MECHATRONICS
INTEGRATED PROJECT
SMART SHOPPING CART

Done By:
Qianyu Yin
Mitra Varun Anand
Shivakumar Rajagopalan
Problem: *Shopping with a heavy cart!*
Smart Cart: *How does it work?*

Feature 1: *Follow customer and avoid obstacles*
Smart Cart: *How does it work?*

Feature 2: Calculation Mode

- **Blue Button**: Stop following and enter calculation mode
- **Red 1**: Add fish to the cart
- **Red 2**: Add beef to the cart
- **Red 3**: Add Chicken to the cart

Item cost is displayed in Line 1
Total is displayed in Line 2

Press **Blue Button** to start tracking mode again
Logic diagram – **Tracking Mode:**

- **Tracking mode**
 - Initialize servo
 - blink LED
 - sense IR direction
 - **Tilt**
 - **No**
 - ping
 - **Yes**
 - **Tilt?**
 - **No**
 - **Stop**
 - **Yes**
 - go straight a little
 - **Left**
 - **No**
 - ping
 - **Yes**
 - **Tilt?**
 - **No**
 - turn left a little
 - **Yes**
 - turn-motor right a little
 - **Right**
 - **No**
 - ping
 - **Yes**
 - **Tilt?**
 - **No**
 - wait 1s
 - **Yes**
 - slow button pushed

- **Stop**
- **Enter calculation mode**
- **No IR signal**
- **Obstacle or no one is using**
Logic diagram – **Calculation Mode:**

1. Calculation mode
2. Initialize LCD
3. Blink LEDs twice
4. B1 pressed? (no: go to yes)
 - yes: Add fish price
5. B2 pressed? (no: go to yes)
 - yes: Add beef price
6. B3 pressed? (no: go to yes)
 - yes: Add chicken price
7. Blue bit pressed?
 - yes: Blink LEDs three times
8. Enter tracking mode
Circuit:
Design for safety

Hardware:
• Power switch.
• Reset button.

Software:
• Design philosophy “stop first, passive guidance”.
• Stop first: It will only take action for the exact programmed condition.
 • This design philosophy decreases the possibility of non-normal performance.
• Passive guidance: It will only be activated when customer is at the correct position.
 • Do not allow the cart randomly go straight, turn around, to find its customer if target is lost.
 • This design philosophy decrease the possibility of collision and helps protect other customers.
Working Demo
How Much Does It Cost?

Cost of Manufacture:

<table>
<thead>
<tr>
<th>COMPONENT</th>
<th>QUANTITY</th>
<th>COST ($)</th>
<th>COST FOR MASS MANUFACTURING ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BS2 BOARD OF EDUCATION</td>
<td>1</td>
<td>69.99</td>
<td>49.99</td>
</tr>
<tr>
<td>I/R SENSOR</td>
<td>2</td>
<td>1.98</td>
<td>1.49</td>
</tr>
<tr>
<td>PING SENSOR</td>
<td>1</td>
<td>22.49</td>
<td>17.99</td>
</tr>
<tr>
<td>SERIAL LCD</td>
<td>1</td>
<td>27.99</td>
<td>21.00</td>
</tr>
<tr>
<td>CART</td>
<td>1</td>
<td>-(19.99)</td>
<td>EXISTING(14.99)</td>
</tr>
<tr>
<td>WHEELS</td>
<td>2</td>
<td>7.99</td>
<td>6.99</td>
</tr>
<tr>
<td>SERVO MOTOR</td>
<td>3</td>
<td>51.99</td>
<td>34.99</td>
</tr>
<tr>
<td>LED</td>
<td>4</td>
<td>2.99</td>
<td>2.49</td>
</tr>
<tr>
<td>BREADBOARDS</td>
<td>4</td>
<td>10.99</td>
<td>5.99</td>
</tr>
<tr>
<td>I/R EMITTER</td>
<td>1</td>
<td>1.99</td>
<td>1.49</td>
</tr>
<tr>
<td>BATTERY</td>
<td>4</td>
<td>6.99</td>
<td>4.99</td>
</tr>
<tr>
<td>MISCELLANEOUS</td>
<td>-</td>
<td>10</td>
<td>4</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td>208.4</td>
<td>153.41</td>
</tr>
</tbody>
</table>

Source: Parallax website
Future Improvement

• Better circuitry (Arduino Mega) and sensors
• Coded IR emitters and sensors
• Bar-code scanner or RFID
• More rugged wheels
• Budget alert feature
Conclusion:

OTHER USES:

• A robot that could escape from a maze
• A robot that aids with disaster relief
• A robot that will chase the ball