

Lecture 10

Thermal Sensors

DS1620

- Digital thermometer
 - Provides 9-bit temperature readings
 - Temperature range from -55°C to 125°C
 - Acts as a thermostat

Detail Description

PIN	SYMBOL	DESCRIPTION
1	DQ	Data Input/Output pin for 3-wire communication port.
2	CLK/CONV	Clock input pin for 3-wire communication port. When the DS1620 is used in a stand-alone application with no 3-wire port, this pin can be used as a convert pin. Temperature conversion will begin on the falling edge of CONV.
3	RST	Reset input pin for 3-wire communication port.
4	GND	Ground pin.
5	T _{COM}	High/Low Combination Trigger. Goes high when temperature exceeds TH; will reset to low when temperature falls below TL.
6	T _{LOW}	Low Temperature Trigger. Goes high when temperature falls below TL.
7	T _{HIGH}	High Temperature Trigger. Goes high when temperature exceeds TH.
8	V _{DD}	Supply Voltage. 2.7V – 5.5V input power pin.

DS1620 with BS2

Programming for DS1620 1

Programming for DS1620 2

high 13 Ready to start

Shiftout 15,14,lsbfirst,[238] Start conversion

low 13

Temploop:

high 13

shiftout 15,14,lsbfirst,[170] Send “get data” command

shiftin 15,14,lsbpre,[x] Get the data

low 13

degC=x/2

Goto Temploop

AD592

* PIN 2 CAN BE EITHER ATTACHED OR UNCONNECTED
BOTTOM VIEW

- Analog temperature sensor
 - Provides an output current proportional to absolute temperature
 - Temperature range from -25°C to 105°C
 - Acts as a thermostat
 - Extended out away from the recording instruments

Temperature Probe with AD592

- The part needs to be protected before being inserted into liquid

How to Make Temperature Probe 1

1. Identify the AD 592's (-), NC, and (+) pins from this picture as viewed from the bottom
2. Slip the solder sleeve over the black wire and pin 3 (-)
3. Slip another solder sleeve over the red wire and pin 1 (+)
4. Heat up the connections until the wires are joined

How to Make Temperature Probe 2

Clamp here

5. Slip the heat shrink tubing over the entire package
6. Fasten the package with a heat gun, and while it's still hot clamp the top portion to ensure that it stays shut

AD592 with BS2

Caution!!

- Be careful when you put your finger on it
- Specially for a big finger

Temperaure Sensors Experiments

Experiments	Chapters
What's micro controller	
Basic A and D	
Earth measurements	1, 2, 3*, and 4
Robotics	
StampWorks	29
Others	

*Use 2 wires for Simple Resistance Detector with proper resistor and capacitor

Lecture 11

Robotics

Robots

Definition of Robot

- First introduced by Karel Capek in a 1920
- Definition of robot
 - Reprogrammable
 - Multifunctional manipulator
 - Designed to move material, parts, tools or specialized devices
 - Through variable programmed motions for the performance of a variety of tasks
 - Robot Institute of America, 1979

Sensors

Force Sensors

Tilt Sensor

In-Sight vision sensors

Devantech SRF04

UltraSonic Ranger

Actuators

- Actuators used in robotics is almost always combinations of different electro-mechanical devices
 - Stepper motor
 - AC servo motor
 - Brushless DC servo motor
 - Brushed DC servo motor

Hydraulic Motor

Stepper Motor

Pneumatic Motor

Servo Motor

Controller

**RoboBoard Robotics
Controller**

BASIC Stamp 2 Module

The Interface Units

Interfacing with the external world (sensors and actuators)

Analog to Digital Converter

Operational Amplifier

What Can a Robot Do?

- Industrial Robots

1. Material Handling
2. Material Transfer
3. Machine Loading and/or Unloading
4. Spot Welding
5. Continuous Arc Welding
6. Spray Coating
7. Assembly
8. Inspection

Material Handling Manipulator

Spot Welding Manipulator

Assembly Manipulator

How to Modify Servo Motor

Prepare All the Tools

Open Cover

Take All Gears Out

Take Pot Drive Plate Out

Don't forget
to remove it

Cut Tab off the Surface of the Gear

Before

After

Servo Calibration

low 12

loop:
pulsout 12, 750
pause 20
goto loop

Fully Assembled Boe-Bot

Robot Experiments

Experiments	Chapters
What's micro controller	
Basic A and D	
Earth measurements	
Robotics	1, 2, 3, and 4
StampWorks	
Others	