

 }

 button_last = button;

 button_1_last = button_1;

 switch(state){

 case 0: // initial state

 {

 Serial.println("Initial State\n");

 servo_angle = 0;

 myservo.detach();

 if (button_A == 1)

 {

 Serial.println("Set the position

of the mask...\n");

 myservo.attach(Servopin);

 if (count1 == 1)

 {

 count1 --;

 state = 0;

 Serial.println(count1);

 }

 else

 {

 count1 = 10;

 state = 1;

 count = 1;

 }

 }

 Listen(state);

 break;

 }

 case 1:

 {

 Serial.println("State 1 \n");

 if (count == 1)

 {

 val = analogRead(potpin);

// reads the value of the potentiometer

(value between 0 and 1023)

 val = map(val, 0, 1023, 0, 90);

// scale it to use it with the servo

(value between 0 and 180)

 myservo.write(val);

// sets the servo position according to

the scaled value

 delay(15);

 servo_angle = val;

 }

 else

 {

 state = 6;

 myservo.write(0);

 }

 Listen(state);

 break;

 }

 case 2:

 {

 Serial.print("Case 2");

 if (button_A == 1)

 {

 Serial.println("Mask On...");

 myservo.attach(Servopin);

 myservo.write(servo_angle);

 flag = 1;

 state = 4;

 }

 else if(c == '1')

 {

 Serial.println("Person Behind

Detected!");

 myservo.attach(Servopin);

 myservo.write(servo_angle);

 state = 4;

 }

 Listen(state);

 break;

 }

 case 3:

 {

 if (button_A == 1 && c != '1')

 {

 Serial.println("Button pressed to

lift the mask!");

 myservo.attach(Servopin);

 myservo.write(0);

 flag = 0;

 state = 5;

 previousMillis = millis();

 }

 else if(c == '0' && flag == 0)

 {

 Serial.println("No Person is

Detected Behind!");

 myservo.attach(Servopin);

 myservo.write(0);

 state = 5;

 previousMillis = millis();

 }

 Listen(state);

 break;

 }

 case 4:

 {

 count2 = count2 + 1;

 Serial.println(count2);

 if (count2 > 100)

 {

 state = 3;

 myservo.detach();

 count2 = 0;

 }

 Listen(3);

 break;

 }

 case 5:

 {

 count3 = count3 + 1;

 if (count3 > 100)

 {

 state = 2;

 myservo.detach();

 count3 = 0;

 }

 Listen(2);

 break;

 }

 case 6:

 {

 count4 = count4 + 1;

 if (count4 > 100)

 {

 state = 2;

 myservo.detach();

 count4 = 0;

 }

 Listen(2);

 break;

 }

 }

}

void Listen(int state)

{

 delay(5);

 radio.stopListening();

 Serial.println("state = ");

 Serial.println(state);

 if (state == 0)

 {

 //Serial.println("test = 0");

 const char test = '0';

 radio.write(&test, sizeof(test));

 }

 else if (state == 1)

 {

 const char test = '1';

 //Serial.println("test = 1");

 radio.write(&test, sizeof(test));

 }

 else if (state == 2)

 {

 const char test = '2';

 //Serial.println("test = 1");

 radio.write(&test, sizeof(test));

 }

 else if (state == 3)

 {

 const char test = '3';

 //Serial.println("test = 1");

 radio.write(&test, sizeof(test));

 }

}

void serialcommunication()

{

 if (BTserial.available())

 {

 c = BTserial.read();

 }

 if (c == '1')

 {

 Serial.write("Person Detected\n");

 }

 else

 {

 Serial.write("No Person Detected\n");

 }

}

Cap Module 2: Raspberry Pi program:

from __future__ import print_function

from imutils.object_detection import

non_max_suppression

from imutils import paths

import cv2

import numpy as np

from imutils.video import VideoStream

import imutils

import time

import sys

import serial

import RPi.GPIO as GPIO

print("Start")

bluetooth =

serial.Serial("/dev/rfcomm0", 38400)

print("Connected")

bluetooth.flushInput()

GPIO.setwarnings(False)

GPIO.setmode(GPIO.BCM)

GPIO.setup(24, GPIO.IN)

usingPiCamera = True

Set initial frame size.

frameSize = (320, 240)

cascPath =

"haarcascade_frontalface_default.xml"

faceCascade =

cv2.CascadeClassifier(cascPath)

Initialize mutithreading the video

stream.

vs = VideoStream(src=0,

usePiCamera=usingPiCamera,

resolution=frameSize,

 framerate=32).start()

Allow the camera to warm up.

time.sleep(2.0)

timeCheck = time.time()

while True:

 # Get the next frame.

 motion = GPIO.input(24)

 frame = vs.read()

 gray = cv2.cvtColor(frame,

cv2.COLOR_BGR2GRAY)

 faces =

faceCascade.detectMultiScale(

 gray,

 scaleFactor=1.1,

 minNeighbors=5,

 minSize=(30, 30),

 flags=cv2.CASCADE_SCALE_IMAGE

)

 if motion == 0 and len(faces)==0:

 print ("No Person Detected")

bluetooth.write(str.encode(str(0)))

 else:

 print ("Person Detected")

bluetooth.write(str.encode(str(1)))

 # else:

 #

bluetooth.write(str.encode(str(0)))

 # Draw a rectangle around the faces

for (x, y, w, h) in faces:

cv2.rectangle(frame, (x, y),

(x+w, y+h), (0, 255, 0), 2)

 # Display the resulting frame

 cv2.imshow('Video', frame)

 if cv2.waitKey(1) & 0xFF ==

ord('q'):

 break

When everything is done, release the

capture

video_capture.release()

cv2.destroyAllWindows()

ACKNOWLEDGMENT

We thank professor Kapila and the class of Advanced

Mechatronics, NYU Tandon school of Engineering for

their guidance and suggestions for the project.

FUTURE SCOPE

We hope to get our hands on some more hardware

resources. We propose to have a better hardware

prototype and robust algorithm based on image

processing to scan the human motion and assist social

distancing.

REFERENCES

[1] https://www.health.harvard.edu/diseases-and-

conditions/covid-19-basics

[2] https://www.cdc.gov/coronavirus/2019-

ncov/prevent-getting-sick/social-distancing.html

[3] https://www.who.int/health-

topics/coronavirus#tab=tab_1

[4] https://coronavirus.jhu.edu/map.html

https://www.health.harvard.edu/diseases-and-conditions/covid-19-basics
https://www.health.harvard.edu/diseases-and-conditions/covid-19-basics
https://www.cdc.gov/coronavirus/2019-ncov/prevent-getting-sick/social-distancing.html
https://www.cdc.gov/coronavirus/2019-ncov/prevent-getting-sick/social-distancing.html
https://www.who.int/health-topics/coronavirus#tab=tab_1
https://www.who.int/health-topics/coronavirus#tab=tab_1
https://coronavirus.jhu.edu/map.html

