Social Distancing Sheild for COVID-19 — 2.0

Modeling and Designing

Manthan Pawar
New York University,
Tandon School of Engineering
Brooklyn, New York
mvp321@nyu.edu

Abstract— Novel Coronavirus disease 2019, known as
COVID-19 hit the humanity om global scale and was
announced as a global pandemic by World Health
Organization (WHO). The coronavirus is thought to
spread mainly from person to person. This can happen
between people who are in close contact with one
another. Droplets that are produced when an infected
person coughs or sneezes may land in the mouths or
noses of people who are nearby, or possibly be inhaled
into their lungs. Understanding how the virus spreads
reinforces the importance of social distancing and
other health-promoting behaviors. Because COVID-
19 spreads from person to person, reducing the ways
people come in close contact with each other is
essential. According to Centers for Disease Control
and Prevention (CDC) guidelines, to practice social or
physical distancing, you should stay at least 6 feet (2
meters) from other people. In these dark times,
everyone needs wants to get out, and the key to start
the economy back again is keeping those social
distancing norms and work simultaneously. Therefore,
we are proposing a prototype of a device which will
help people keeping these social distancing norms. The
device will notify the user if there is someone inside the
6ft radius from the person wearing it. That way the
user can know that he/she needs to get distant from
someone. The device is cap which can convert itself
into a face shield, one of the most important Personal
Protective Equipment (PPE) used against the fight of
coronavirus, when a person is detected inside the
radius of 6 ft from the person wearing it.

Keywords— COVID-19, Social Distancing, Centers
for Disease Control and Prevention (CDC), Pandemic,
Restart Economy, Personal Protective Equipment (PPE),
Face Sheild, Cap.

Zewen Wu
New York University
Tandon School of Engineering
Brooklyn, New York
zw2420@nyu.edu

I. INTRODUCTION

Coronaviruses are an extremely common cause of colds
and other upper respiratory infections. COVID-19, short
for "coronavirus disease 2019," is the official name given
by the World Health Organization to the disease caused
by this newly identified coronavirus. People of any age
should take preventive health measures like frequent hand
washing, physical distancing, and wearing a mask when
going out in public, to help protect themselves and to
reduce the chances of spreading the infection to others.
Recently published research found that on average, the
time from exposure to symptom onset (known as the
incubation period) is about five to six days. However,
studies have shown that symptoms could appear as soon
as three days after exposure to as long as 13 days later.
These findings continue to support the CDC
recommendation of self-quarantine and monitoring of
symptoms for 14 days post exposure. The coronavirus is
thought to spread mainly from person to person. This can
happen between people who are in close contact with one
another. Droplets that are produced when an infected
person coughs or sneezes may land in the mouths or noses
of people who are nearby, or possibly be inhaled into their
lungs.

A person infected with coronavirus — even one with no
symptoms — may emit aerosols when they talk or breathe.
Aerosols are infectious viral particles that can float or drift

around in the air for up to three hours. Another person can
breathe in these aerosols and become infected with the
coronavirus. Therefore, everyone should cover their nose
and mouth when they go out in public.

Coronavirus can also spread from contact with infected
surfaces or objects. For example, a person can get
COVID-19 by touching a surface or object that has the
virus on it and then touching their own mouth, nose, or
possibly their eyes.

Need of Face Shield for everyone:

Study done by National Institute of Allergy and
Infectious Diseases' Laboratory of Virology in the
Division of Intramural Research in Hamilton; Montana
helps to answer this question. The researchers used a
nebulizer to blow coronaviruses into the air. They found
that infectious viruses could remain in the air for up to
three hours. The results of the study were published in

the New England Journal of Medicine on March 17, 2020.

shield

Face offer more effective protection
against coronavirus than masks and should be worn by
the public whenever they leave home, according to US
physician and epidemiologist Michael Edmond.
Edmond, an infectious diseases physician and hospital
epidemiologist in lowa City, USA, has been advocating
the use of face shields on his blog.

He believes the simple devices are more effective than
masks at protecting the eyes, nose and mouth from Covid-
19 infection and praised efforts by architects and
designers to manufacture the devices as "one of the silver
linings of this pandemic”. According to him, every person
should have the face shield.

1. PROPOSED SOLUTION

Our main idea is a sun cap whose shade converts into a
face shield when it detects a presence of human within 6ft
radius from the user and notifies the user. The device has
two main components, the Shield Cap and the remote. We
are using 3 microcontrollers, details of which will be
discussed further.

The Remote:

The remote comprises of an Arduino Uno, a few
interactive components such as LEDs and switches to
control the shield cap.

Shield Cap:
The cap comprises of Arduino Nano and Raspberry Pi,
shield actuator, Pi cam, PIR and some other components.

The remote controls the Shield cap. Switch on switch off
commands and Shield calibration command can be given
through the remote to the cap. The device detects if there
is someone within 6ft behind the user. If there is someone
within 6ft, the device flaps the shield down and warns the
user about the presence of someone 6ft behind him/her.
The device has a Pi cam and Passive Infrared Sensor (PIR
Sensor). Both detect the human motion. Sometimes Pi
cam detects unwanted motion. Therefore, we are using
data from both the sensors to decide if the system. ether it
was human motion or not. The data from both the sensors
is used in AND relation so that it increases the reliability
of the system. Once the motion is detected, the Pi cam
detected actual distance of the subject from the user is
used to decide whether the distance is safe of no. The
vibration motor in the pocket and the LED on the cap tells
the user that the distance is lower than 6 ft. Based on the
intensity of vibration and LED brightness, criticality of
the distance is represented. The LCD shows the
information of motion detection and the distance. A servo
motor is used to flap down the shield. Also, the user has a
switch in his hand which he can use to directly trigger the
shield. A potentiometer is used to Set up the user-defined
rotation angle of servo motor of the shield. Currently we
are implementing only the sensing of human from behind
as lack of resources. Our actual proposal for the final
project is that we will have a servo-actuated platform over
which he Pi cam will be mounted that continuously
rotated and scans for motion in 360 degree.

Bill of Material of Major Components:

Price
12.99

Components
Arduino UNO

Arduino NANO 7
Raspberry Pi 61.7
Pi CAM 8.77
Passive Infrared Sensor (PIR

Sensor) 9.95
Servo Motor 12.95
Potentiometer 0
Radio Transmitter nRF24L 6.69
HC05 8.99
Switches 0
LEDs 0
Cap 9.99
Breadboard 4.95
Total 143.98

I1l. HARWARE PROTOTYPE

Following components are used in the prototype:

NYU
? >

The Remote:
1. Arduino UNO
2. Switches
3. LEDs

4. Radio Transmitter nRF24L

The remote controller is based on an Arduino UNO. It is
the only interface between the device and the user. There
are two switches, button A and button B. Buttons A and
B control the functionality of the device as mentioned in
the User Interface and Control section. Button B is the one
that can terminate the device after the current progress and
back to the initial state of the device. Green LED on the
remote indicates the time that user can set the rotation
angle of the shield depending on personal preference.
These two LEDs can simply be replaced by a two-color
LED for the future development. RGB LED represents
the state once the device starts working. Theoretically,
this LED can be removed, as for the final product, it is
unnecessary, while it is able to reflect if the
communication between two microcontrollers has been
set up properly.

Radio Transmitter nRF24L is used on the remote side to
communicate between the Arduino UNO of the remote
controller and Arduino nano of the Cap Module 1 where
the second Radio Transmitter nRF24L module is used.

Depending on which button and when the button is
pressed, the UNO send command to NANO to turn the
system on/off, go into calibration mode so on and so forth.

Cap Module 1:

Arduino NANO

Servo Motor
Potentiometer

Radio Transmitter nRF24L

agrwbdE

HCO05

Arduino NANO on the Cap module acts as a slave which
takes command from the Raspberry Pi and Arduino Uno.
The solution to the communication between Arduino Uno
and Arduino Nano has been introduced in the previous
section. For communication between NANO and
Raspberry Pi, we have used HC-05 Bluetooth module.
According to the command from Raspberry Pi, NANO
triggers the servo which actuates the shield and then send
the current state back to Arduino UNO to control the LED
indicator.

Also, according to the command from UNO, NANO starts
performing the calibration process. For calibration we are
using a potentiometer to manipulate the value of angle
between the shield and horizonal. Which means the shield
has user defined actuation for the flap.

Cap Module 2:
1. Raspberry Pi
2. PiCAM

3. Passive Infrared Sensor (PIR Sensor)

Raspberry Pi, which is integrate with a Pi Camera, is the

master device giving the controlling commands to NANO.

Pi Camera detects the human motion using image
processing. Since there is no RGB-D camera designed for
the current prototype, the distance measuring algorithm
adapts pinhole camera model, which allows Pi camera to
estimate the distance of the human from the camera.
However, machine learning what we used is not accurate
enough. Therefore, we decided to implement PIR sensor
along with the Pi Camera. Date from both used in
manipulating the decision.

Pinhole Camera Model

f (focal length)

(a)

M o, Oy X X3

i Va P+ x,? :

X,

object distance = focal length x physical size + measured size
The triangle similarity goes something like this: Let’s say
we have a marker or object with a known width W. We
then place this marker some distance D from our camera.
We take a picture of our object using our camera and then
measure the apparent width in pixels P. This allows us to
derive the perceived focal length F of our camera:
F=(Px D)/W

For example, let’s say we place a standard piece of 8.5 x
11in piece of paper (horizontally; W = 11)D =24
inches in front of my camera and take a photo. When we
measure the width of the piece of paper in the image, we
notice that the perceived width of the paper is P = 248
pixels.

My focal length F is then:

F = (248px x 24in) / 11in = 543.45

As we continue to move my camera both closer and
farther away from the object/marker, we can apply the
triangle similarity to determine the distance of the object
to the camera:

D’'=(WxF)/P

Again, to make this more concrete, let’s say we move my
camera 3 ft (or 36 inches) away from my marker and take
a photo of the same piece of paper. Through automatic
image processing we are able to determine that the
perceived width of the piece of paper is now 170 pixels.
Plugging this into the equation we now get:

D’ = (11in x 543.45) / 170 = 35in
Or roughly 36 inches, which is 3 feet.

About PIR sensor:

A passive infrared sensor (PIR sensor) is an
electronic sensor that ~ measures infrared (IR) light
radiating from objects in its field of view. They are most
often used in PIR-based motion detectors. PIR sensors are
commonly used in security alarms and automatic lighting
applications.

PIR sensors detect general movement, but do not give
information on who or what moved. For that purpose,
an active IR sensor is required.

Power (3v)
Output
Ground —l

Time Delay
Adjust

Distance

Adjust
Time Delay Adjust
Sensitivty Adjust
57

IV. USER INTERFACE AND CONTROL

At the current stage, there is not a communication
constructed between the prototype and mobile device,
which means all components have to be assembled on the
cap. In this case, to optimize the usability, User Interface
has to be designed as simple as possible. Therefore, only

two buttons and a rotary encoder has been designed for
users to activate the system and adjust the setting. The
overall procedure of user interface can be specified as: a)
turn on the power; b) press button A (green LED will be
on, which indicates that the user can start set the rotation
angle of the mask based on personal preferences); c)
rotate the rotary encoder to adjust the setting (the default
rotation angle is 90 degree); d) press button A to activate
the system; e) press button B so that the system will return
to its initial state (Green LED will be off and button B can
be pressed anytime during the progress). Here, referring
to the first figure in Section IV, button A is the push
button on the top while button B is the push button at the
bottom.

Other than Ul designed for the product, a closed-loop
control system has been designed for the prototype. When
the system is in progress, it receives signals from button
A, ultrasonic sensor and PIR sensor continuously. The bus
contains these three signals will be pushed to the
controller which is designed to generate the input signal
for the servo motor. The position of the servo motor will
be integrated to the bus which is the input for the
controller. The control system, while it was being
implemented can be considered as a finite state machine,
referring to the design of digital logic circuit.

To be specific, except procedures that has been introduced
above, if button A is either be pushed or a motion within
6 feet has been detected, the mask is expected to be
actuated down. Otherwise, the system will remain in the
current state. Similar strategy has been applied to state 3.
One thing should be noted that, if the state switch is
caused by the state of button A, moving back to state 2
can only be triggered by the state of button A, which has
been realized by introducing a flag, which is either an
input or an output in the state machine.

PIR =1 and US <200/ flag = 0 and Servo Actuated or
Butien A = 0 o
Bution A= 1/ flag = | and Servo Actisted

PIR=1or

BIR = 0 a0 US > 200/ Servo Actuatad B - 0 US <300

Button A = 1 and flag = 1/ flag = 0 and Servo Actuated

V. PROGRAM

Remote: Arduino UNO Program:
#include <SPI.h>

#include <nRF24L01.h>
#include <RF24.h>

#define led pin 2
#define led pin 1 3
#define button pin 5
#define button pin 1 4
#define red pin 8
#define green pin 7
#define blue pin 6

RF24 radio(9, 10); // CE, CSN

const byte address[][6] = {"00001",
"00002"}; //Byte of array
representing the address. This is the
address where we will send the data. This
should be same on the receiving side.

int count = 0;

int countl = 0;
boolean button state =
boolean button state 1
boolean last button =
boolean last button 1

0;
= 0;
0;

void setup() {
pinMode (led pin, OUTPUT) ;
pinMode (led pin 1, OUTPUT) ;
pinMode (blue pin, OUTPUT) ;
pinMode (green pin, OUTPUT) ;
pinMode (red pin, OUTPUT) :;
pinMode (button pin, INPUT);
pinMode (button pin 1, INPUT);
Serial.begin (9600) ;
radio.begin();

//Starting the Wireless communication
radio.openWritingPipe (address[1]);
//Setting the address at which we will

receive the data
radio.openReadingPipe (1, address[0]);
radio.setPALevel (RF24 PA MIN); //You
can set it as minimum or maximum
depending on the distance between the
transmitter and receiver.
Serial.println("test");

}

void loop ()

{
delay(5);
radio.stopListening() ;
button edge detection();
delay(5);
radio.startListening () ;
if (radio.available())
{

char test;

radio.read (&test, sizeof (test)):;

Serial.println(test);

if(test == '0")

{
digitalWrite(led pin, HIGH);
digitalWrite(led pin 1, LOW);
digitalWrite (blue pin, 0);
digitalWrite (red pin, 0);
digitalWrite(green pin, 0);

}

else if(test == '1")

{
digitalWrite(led pin 1, HIGH);
digitalWrite(led pin, LOW);

}

else if(test == '2")

{
digitalWrite(led pin 1, LOW);
digitalWrite (blue pin, 0);
digitalWrite (green pin, 255);
digitalWrite (red pin, 0);

}

else if(test == '3")

{
//digitalWrite (led pin 1, LOW);
digitalWrite (blue pin, 255);
digitalWrite (red pin, 255);
digitalWrite (green pin, O0);

void button edge detection()
{
button state = digitalRead(button pin);
button state 1 =
digitalRead (button pin 1);
!/
if (button state == HIGH && last button
== LOW)
{
count ++;
}
if (button state 1 == HIGH &&
last button 1 == LOW)
{
countl ++;

}

if (count % 2 !=0)
{
if (countl % 2 !=0)
{
const char text[] = "11";
//Serial.println (text);
radio.write (&text, sizeof (text)):;
//Sending the message to receiver

}

else
{
const char text[] = "10";
//Serial.println (text);
radio.write (&text, sizeof (text)):;
}
}
else
{
if (countl % 2 !=0)
{
const char text[] = "01";
//Serial.println (text);
radio.write (&text, sizeof (text)):;
//Sending the message to receiver
}
else
{
const char text[] = "00";
//Serial.println (text);
radio.write (&text, sizeof (text)):;
} //Sending the
message to receiver
}
last button = button state;
last button 1 = button state 1;
//Sending the message to receiver
}
Cap Module 1: Arduino NANO Program:
#include <SPI.h>
#include <nRF24L01.h>
#include <RF24.h>
#include <Servo.h>
#include "SoftwareSerial.h"

#define outputA 2
#define outputB 3
#define Servopin 6
#define potpin 7

SoftwareSerial BTserial (5, 4);
RF24 radio(9, 10); // CE, CSN

Servo myservo;

const byte address[][6] = {"00001",
"00002"};

boolean button state = 0;

int button last = 1;

int button 1 last = 1;

int button = 0;

int button 1 = 0;

int button A = 0;

int button B 0;

int state
int count = 0;
int countl = 0;

0;
0

int count2 = 0;

int count3 = 0;

int count4 = 0;

int counter = 0;

int wval;

int servo_angle = 90;

int flag = 0;

char ¢ ="' ';

unsigned long previousMillis = 0;
void setup () {

pinMode (outputA,INPUT) ;
pinMode (outputB, INPUT) ;
Serial.begin (9600);
radio.begin () ;
//Setting the address at which we will
receive the data
radio.openWritingPipe (address[0]);
radio.openReadingPipe (1, address[1l]);
radio.setPALevel (RF24 PA MIN) ;
//You can set this as minimum or maximum
depending on the distance between the
transmitter and receiver.
BTserial.begin (38400);
Serial.println("BTserial started at
38400") ;
myservo.attach (Servopin) ;
delay (1000) ;
}
void loop ()
{
delay (5);
radio.startListening () ;
if (radio.available())
//Looking for the data from two buttons
{
serialcommunication () ;
char text([2] = "";
//Saving the incoming data
radio.read (&text, sizeof (text)):;
//Reading the data
radio.read (&button state,
sizeof (button state)); //Reading the

data
if (text[0] == "1")
{ button = 1;
ilse if (text[0] == '0")
{ button = 0;
if(text[l] == 11")
{ button 1 = 1;
;lse if (text[1l] == '0")

{

button 1 = 0;

}
}
if (button != button last)
{

button A = 1;

count++;
}
else
{

button A
}
if (button 1 != button 1 last)
{

myservo.write (0) ;

0;

Serial.println ("State Change");

countl ++;
button B = 1;
state = 0;
delay (1000) ;
}
else
{
button B = 0;
}
button last = button;
button 1 last = button 1;
switch (state) {
case 0: // initial state

{

Serial.println("Initial State\n");

servo_angle = 0;
myservo.detach () ;
if (button A == 1)
{

Serial.println("Set the position

of the mask...\n");
myservo.attach (Servopin) ;

if (countl == 1)
{
countl --;
state = 0;

Serial.println (countl) ;
}
else
{
countl = 10;
state = 1;
count = 1;
}
}
Listen(state);
break;
}
case 1:

{

Serial.println("State 1 \n");

if (count == 1)

{
val = analogRead (potpin);

// reads the value of the potentiometer

(value between 0 and 1023)

val = map(val, 0, 1023, 0, 90);

// scale it to use it with the servo
(value between 0 and 180)
myservo.write (val);

// sets the servo position according to

the scaled value
delay (15);
servo_angle = val;
}
else
{
state = 6;
myservo.write (0);
}
Listen(state);
break;
}
case 2:
{
Serial.print ("Case 2");
if (button A == 1)
{
Serial.println("Mask On...");
myservo.attach (Servopin) ;
myservo.write(servo_ angle);
flag = 1;
state = 4;
}
else if(c == '1")
{
Serial.println ("Person Behind
Detected!"™);
myservo.attach (Servopin) ;
myservo.write(servo_ angle);
state = 4;
}
Listen(state);
break;
}
case 3:
{
if (button A == 1 && c != "'1")
{

Serial.println ("Button pressed to

1lift the mask!");
myservo.attach (Servopin) ;
myservo.write (0);
flag = 0;
state = 5;
previousMillis = millis();
}
else if(c == '0' && flag == 0)
{

Serial.println ("No Person is
Detected Behind!");
myservo.attach (Servopin) ;
myservo.write (0) ;
state = 5;
previousMillis = millis();
}
Listen(state);
break;
}
case 4:
{
count?2 = count2 + 1;
Serial.println (count2);
if (count2 > 100)
{

state = 3;
myservo.detach () ;
count2 = 0;

}
Listen(3);
break;
}
case 5:
{
count3 = count3 + 1;
if (count3 > 100)
{

state = 2;
myservo.detach () ;
count3 = 0;

}
Listen(2);
break;
}
case 6:
{
count4 = countd4 + 1;
if (countd4 > 100)
{

state = 2;
myservo.detach () ;
count4 = 0;

}
Listen(2);
break;

void Listen(int state)

{
delay(5);
radio.stopListening() ;
Serial.println("state = ");
Serial.println(state);
if (state == 0)

{
//Serial.println("test = 0");
const char test = '0';
radio.write (&test, sizeof (test));

}

else 1f (state == 1)

{
const char test = '1';
//Serial.println("test = 1");
radio.write (&test, sizeof (test)):;

}

else 1f (state == 2)

{
const char test = '2"';
//Serial.println("test = 1");
radio.write (&test, sizeof (test)):;

}

else if (state == 3)

{
const char test = '3';
//Serial.println("test = 1");
radio.write (&test, sizeof (test)):;

}

void serialcommunication ()
{
if (BTserial.available())
{
c = BTserial.read();
}
if (¢ == '1")
{
Serial.write ("Person Detected\n");

}
else
{
Serial.write ("No Person Detected\n");
}
}

Cap Module 2: Raspberry Pi program:

from future import print function
from imutils.object detection import
non _max_ suppression

from imutils import paths

import cv2

import numpy as np

from imutils.video import VideoStream
import imutils

import time

import sys

import serial

import RPi.GPIO as GPIO

print ("Start")

bluetooth =
serial.Serial ("/dev/rfcommQ",
print ("Connected")
bluetooth.flushInput ()
GPIO.setwarnings (False)
GPIO.setmode (GPIO.BCM)
GPIO.setup (24, GPIO.IN)
usingPiCamera = True

Set initial frame size.
frameSize = (320, 240)
cascPath =

"haarcascade frontalface default.xml"

faceCascade =

38400)

cv2.CascadeClassifier (cascPath)

Initialize mutithreading the wvideo

stream.

vs = VideoStream(src=0,

usePiCamera=usingPiCamera,

resolution=frameSize,
framerate=32) .start ()

Allow the camera to warm up.

time.sleep(2.0)

timeCheck = time.time ()

while True:
Get the next frame.
motion = GPIO.input (24)
frame = vs.read()

gray = cv2.cvtColor (frame,
cv2.COLOR _BGR2GRAY)

faces =
faceCascade.detectMultiScale (
gray,
scaleFactor=1.1,
minNeighbors=5,
minSize= (30, 30),

flags=cv2.CASCADE SCALE IMAGE

)

if motion == 0 and len(faces)==
print ("No Person Detected")

bluetooth.write (str.encode (str (0)))

else:

print ("Person Detected")

bluetooth.write (str.encode(str(1l)))

else:
#

bluetooth.write (str.encode(str(0)))

Draw a rectangle around the faces

for (x, y, w, h) in faces:
cv2.rectangle (frame, (x, Vy),
(x+w, y+h), (0, 255, 0), 2)

Display the resulting frame
cv2.imshow ('Video', frame)

if cv2.waitKey(l) & OxXFF ==
ord('qg'"):
break

When everything is done, release the
capture

video capture.release()
cv2.destroyAllWindows ()

ACKNOWLEDGMENT

We thank professor Kapila and the class of Advanced
Mechatronics, NYU Tandon school of Engineering for
their guidance and suggestions for the project.

FUTURE ScoPE

We hope to get our hands on some more hardware
resources. We propose to have a better hardware
prototype and robust algorithm based on image
processing to scan the human motion and assist social
distancing.

REFERENCES

[11 https://www.health.harvard.edu/diseases-and-
conditions/covid-19-basics

[21 https://www.cdc.gov/coronavirus/2019-
ncov/prevent-getting-sick/social-distancing.html

31 https://www.who.int/health-
topics/coronavirus#tab=tab 1

(41 https://coronavirus.jhu.edu/map.html

https://www.health.harvard.edu/diseases-and-conditions/covid-19-basics
https://www.health.harvard.edu/diseases-and-conditions/covid-19-basics
https://www.cdc.gov/coronavirus/2019-ncov/prevent-getting-sick/social-distancing.html
https://www.cdc.gov/coronavirus/2019-ncov/prevent-getting-sick/social-distancing.html
https://www.who.int/health-topics/coronavirus#tab=tab_1
https://www.who.int/health-topics/coronavirus#tab=tab_1
https://coronavirus.jhu.edu/map.html

