Lecture 8

Servomotors
Servo Motor

- DC motors with feedback position control
- As long as the coded signal exists on the input line, the servo will maintain the angular position of the shaft
- As the coded signal changes, the angular position of the shaft changes
Servo Motor: How It Work?

• Consists of some control circuit and a potentiometer.
• This potentiometer allows the control circuitry to monitor the current angle of the servo motor.
• If the shaft is at the correct angle, then the motor shuts off.
• If the circuit finds that the angle is not correct, it will turn the motor in the correct direction until the angle is corrected.
Servo Motor Wiring
Servo Motor with BS2

Only when you use AA battery pack

2 servo motors only
Need another capacitor for additional servo motors
Sample Code

X var byte
Output 12

Here:
For X = 1 to 100
Pulsout 12, 500
Pause 10
Next
Pause 500

For X = 1 to 100
Pulsout 12, 1000
Pause 10
Next
Pause 500

Goto Here

Pulsout Pin #, Duration
12 is pin number of BS2
500 means 1 millisecond
PWM

- Pulse-Width-Modulation
- An efficient method to deliver controlled amount of power to loads such as motors
- Use square voltage pulses
- Modulation
 - Process of controlling the duty cycle of square wave
- Pulse-width-modulator
 - The circuit used to achieve modulation tasks
PWM - Duty Cycle

Amount of power delivered to load depending on duration of each pulse.
The Basic PWM Control
Stepper Motor

- Do not spin freely with just power
- Driven by the interaction (attraction and repulsion) of magnetic fields
- With proper sequence of the on-off pattern of the magnetic fields, the stepper turns (when it’s not, the stepper sits and quivers).
Stepper Motor with BS2

ULN 2803 high-current transistor driver
Motor Experiments

<table>
<thead>
<tr>
<th>Experiments</th>
<th>Chapters</th>
</tr>
</thead>
<tbody>
<tr>
<td>What’s micro controller</td>
<td>4</td>
</tr>
<tr>
<td>Basic A and D</td>
<td></td>
</tr>
<tr>
<td>Earth measurements</td>
<td></td>
</tr>
<tr>
<td>Robotics</td>
<td>2</td>
</tr>
<tr>
<td>StampWorks</td>
<td>26 and 27</td>
</tr>
<tr>
<td>Others</td>
<td></td>
</tr>
</tbody>
</table>
Lecture 9

555 Timer
Pulse Generation

- **Pulsout**
 - Software version of pulse generation
 - Pulsout pin, Period
 - Pin: specified I/O pin from 0 to 15
 - Period: 2 μsec per each unit

- **555 Timer**
 - Hardware version of pulse generation
 - BS2 can do other works
 - Microcontroller is not necessary
555 Timer

- Highly stable devices for generating accurate time delay or oscillation
- Not programmable
- Controlled by resistors and capacitors
- Applications
 - Pulse generation
 - PWM
 - Time delay generation
555 Timer Block Diagram
Connection Diagram

Diagram of a 555 timer IC with labels:
- Ground
- Trigger
- Output
- Reset
- Vcc
- Discharge
- Threshold
- Control Voltage

Identifier
555 Timer without BS2

Connect to P1
555 Timer with BS2
Astable Operation 1
Calculation of Duty Cycle

\[t_{low} = 0.693 \, R_2 \, C \]
\[t_{high} = 0.693 \,(R_1 + R_2) \, C \]

Duty cycle \[= \frac{t_{high}}{t_{high} + t_{low}} \]

\[f = \frac{1}{t_{high} + t_{low}} \]
Calculation of Duty Cycle

\[t_{\text{low}} = 0.693(20K)(680nF) = 9.6ms \]

\[t_{\text{high}} = 0.693(10K + 20K)(680nF) = 14.1ms \]

\[\text{Duty cycle} = \frac{14.1ms}{14.1ms + 9.6ms} = 0.6 \]

\[f = \frac{1}{14.1ms + 9.6ms} = 42Hz \]
Astable Operation 2

Frequency vs. C, R_1, and R_2

- Capacitance (μF) vs. Frequency (Hz, kHz)
- Lines represent different resistor combinations: $1k\Omega$, $10k\Omega$, $100k\Omega$, $1M\Omega$, $10M\Omega$, and $(R_1 + 2R_2)$
Applications 1

- It will sound an alarm if it gets too dark all over sudden
- The LDR enables the alarm when light falls below a certain level
Applications 2

- This circuit can be used as a audible 'Power-out Alarm'
- When the line voltage fails, the tone will be heard in the speaker
Applications 3

- Actually really a alarm circuit, it shows how to use a 555 timer and a small glass-encapsulated mercury switch to indicate 'tilt'.
Applications 4

- A Metronome is a device used in the music industry.
- It indicates the rhythm by a 'tic-toe' sound which speed can be adjusted with the 250K potentiometer.
555 Timer Experiments

<table>
<thead>
<tr>
<th>Experiments</th>
<th>Chapters</th>
</tr>
</thead>
<tbody>
<tr>
<td>What’s micro controller</td>
<td>5</td>
</tr>
<tr>
<td>Basic A and D</td>
<td>6</td>
</tr>
<tr>
<td>Earth measurements</td>
<td></td>
</tr>
<tr>
<td>Robotics</td>
<td></td>
</tr>
<tr>
<td>StampWorks</td>
<td>17 and 18</td>
</tr>
<tr>
<td>Others</td>
<td></td>
</tr>
</tbody>
</table>