ME-GY 6933
Advanced

Mechatronics

Mohit Lala
Shweta Vaviya

TERM PROJECT

“Swarm robots for environment mapping”

A swarm of two mobile robots which localizes
itself in an unknown environment and

generates an approximate map using various
sensors and algorithms.

Applications

* Mapping of unknown environment
and locating land mines during
military operations.

: ;|
) Survei”ance n dangerous and [ﬂhﬂlc amfctalmlellaence‘_u" home aulomation
inaccessible places. - o pueescolll
% mmgmce fobofics SU% m e c h al[0 " I cs -:5
+ Resoue search operations during CONifOl eNgINgBNNg £ & s

disaster management. & mroeivi = 8 MECHANIC| ENGINCRIING ot

£ (ehabiftation robotics =

| ol systems MEMS
iy (] puter BNYINGEIING ™ i

» Sensor specific application such as mathingleaming - hummmmm SERSO
; emskel&luns "Solion conlrol
using the system to sense the levels nanoobolcs S "'"W“‘fﬂ'ﬂ'“hﬂﬂ'a”'“"'“”“3'33["33' B"gmeennﬂ
of toxic gases, etc. - slalonzn __ enediedsysens

« For assistance in mining operations.

Fall-2016 3

Our Approach

* Our approach towards this project was structured based on the curriculum structure for
Advanced Mechatronics course

The first prototype generated 2D maps of an environment using a wall-follower algorithm
implemented on Arduino Uno integrated with range sensors

The second prototype was then modeled on a Parallax Propeller board where a swarm of two
robots was employed to navigate an unknown environment using Wavefront and BFS
algorithms

The final prototype generates a map of the environment on a Rapsberry Pi 3 board which
effectively communicates with the robots to obtain map and robot localization data from the
propeller board mounted on each robot

Fall-2016 4

Hardware

« Development boards:
v'2 x Propeller board of education
v'1 x Raspberry Pi 3

« 2 x Ping Sensors

* 4 x Optical encoders

3 x Xbee Series 1 modules
« 4 x6V DC Motors

« 2 X L293D Motor drivers

« 4 x5V batteries

(PARALLAX f)

www.parallax.com

Fall-2016 5

System Block diagram

Raspberry Pi
(User Station) \

{

“Robot 1

Fall-2016 6

Detailed Block Diagram

&:all-2016 / 7

Robots

Fall-2016 8

System Features

» Algorithm and the code developed are generic enough to be used with different systems
with similar development board functionalities

» The code is modular and robust enough to be easily manipulated for hardware
connections and additions

» The number of robots can be increased with minimalistic variable initialization changes

» System generates simulation of the robot motion on the serial terminal which is helpful
in debugging the system

» Can broadcast localization information with respect to the map, @
to any computer or other robot in its network with
proper configuration

» Once the map is complete the robots can be queried to
autonomously reach a specific location or user defined location . @

Fall-2016 9

On-board Algorithm for each Robot

Go to a location finding the shortest path()

Receive Input for Goal Location

Generate grid of known environment

Assign value to each cell of the grid map using Wavefront algorithm
Find shortest path using Breadth-first search (BFS)

Manipulate robot motion as per the deduced path obtained by BFS

YV V V V V VY

Using appropriate feedback sensors, track the location of the robot

Fall-2016 10

On-board Algorithm for each Robot

Generate Map()

» Divide the given environment limits in grids
Navigate to each grid and sweep the whole environment
Send Robot location to Raspberry Pi via Xbee

If obstacle/objects are detected, update the map

YV V V V

send object location over to Raspberry Pi

Fall-2016 11

Traversing the Map [Logic]

»The Robot divides the given area to be mapped in grids
» Below the map sweeping logic for a 4 x 8 grid

R1 R2
R1 = Robot1
R2 = Robot2

Fall-2016 12

Generating Map

WG W R
G RIJ G
G R
R
Start traversing About to encounter obstacle Obstacle/object detected
\ 4
W W W
R
W W G
-> Robot R R
G -> Robot Goal Return to Start point) . .
W -> Obstacle eturn to start poin All grids traversed Continue traversing

Fall-2016 13

Find Shortest Path

Breadth-first search (BFS) is an algorithm for traversing or searching tree or graph data structures. It starts at the

tree root (or some arbitrary node of a graph, sometimes referred to as a 'search key') and explores the neighbor nodes

first, before moving to the next level neighbors.

We utilize the BFS algorithm to fill the grid of the map like a Wavefront until the robot is found on the map and this helps the
Robot to determine best path to get to the Goal location.

G G |2 3 |4 G |2 3 |4
W W |W wilw w13 |4 [5 W W W |3 |4 |5
7 |6 5 |4 5 6 7 6 5 |4 5 6
—) —)
W W W 8 |7 |6 |wW [w |w 8 |7 |6 |w |[w |w
8 7 8 8 7 8
R 8 |R 8 |R
-> Robot
G -> Robot Goal
W -> Obstacle

Fall-2016 14

Localization of Robot

Localization of the robot:;

; ot -
@
-
@ @
Q -> Robot “
-> Goal G

Fall-2016 15

Simulation OUTPUT on Serial Terminal

= SimplelDE Terminal X

\= SimplelDE Terminal >

Adding Goal:
; 0

Robot movedGoal Reached
4 0

30

Starting Wavefront

oo oo o

coo
cocoWo

Unpropagation Complete:
Adding Geoal:
00

inished Wavefront:

n

ocpWooo
cocoocoo
coomWwNm
coocsm NG
cooWwn

Finished Wavefront: Robot moved
000 Wall detected
000 Unpropagation Complete:
000 Adding Goal:
R OO 0G0
G 0O 000
000 0 R
0 0
Robot move dl 0 0
[i] (]
Clear Options Disable 115200 ~ | COMG [Echo On oK Clear Options Disable 115200 v COMG [~] Echo On oK
Robot (R) traversing the environment Wall (W) detected and Robot (R) travelling

Towards Goal (G)

Fall-2016 16

Map OUTPUT on R-PI

10 T T T T T T T 10

plots are generated by 8 le
Robot 2 for Obstacles/Objects

4\ Ll e . Blue plots are generated by
c o s e s e Robot 2
U/ e e e o -
Green plots are generated by—""_| Red plots are generated by
Robot 1 for Obstacles/Objects - I Robot 1
2o0+ “E@

Grid Map generated on Raspberry Pi

Fall-2016 17

Improvements over Previous Prototypes

» Introduced -> Raspberry Pi
board to the system

» Improvised -> an update
algorithm for Mapping

» Improved -> performance for
navigation of robots

» Better communication between
the robots and the user station

Fall-2016 18

>

What We Learnt

Hands-on experience with Propeller Board of Education and Raspberry Pi 3 board and their on-board
functionalities

Revision of C, C++ programming concepts with use of Simple IDE

Research of available recursive algorithms and data structures for robot navigation
Studying the simpletools.h, fdserial.h, serial.h, simpletext.h, ping.h, SharpIR.h libraries
Configuring Xbee modules to work in a multipoint network

API and AT modes and use of Xbee module as a co-ordinator, end device and router

Experience with and programming of wheel encoders, selecting motor drivers and motors and research of
IMU sensors to get feedback from a mobile robot

Hands-on experience of working with Python, MATLAB, OpenCV, VNCServer

Fall-2016 19

Future Scope and Limitations

(b e
SRR
> Improve feedback S = g
-> Employing IMU sensor and Rotary encoders cope e

instead of optical encoders to keep a track of odometry of
the Robot

» Better mapping techniques
-> Employing algorithms and controllers to generate more accurate maps in
both 2D and 3D

» Improved Control system
-> Employing the use of filters and controllers in our system model to

establish error correction introduced due to environment
Fall-2016 20

Tips & Tricks Employed

» Multi-core functionality of the propeller boards can be used as a substitute for interrupts

» Local variables can be shared over multiple tabs by defining them as ‘extern’

» To get readings from optical encoder while turning, make the wheel move with a PWM value
high enough so it doesn’t slip and low enough so the optical encoder doesn’t skip a count

» Choose/Fix a castor in such a way that it doesn’t end up leading or influencing the robot
direction

» For multipoint communication over Xbee if you do not want to configure the Xbee modules in
your code, using AT commands, every time you want to send data to a different address,
configure the Xbee with DH = 0x00 and DL = OxFFF which makes it send data to all modules in
the same network

» Motors receiving power from the development boards may cause the board to reset every time
a lot of current is drawn and hence a different power supply or a supply strong enoyor both

the development board and motors should be used

Fall-2016 21

References

http://www.societyofrobots.com/

http://learn.parallax.com/tutorials/

https://www.sparkfun.com/datasheets/Wireless/Zigbee/XBee-Datasheet.pdf

https://www.stackoverflow.com

CLRS - Introduction to Algorithms

Class notes on Propeller Intro Lec5 To 8

YV V V V V V V

Class notes on Raspberry Pi-Intro-Lec 11 to 12

Fall-2016 22

