' {$STAMP BS2}
' {$SPBASIC 2.5}

'------------------VARS--------------'
widthf VAR Word 'Forward Sensor Range
widthl VAR Word 'Left Sensor Range
widthr VAR Word 'Right Sensor Range
x VAR Word 'Used for loops
milk VAR Bit 'Button State
meat VAR Bit 'Button State
bread VAR Bit 'Button State

'------------------CONS--------------'
front_lim CON 400 'For Sensor Range
right_angle CON 55 'Right Angle Pulse Number for the Servos

'------------------MAIN--------------'

GOSUB Button_Input
GOSUB Coordinator

'------------------SUBS--------------'

Button_Input:
DO WHILE (IN9 <> 0)
LOOP
milk = 0 : meat = 0 : bread = 0

DO WHILE (IN1 <> 0)
 IF (IN5 = 0) THEN
 milk = 1
 ELSEIF (IN4 = 0) THEN
 meat = 1
 ELSEIF (IN2 = 0) THEN
 bread = 1
 ENDIF
LOOP
RETURN

Coordinator:
 IF (milk = 1 AND meat = 0 AND bread = 0) THEN
 GOSUB case1
 ELSEIF (milk = 0 AND meat = 1 AND bread = 0) THEN
 GOSUB case2
 ELSEIF (milk = 0 AND meat = 0 AND bread = 1) THEN
 GOSUB case3
 ELSEIF (milk = 1 AND meat = 1 AND bread = 0) THEN
 GOSUB case1_2
 ELSEIF (milk = 1 AND meat = 0 AND bread = 1) THEN
 GOSUB case1_3

ELSEIF (milk = 0 AND meat = 1 AND bread = 1) THEN
 GOSUB case2_3
ELSEIF (milk = 1 AND meat = 1 AND bread = 1) THEN
 GOSUB case1_2_3
ENDIF
RETURN

case1:
 GOSUB forward
 GOSUB left
 GOSUB forward
RETURN

case2:
 GOSUB forward
 GOSUB forward
 GOSUB left
 GOSUB forward
RETURN

case3:
 GOSUB forward
 GOSUB forward
 GOSUB forward
 GOSUB forward
 GOSUB left
 GOSUB forward
RETURN

case1_2:
 GOSUB forward
 GOSUB left
 GOSUB forward
 DO WHILE (IN1 <> 0)
 LOOP
 GOSUB forward
 GOSUB right
 GOSUB forward
 GOSUB forward
 GOSUB right
 GOSUB forward
 RETURN

case1_3:
 GOSUB forward
 GOSUB left
 GOSUB forward
 DO WHILE (IN1 <> 0)
 LOOP
GOSUB forward
GOSUB right
GOSUB forward
GOSUB forward
GOSUB forward
GOSUB right
GOSUB forward
RETURN

case2_3:
GOSUB FORWARD
GOSUB FORWARD
GOSUB LEFT
GOSUB FORWARD

DO WHILE (IN1 <> 0)
LOOP

GOSUB FORWARD
GOSUB RIGHT
GOSUB FORWARD
GOSUB FORWARD
GOSUB RIGHT
GOSUB FORWARD
RETURN

case1_2_3:
GOSUB forward
GOSUB left
GOSUB forward

DO WHILE (IN1 <> 0)
LOOP

GOSUB forward
GOSUB right
GOSUB forward
GOSUB forward
GOSUB right
GOSUB forward

DO WHILE (IN1 <> 0)
LOOP

GOSUB forward
GOSUB left
GOSUB forward
GOSUB forward
GOSUB left
GOSUB forward

DO WHILE (IN1 <> 0)
LOOP

GOSUB forward
GOSUB left
GOSUB forward
GOSUB forward
GOSUB forward
GOSUB forward
GOSUB forward
GOSUB left
GOSUB forward
GOSUB forward
GOSUB left
RETURN

back:
 FOR x=1 TO 100
 GOSUB main_check
 PULSOUT 7,650 'Pin7 -> Left Servo
 PULSOUT 8,788 'Pin8 -> Right Servo
 PAUSE 16
 NEXT
 PAUSE 200
RETURN

forward:
 FOR x=1 TO 70
 GOSUB main_check
 PULSOUT 7,850
 PULSOUT 8,711
 PAUSE 16
 NEXT
 'PAUSE 200
RETURN

right:
 FOR x=1 TO right_angle
 PULSOUT 7,850
 PULSOUT 8,750
 PAUSE 20
 NEXT
 PAUSE 200
RETURN

left:
 FOR x=1 TO right_angle
 PULSOUT 7,750
 PULSOUT 8,650
 PAUSE 20
 NEXT
 PAUSE 200
RETURN

main_check:
 GOSUB front_sonar
 GOSUB left_sonar
GOSUB right_sonar
GOSUB check
RETURN

front_sonar:
 PULSOUT 11,5
 RCTIME 0,1,widthf
RETURN

left_sonar:
 PULSOUT 12,5
 RCTIME 3,1, widthl
RETURN

right_sonar:
 PULSOUT 6,5
 RCTIME 10,1,widthr
RETURN

check:
 IF (widthf < front_lim AND widthl < widthr) THEN
 GOSUB adjust_right
 ELSEIF (widthf < front_lim AND widthr < widthl) THEN
 GOSUB adjust_left
 ENDIF
RETURN

adjust_left:
 GOSUB left
 FOR x=1 TO 20
 PULSOUT 7,850
 PULSOUT 8,711
 PAUSE 20
 NEXT
 GOSUB right
RETURN

adjust_right:
 GOSUB right
 FOR x=1 TO 20
 PULSOUT 7,850
 PULSOUT 8,711
 PAUSE 20
 NEXT
 GOSUB left
RETURN