SMART SECURITY SYSTEM

Submitted by

ANGAD BORAKLAR

HASSAM KHAN WAZIR

in partial fulfilment for the course

of

ADVANCED MECHATRONICS

MECHATRONICS AND ROBOTICS ENGINEERING

TANDON SCHOOL OF ENGINEERING

@ TANDON SCHOOL
NYU OF ENGINEERING

11201, 6 MetroTech Center, Brooklyn, NY 11201

Abstract

Security is a major concern in today’s world and home security is no different. With the advent
of modern technology, many high-end solutions are available such as electronic security systems,
very high strength doors and deadbolts, and 24/7 monitoring using sophisticated cameras.
However, one thing in common in all of the security systems mentioned above is the cost. A
basic security lock costs more than a hundred dollars and the price only goes up as the security

systems gets more features.

The concept of Internet of Things (IoT) is currently very popular and several powerful
microcontroller and System on Chip (SoC) boards are available at a very low cost. This gives
immense power into the hands of engineers as well as enthusiasts that can build their own
solutions to existing problems instead of relying on big manufacturers that usually sell the same
solutions for exorbitant prices. With access to microcontrollers, cameras, and the ubiquity of
smartphones, it is within the realm of possibility to create a security system that will suit the need

of a common person without costing them a lot of money.

1. Introduction

Security is a major concern in today’s world and home security is no different. With the advent
of modern technology, many high-end solutions are available such as electronic security systems,
very high strength doors and deadbolts, and 24/7 monitoring using sophisticated cameras.
However, one thing in common in all of the security systems mentioned above is the cost. A
basic security lock costs more than a hundred dollars and the price only goes up as the security

systems gets more features.

The concept of Internet of Things (IoT) is currently very popular and several powerful
microcontroller and System on Chip (SoC) boards are available at a very low cost. This gives
immense power into the hands of engineers as well as enthusiasts that can build their own
solutions to existing problems instead of relying on big manufacturers that usually sell the same
solutions for exorbitant prices. With access to microcontrollers, cameras, and the ubiquity of
smartphones, it is within the realm of possibility to create a security system that will suit the need

of'a common person without costing them a lot of money.

2. Hardware
The hardware used for this project is as follows:
* Arduino Uno Rev 3
* HC-05 Bluetooth module
* Raspberry P13
* Picamera
* Adafruit Fona 808 Cellular + GPS Breakout board.
¢ Servo Motor - TowerPro MG995
* 6V Power Supply

Electronic Circuit

The lock is connected to a clamp attached to a servo motor that is controlled using an Arduino
UNO board. The servo stays at a neutral 900 position and upon receiving a locking or unlocking
command, it rotates to 1800 or 0o respectively, before returning to the neutral position. The

electronic circuit for the lock control is shown below.

Figure 2.1 Electronic circuit for the lock control.

L .

~ ¢
\

TX . il oo
rxmm Ardii o

The raspberry pi and the Adafruit Fona 808 Cellular board are also connected to the Arduino
board via a digital pin and the RX/TX pins respectively. The relationship of all the components

with each other is shown in the figure below.

Figure 2.2 Overview of the Hardware components used in the project.

FONA Cellular Module

Text Message

Lock Control

Mobile Application

The mobile application connects to the Bluetooth module which sends the control commands to
the Arduino from the user. The Arduino, then, controls the servo motor that eventually engages
or disengages the lock. On the other hand, the user sends a text message to the FONA cellular

module which communicates with the Arduino in order to tell the raspberry pi to capture an

image and send it to the user via email. The cellular module also texts the user back with a

confirmation message.

3. Software
The software comprises of two parts. The first part is the Android application development

whereas the second part is capturing and sending images to email address.

3.1 Application Development

A mobile application was developed to control the electronic circuitry of the lock. The

application was developed on the Android platform using the Android Studio 2.3.2 IDE.

Does the Phone
upport Bluetooth?,

Select Device

Is Device
Compatible?

Get Device
Information

¥

Open Second
Activity

v

Open Bluetooth
Socket

No
Was Connection
Established

Begin Data
Communication

Upon application startup, the software runs an internal query determining if the device can

support Bluetooth. If the outcome is positive, the software checks if Bluetooth on the device is

currently turned on, and prompts the user to do so if it isn’t. The user, then, chooses from a list of
available paired devices on their device and will see the locking mechanism listed there if it has
already been paired with the mobile device. When the lock is selected from the list, the software
gets the address of the lock from the Bluetooth adapter and opens a Bluetooth Socket to create a
connection, through which communication can be initiated between the lock and the smart
device. The Bluetooth adapter stops searching for other devices and finally, the Bluetooth Socket
is connected. Now the smart device is connected with the lock via Bluetooth and the current
Activity (screen of the smart device) opens up a new Activity. Figure 3.2 shows the first Activity

and a list of paired Bluetooth devices.

30940 543

AdvMecha Lock App

HASSAM-PC
24:0A:64:63:EC:0C

Locked Inside
20:15:02:03:17:68

Nexus 6P
00:9A:CD:63:3B:51

Xperia Z Ultra
C4:3A:BE:16:6F:9D

Galaxy-J2
DC:CF:96:19:35:D5

J2
11:22:45:47:8A:EQ

GT-190601
B0:47:BF:78:5A:D6

CONNECT

Figure 3.2 The First Activity, showing a list of paired devices.
In the new Activity, the user has the option to enter the password for the lock and then press one
of the two buttons to either engage of disengage the lock. The status of the lock is also displayed
under the buttons along with the status of the connection between the lock and the mobile device.

The user also has the option to disconnect from the lock, which will sever the connection

between the mobile device and the lock and the user will need to initiate the connection process

from the beginning. Figure 3.3 shows the second Activity of the application, responsible for the

e ® P OW4 @002 @ P EOW4 B 95

AdvMecha Lock App : AdvMecha Lock App :

il‘tl "eue

UNLOCK LOCK UNLOCK LOCK

Lock Disengaged

DISCONNECT DISCONNECT

d O O < O O

lock controls and disconnecting the mobile device from the lock. One safety mechanism that has
bene integrated into the application is that in case the application disconnects from the lock, the

lock will automatically engage.

In this new Activity, the user has the option to disconnect from the lock, which will sever the
connection between the smart device and the lock and the user will need to start over from the
beginning. Another option is to enter the password for the lock and press one of the two button
that will either engage the locking mechanism or disengage it. The status of the locking

mechanism will be displayed on the screen along with the status of the connection and a visual

indication of the current state of the locking mechanism (whether it is engaged or disengaged).
Figure 4 shows the second Activity as well as the two states of the locking mechanism. At the
bottom of the screen, the “Disconnect” button serves the purpose of closing the Bluetooth Socket
which, in turn, closes the connection between the smart device and the locking mechanism.
However, before the connection is severed, the smart device will send a final command to the
locking mechanism and the lock will become engaged. This is done for safety purposes so that
disconnecting the smart device automatically engages the locking mechanism, serving as an auto

locking feature.
3.2 Capturing and Sending Images to Email Address

There are several steps involved in capturing and sending images to an email address. A brief

explanation of each step is given below.
Capturing images to email address

To capture and send the image from the Raspberry Pi microcontroller to an email address is one
of the major aspects of this project. The procedure to do so can be split into three parts as

described below.
Raspberry Pi Camera

In this project, a Raspberry Pi camera (PiCam) is used to capture the image of a person standing
in front of the device. Based on the commands from the Arduino, the PiCam takes a picture and
saves it locally on the SD card of the microcontroller. After this, the microcontroller extracts the
captured image from the folder and sends it as an attachment to the authorized email address

over Wi-Fi.
Sending Images

Once the image is captured and is ready to be sent as an email attachment, a python script is used

to connect to a remote Google server. Google gives the option of accessing their remote email

servers for free with the correct credentials to identify each user. On this Google server, an email
id is set as the sender of the message and correct authentication process is initiated. The user can
pre-authorize his/her email address along with the correct password using the python script.
Once the script is run, the remote Gmail server is accessed using valid email (and password), a
‘log-in’ process is initiated virtually. The script also provides options to change the body of the
email, the subject line as well as the number of recipients. Once a secure connection is
established and valid user is logged in, the script pulls the required image file from the SD card
and attaches it to the email structure. After this, it sends the email over Wi-Fi to the designated

user address and the recipient can view this as an email attachment.

Python code

In this project, we have used an SMTP server to send the image as an email attachment over the
internet. An SMTP server is the machine that takes care of the whole email delivery process:
that's why to send your messages with an email client or software you need first of all to
configure the correct SMTP settings — in particular, the right SMTP address you're using. (For
instance, Gmail's is smtp.gmail.com). Remember anyway that normal servers generally come
with strict limits in terms of how many emails you can send and how many addresses you can
handle per day. So if you're planning to send bulk emails you should definitely switch to a
professional SMTP server that will allow you to manage unlimited messages and guarantee the

highest deliverability.

For our project, we are using the most basic version of Gmail SMTP to test the results of our
project. For testing purposes, we have also created a test email address on Gmail called
‘advmechspring2017@gmail.com’ to be used as the sender address of the email. Using the above
email ID, we will send the image to the recipient’s email ID (‘angadboralkar@gmail.com’) over
Wi-Fi. The PiCamera library is imported into the python script to access hardware and software

functionality of the PiCam.

4. Conclusion

The project successfully demonstrates that using a simple design and low cost electronic
components, common everyday problems can be solved very easily. The project itself took very
less time to make, and the majority of time was spent learning the Android API, the Bluetooth
sensor, and sending data automatically via email and coming up with a simple design that works
flawlessly and looks elegant. Working on this project provided a better insight into the world of
electronics and the role of microcontrollers and sensors, since in a single project, out team was
exposed to designing, 3d modelling, 3d printing, microcontrollers, sensors and actuators, data

acquisition, mobile application development and hardware-software integration.

APPENDIX

(@)
o
Q.
D

PYTHON

import smtplib

from email.mime.multipart import
MIMEMultipart

from email.mime.text import MIMEText
from email.mime.base import MIMEBase
from email import encoders

import os

import picamera

import time

os.chdir('/home/pi/Desktop/pics')
camera = picamera.PiCamera()

camera.start_preview()

time.sleep(3)

camera.capture("test.png")
camera.stop_preview()

fromaddr = "advmechspring2017 @gmail.com"
toaddr = "angadboralkar@gmail.com"

msg = MIMEMultipart()

msg['From'] = fromaddr

msg['To'] = toaddr

msg['Subject'] = "Attachment Test"
body = "See the attachment"
msg.attach(MIMEText(body, 'plain'))
filename = "test.png"

attachment =

open("/home/pi/Desktop/pics/test.png", "rb")

part = MIMEBase('application’, 'octet-stream’)
part.set_payload((attachment).read())

encoders.encode_base64(part)
part.add_header('Content-Disposition’,
"attachment; filename= %s" % filename)

msg.attach(part)

server = smtplib.SMTP('smtp.gmail.com’, 587)
server.starttls()

server.login(fromaddr, "angadhassam")

text = msg.as_string()
server.sendmail(fromaddr, toaddr, text)
server.quit()

ARDUINO

Lock Code:

#include <Servo.h>
#include <SoftwareSerial.h>
byte myPass[4];

String myString;

boolean isUnlock = false;

#define servo_pin 6 // Set
servo_pin Pin

SoftwareSerial myBluetooth(2, 3); // RX, TX
Servo daServo;

void setup() {
myBluetooth.begin(9600);
//Arduino Pin Configuration
pinMode(servo_pin, OUTPUT);

servo(90); // Make sure servo is in
mean position

//Protocol Configuration

Serial.begin(9600);
communications with PC

}

// Initialize serial

T Main

Loop //1/1111111111111111111111111111111
void loop () {

if (myBluetooth.available() > 0)
{myString ="";}

while(myBluetooth.available() > 0)

{
command = ((byte)myBluetooth.read());

if(command =="")
{
break;
}
else
{
myString += command;
}
delay(1);
}
//Serial.printIn(myString);
if(myString =="1")// && isUnlock == false)
{

myBluetooth.write("1");

Unlock();
Serial.printin(myString);
}
else if(myString =="0")// && isUnlock ==
true)
{
myBluetooth.write("0");
Lock();
Serial.printin(myString);
}
myString ="";
successRead = getID(); // sets

successRead to 1 when we get read from reader
otherwise 0

T T [Servo

Method/////1111111111111111111111111111111111
void Lock()

{
if (digitalRead(limitswitch) ==
LOW/| |isUnlock==false)
{
daServo.attach(servo_pin);
servo(0); // tell servo to go to position
in variable 'pos'
delay(1000);
servo(90);
delay(1000);
isUnlock=false;
daServo.detach();

!
}
void Unlock()
{
{
daServo.attach(servo_pin);
servo(180); // tell servo to go to

position in variable 'pos'

delay(1000);
servo(90);
delay(1000);
isUnlock=true;
daServo.detach();

}

}

void servo(int datPos)

{

daServo.write(datPos);
delay(10);
}

FONA Code:

#include "Adafruit_ FONA.h"
#define FONA_RX 2

#define FONA_TX 3

#define FONA_RST 4

// this is a large buffer for replies
char replybuffer[255];

// We default to using software serial. If you
want to use hardware serial

// (because softserial isnt supported) comment
out the following three lines

// and uncomment the HardwareSerial line
#include <SoftwareSerial.h>

SoftwareSerial fonaSS =
SoftwareSerial(FONA_TX, FONA_RX);
SoftwareSerial *fonaSerial = &fonaSs;

// Hardware serial is also possible!
// HardwareSerial *fonaSerial = &Seriall;

Adafruit_FONA fona =
Adafruit_ FONA(FONA_RST);

uint8_t readline(char *buff, uint8_t maxbuff,
uintl6_t timeout = 0);

void setup() {
pinMode(10, OUTPUT);
digitalWrite(10, LOW);
while (!Serial);

Serial.begin(115200);

Serial.printin(F("FONA SMS caller ID test"));

Serial.printin(F("Initializing....(May take 3
seconds)"));

// make it slow so its easy to read!

fonaSerial->begin(4800);

if (! fona.begin(*fonaSerial)) {
Serial.printin(F("Couldn't find FONA"));
while(1);

1

Serial.printin(F("FONA is OK"));

// Print SIM card IMEI number.
char imei[16] = {0}; // MUST use a 16 character
buffer for IMEI!
uint8_t imeilLen = fona.getIMEI(imei);
if (imeiLen > 0) {
Serial.print("SIM card IMEI: ");
Serial.printin(imei);

}

Serial.printin("FONA Ready");
}

char fonalnBuffer[64]; //for notifications

from the FONA
void loop() {

char* bufPtr = fonalnBuffer; //handy buffer
pointer
digitalWrite(10, LOW);
if (fona.available()) //any data available
from the FONA?
{
int slot = 0;
number of the SMS
int charCount = 0;
//Read the notification into fonalnBuffer
do {
*bufPtr = fona.read();
Serial.write(*bufPtr);
delay(1);
} while ((*bufPtr++ !="\n') &&
(fona.available()) && (++charCount <
(sizeof(fonalnBuffer)-1)));

//this will be the slot

//Add a terminal NULL to the notification
string
*bufPtr = 0;

//Scan the notification string for an SMS
received notification.
// Ifit's an SMS message, we'll get the slot
number in 'slot'
if (1 == sscanf(fonalnBuffer, "+CMTI:
\"SM\",%d", &slot)) {
Serial.print("slot: "); Serial.printin(slot);

char callerlDbuffer[32]; //we'll store the
SMS sender number in here

char replybuffer[255];

//char checksms[255] = "Open"

// Retrieve SMS sender address/phone
number.

if (! fona.getSMSSender(slot, callerIDbuffer,
31)){

Serial.printin("Didn't find SMS message in

slot!");

}

Serial.print(F("FROM: "));
Serial.printin(callerIDbuffer);

uintl6_t smslen;
if (! fona.readSMS(slot, replybuffer, 250,
&smslen)){
Serial.printin("Cannot Read the SMS!");

}
Serial.printin(replybuffer);

//Send back an automatic response
Serial.printIn("Sending reponse...");

if (strcmp(replybuffer, "Open") == 0){
Serial.printin("Well, it's a match!");
fona.sendSMS(callerIDbuffer, "Door is now
OPEN! Check your email to see who's at the
door.");

digitalWrite(10, HIGH);

delay(500);

//digitalWrite(10, LOW);

lelse{

Serial.printin("Nope, not a match!");
fona.sendSMS(callerIDbuffer, "This is an
incorrect passphrase. Door is now CLOSED!");

}

if (fona.deleteSMS(slot)) {
Serial.printin(F("OK!"));

}else {
Serial.printin(F("Couldn't delete"));

}

}
!
}

APPLICATION CODE

package hassamwazirnyu.superduperlockapp;
import android.content.Intent;

import android.os.Bundle;

import
android.support.v7.app.AppCompatActivity;
import android.view.Menu;

import android.view.Menultem;

import android.view.View;

import android.widget.AdapterView;

import android.widget.ArrayAdapter;

import android.widget.Button;

import android.widget.ListView;

import android.bluetooth.BluetoothAdapter;
import android.bluetooth.BluetoothDevice;
import android.widget.TextView;

import android.widget.Toast;

import java.util.ArrayList;
import java.util.Set;

public class MainActivity extends
AppCompatActivity {

//widgets

Button btnPaired;

ListView MainActivity;

//Bluetooth

private BluetoothAdapter myBluetooth = null;

private Set<BluetoothDevice> pairedDevices;

public static String EXTRA_ADDRESS =
"device_address";

@Override
protected void onCreate(Bundle
savedInstanceState)

{

super.onCreate(savedInstanceState);
setContentView(R.layout.main_activity layout);

//Calling widgets

btnPaired =
(Button)findViewByld(R.id.bt_connect);

MainActivity =
(ListView)findViewByld(R.id.lv_devices);

//if the device has bluetooth
myBluetooth =
BluetoothAdapter.getDefaultAdapter();

if(myBluetooth == null)
{
//Show a mensag. that the device has no
bluetooth adapter
Toast.makeText(getApplicationContext(),
"Bluetooth Device Not Available",
Toast.LENGTH_LONG).show();

//finish apk
finish();
}
else if(!myBluetooth.isEnabled())
{
//Ask to the user turn the bluetooth on
Intent turnBTon = new
Intent(BluetoothAdapter. ACTION_REQUEST_EN
ABLE);
startActivityForResult(turnBTon,1);

}

btnPaired.setOnClickListener(new
View.OnClickListener() {
@Override
public void onClick(View v)
{
pairedDevicesList();
}
1;

}

private void pairedDevicesList()
{
pairedDevices =
myBluetooth.getBondedDevices();
ArraylList list = new ArrayList();

if (pairedDevices.size()>0)
{
for(BluetoothDevice bt : pairedDevices)
{
list.add(bt.getName() + "\n" +
bt.getAddress()); //Get the device's name and
the address
}
}
else
{
Toast.makeText(getApplicationContext(),
"No Paired Bluetooth Devices Found.",
Toast.LENGTH_LONG).show();

}

final ArrayAdapter adapter = new
ArrayAdapter(this,android.R.layout.simple_list_i

tem_1, list);
MainActivity.setAdapter(adapter);

MainActivity.setOnltemClickListener(myListClick
Listener); //Method called when the device
from the list is clicked

}

private AdapterView.OnltemClickListener
myListClickListener = new
AdapterView.OnltemClickListener()
{
public void onltemClick (AdapterView<?>
av, View v, int arg2, long arg3)
{
// Get the device MAC address, the last
17 chars in the View
String info = ((TextView)
v).getText().toString();
String address =
info.substring(info.length() - 17);

// Make an intent to start next activity.
Intent i = new Intent(MainActivity.this,
LockControl.class);

//Change the activity.
i.putExtra(EXTRA_ADDRESS, address);
//this will be received at LockControl (class)
Activity
startActivity(i);
1
2

@Override
public boolean onCreateOptionsMenu(Menu
menu)
{
// Inflate the menu; this adds items to the
action bar if it is present.

getMenulnflater().inflate(R.menu.menu_main_
activity, menu);
return true;

}

@Override
public boolean
onOptionsltemSelected(Menultem item) {
// Handle action bar item clicks here. The
action bar will
// automatically handle clicks on the
Home/Up button, so long
// as you specify a parent activity in
AndroidManifest.xml.
int id = item.getltemld();

//noinspection SimplifiablelfStatement
if (id == R.id.action_settings) {
return true;

}

return super.onOptionsitemSelected(item);

package hassamwazirnyu.superduperlockapp;

import android.graphics.Color;

import
android.support.v7.app.ActionBarActivity;
import android.os.Bundle;

import
android.support.v7.app.AppCompatActivity;
import android.util.Log;

import android.view.Menu;

import android.view.Menultem;

import android.bluetooth.BluetoothSocket;
import android.content.Intent;

import android.view.View;

import android.widget.Button;

import android.widget.CheckBox;

import android.widget.EditText;

import android.widget.ImageView;

import android.widget.TextView;

import android.widget.Toast;

import android.app.ProgressDialog;

import android.bluetooth.BluetoothAdapter;
import android.bluetooth.BluetoothDevice;
import android.os.AsyncTask;

import java.io.lOException;

import java.io.InputStream;
import java.util.UUID;

public class LockControl extends
AppCompatActivity {

int status = 0;

Button btUnlock, btLock,
btDisconnectControl;

EditText etPin;

boolean isCommReceived = false,
isPassReceived = false;

TextView tvActionResult, tvStatus;

ImageView ivimage;

String address = null;

private ProgressDialog progress;

BluetoothAdapter btAdapter = null;

BluetoothSocket btSocket = null ;

private boolean isBtConnected = false;

//SPP UUID. Look for it

static final UUID myUUID =
UUID.fromString("00001101-0000-1000-8000-0
0805F9B34FB");

private String password ="";

String myPass = "1234";

boolean isEngaged = false;

@Override
protected void onCreate(Bundle
savedInstanceState)

{

super.onCreate(savedInstanceState);

Intent newint = getintent();

address =
newint.getStringExtra(MainActivity.EXTRA_ADD
RESS); //receive the address of the bluetooth
device

setContentView(R.layout.activity lock control);

//call the widgtes

btUnlock =
(Button)findViewByld(R.id.bt_unlock);

btLock =
(Button)findViewByld(R.id.bt_lock);

btDisconnectControl =

(Button)findViewByld(R.id.bt_disconnect_contr
ol);

tvActionResult =
(TextView)findViewByld(R.id.tv_action_result);

tvStatus =
(TextView)findViewByld(R.id.tv_status);
etPin =
(EditText)findViewByld(R.id.et_enter_pin);
ivimage =

(ImageView)findViewByld(R.id.iv_image);
//GetQuery();

new ConnectBT().execute(); //Call the class
to connect

//commands to be sent to bluetooth
btUnlock.setOnClickListener(new
View.OnClickListener()
{
@Override
public void onClick(View v)
{
password = etPin.getText().toString();
//Log.d("Password: ", password);
if(password.equals(myPass))
{
Disengagelock(); //method to
Unlock Door
//readAcknowledgement();

ivimage.setlmageResource(R.mipmap.unlocked)

’

tvActionResult.setText(R.string.lock_disengaged
);

tvActionResult.setTextColor(Color.RED);
}
else{
msg("The password is incorrect");
}
}
W

btLock.setOnClickListener(new
View.OnClickListener() {

@Override
public void onClick(View v) {
password = etPin.getText().toString();
//Log.d("Password: ", password);
if(password.equals(myPass))
{
Engagelock(); //method to Lock
Door
//GetQuery();

ivimage.setlmageResource(R.mipmap.locked);
tvActionResult.setText(R.string.lock_engaged);

tvActionResult.setTextColor(Color.GREEN);

//readAcknowledgement();

}

else{
msg("The password is incorrect");

}

}
1;

btDisconnectControl.setOnClickListener(new
View.OnClickListener()
{
@Override
public void onClick(View v)

{
Engagelock(); //method to Lock

Door
Disconnect(); //close connection

}
D

}

void GetQuery()

{
if (btSocket!=null)

{
try

{
Log.d("PassVal: ", password);

btSocket.getOutputStream().write("5".getBytes(
));

}
catch (IOException e)

{

msg("Error");

}

try
{

String Ack;

Ack =
String.valueOf(btSocket.getInputStream().read()
);

Log.d("Ack val: ", String.valueOf(Ack));

if(Ack.equals("1"))

{
isEngaged = true;
!
else{
isEngaged = false;
}
}
catch (IOException e)
{
msg("Error");
}
}
}
private void Disconnect()
{
if (btSocket != null) //If the btSocket is
busy
{
try {

btSocket.close(); //close connection
} catch (IOException e) {
msg("Error");
!
}

finish(); //return to the first layout

private void readAcknowledgement()

{

String Ack ="";
if(btSocket != null)
{
try
{
Ack =

String.valueOf(btSocket.getInputStream().read()

);
Log.d("Ack val: ", String.valueOf(Ack));

switch (Ack) {
case "0":
/]
tvActionResult.setText(R.string.lock_engaged);
/]
tvActionResult.setTextColor(Color.BLUE);
break;
case "1":
/]
tvActionResult.setText(R.string.lock_disengaged

);

//tvActionResult.setTextColor(Color.GREEN);
break;
case "2":
msg("Lock Already Disengaged");
break;
case "3":
msg("Lock Already Engaged");
break;
case "4":
msg("Password Incorrect");
break;
}
}
catch (IOException e)
{
msg("Error");
}
}
else{
msg("Bluetooth Not Connected. Please
Restart the Application");
}
}

private void sendPassword()

{
if (btSocket!=null)
{
try
{
String a = etPin.getText().toString();
Log.d("PassVal: ", password);

btSocket.getOutputStream().write(password.ge
tBytes());

}
catch (IOException e)

{

msg("Error");

}
}
}

private void Engagelock()

{
if (btSocket!=null)

{
try

{
String data ="0";

btSocket.getOutputStream().write(data.getByte

s());
Log.d("Data: ", data);

}
catch (IOException e)
{
msg("Error");
}
}
}
private void Disengagelock()
{
if (btSocket!=null)
{
try
{

String data ="1";

btSocket.getOutputStream().write(data.getByte
s());

Log.d("Data: ", data);
}
catch (IOException e)
{
msg("Error");
}
1
}

// fast way to call Toast
private void msg(String s)

{

Toast.makeText(getApplicationContext(),s, Toast
LENGTH_SHORT).show();
}

@Override
public boolean onCreateOptionsMenu(Menu
menu) {
// Inflate the menu; this adds items to the
action bar if it is present.

getMenulnflater().inflate(R.menu.menu_lock_c
ontrol, menu);
return true;

}

@Override
public boolean
onOptionsltemSelected(Menultem item) {
// Handle action bar item clicks here. The
action bar will
// automatically handle clicks on the
Home/Up button, so long
// as you specify a parent activity in
AndroidManifest.xml.
intid = item.getltemld();

//noinspection SimplifiablelfStatement
if (id == R.id.action_settings) {
return true;

}

return super.onOptionsitemSelected(item);

}

private class ConnectBT extends

AsyncTask<Void, Void, Void> // Ul thread
{
private boolean connSuccess = true; //if it's
here, it's almost connected

@Override
protected void onPreExecute()
{
progress =
ProgressDialog.show(LockControl.this,
"Connecting...", "Please wait!!!"); //show a
progress dialog

}

@Override
protected Void dolnBackground(Void...
devices) //while the progress dialog is shown,
the connection is done in background
{
try
{
if (btSocket == null | | lisBtConnected)
{
btAdapter =
BluetoothAdapter.getDefaultAdapter();//get
the mobile bluetooth device
BluetoothDevice btDevice =
btAdapter.getRemoteDevice(address);//connec
ts to the device's address and checks if it's
available
btSocket =
btDevice.createlnsecureRfcommSocketToServic
eRecord(myUUID);//create a RFCOMM (SPP)
connection

BluetoothAdapter.getDefaultAdapter().cancelDi
scovery();
btSocket.connect();//start
connection
1
}
catch (IOException e)
{
connSuccess = false;//if the try failed,
you can check the exception here
}

return null;

}

@Override

protected void onPostExecute(Void result)
//after the dolnBackground, it checks if
everything went fine

{

super.onPostExecute(result);

if (IconnSuccess)
{
msg("Connection Failed. Is it a
compatible device? Try again.");
tvStatus.setText("Device not
Connected");
tvStatus.setTextColor(Color.BLUE);
finish();
}
else
{
msg("Connected.");
isBtConnected = true;
tvStatus.setText("Device Connected");
tvStatus.setTextColor(Color.GREEN);

}
progress.dismiss();
1
}
}

