FINAL PROJECT:
TRICOPTER &
GUI

Class: ME-GY 6933 Advanced Mechatronics
Students: Sunglyoung Kim, Devin Braatz, Ezra Idy

Professor: Vikram Kapila
Due: 05/11/17

ABSTRACT:

The objective of the project is to design, create, fabricate, and test a tricopter that can be

used for home surveillance system. A tri-copter is a aerial vehicle with three propellers. When
working creating a tricopter the roll and pitch of the copter is similar to other drones, such as a
quadcopter, however the yaw of a tricopter requires a yaw mechanism that can angle the back
propellor. When designing the frame, the max weight of the copter was calculated to be less that
1.2kg. An Arduino Nano and a 9 DOF (Degrees of Freedom) IMU are used to control the flight
of the tricopter. By using the IMU, a PID controller can be created to effectively control the roll,
pitch, and yaw of the tricopter. Also connected to the tricopter is a Raspberry Pi that will allow
the user to create flight logs as well as obtain constant visual feedback from the tricopter. The
Arduino and the Raspberry Pi are in constant communication with each other and transfer data
with each other. Live streaming video that attached on the tricopter can be recorded and stored
on a web server.

BACKGROUND:

When designing a tricopter, the first step that needs to be completed is calculating the
amount of thrust that each propeller can emit. From that value one can determine the weight and
stability of the given tricopter. The thrust calculations depend on the propeller diameter,
propellor pitch, and the rotational value of the motors. Using the equation for thrust shown in
Figure 1 below, as well as the propeller inputs shown in Figure 2, one can obtain the static thrust
that can be produced by each propeller. These values can be seen in Figure 2 below.

m(0.0254: d)?] iminy”
F=1.225 (RPM,,,,P -0.0254- pitch-)
60sec
(RPM 0.0254 - pitch lmf“)v](=)15
o . 0. . pitch
prop p 60sec/ °1\3.29546- pitch
Figure 1. Thrust Equation
Propeller Inputs
diam, d [in): 10 pitch (in): 4.7 RPMs: 5700
|
| |
X ¥
Aircraft Aircraft Dynamic Dynamic Dynamic Dynamic Dynamic
Airspeed, Airspeed, Thrust, F Thrust, F Thrust, F Thrust, F Thrust, F
VO (m/s) VO (mph) (N} (g) (ke) (oz) (Ib)
Static Thrust --» 0 0 4.14174073: 422.1957° 0.422195 14.89253: 0.930781.
all others are 0.44704 1 3.97848286¢ 405.5538(0.405553! 14.30550! 0.8940921
dynamic thrust 0.B9408 2 3.81522500; 388.9118: 0.388911! 13.71847! 0.857402’
1.34112 3 3.65196713. 372.2698: 0.372269! 13.131441 0.820713!

Figure 2. Thrust Table
After calculating the thrust values, one must then calculate the yaw angle. Since there are
three propellers, in order to compensate for the yaw movement one of the propellers must be
adjusted. Figure 3(a) below displays the tilt equations and the tilt equations, while Figure 3(b)
displays the degrees needed for the tilt with respect to the given RPM value. From Figure 3(b)
one can see that the tilt angle will not exceed 3 degrees. It is this tilt angle that allows the
tricopter to steady the yaw component of its flight.

10x4.7
RPM cT P T(N) Tig) Tar{alpha Alphairad Alpha[Degree)
2377 01052 00431 0.844008 86.03547 0040445 0,040423 2.316091
o e Gt 2676 01079 0.0437 1089895 111.1007 0.035751 0.035736 2.047525
2947 01079 0.0437 1321825 134.7425 0.032454 0.032452 1.859377
o7 FreRotor Thrust 3234 01104 00444 1.62E701 186.0245 0.029376 0.029367 1.682632
\ 3454 01117 0045 1923495 196.075 0027237 0.02723 1.56016
: 3782 01143 0.046 2281792 232.5085 0,02527 0.025265 1.447573
b 4028 01158 00466 1631511 270.2877 0.023584 0,022589 1.351574
4313 01177 0.0474 30968956 315.6933 0.022026 0.022022 1.261794
45490 012 0.0484 3,566143 363.5213 0.020757 0.020754 1.18913
4880 01223 0.0494 4108264 418.7832 0019552 0.01955 1.120122
Fe = Feveosia}+Fa sini6)-me/3 5147 01237 0.05 4.622420 471.1956 0.018551 0.018549 1.062763
5417 01252 00508 51822 528.2589 0017654 D.017692 1.013667
6716 01263 00513 5818727 593.1425 0.016789 0.016787 0.961827
Py = RaaeBYFrinia) 6960 0.1278 0.052 6403473 652.7495 0.016127 0.016125 0.923908
6226 01286 00524 7.021555 716.7742 001346 0.015458 0.8857
e oo M s g B528 01299 0.0531 7.80B393 795.9625 0.014792 0.014791 0.B47:449
Figure 3(a): Tilt Equation Figure 3(b): Tilt Angle

In the figure below, one can see the two models of the tricopter frame used. The frame
design on the left is the first design implemented for the frame. The frame was made from pieces
of acrylic and the arms were 3D printed using ABS plastic. After running test and calculations on
the first frame design, it was clear that the frame was not efficient and could be improved. After
adjusting the propeller PID values it was clear that the flat triangular frame was producing a lot
of drag, and that the space can be reduced. Thus the hexagon frame was constructed. In order to
keep the mass of the tricopter at the center, the frame consists of multiple layers, allowing for a
smaller frame and reducing the drag created by the propellers. Another way to reduce the
unnecessary weight of the copter was by changing the frame material from acrylic to carbon
fiber. With a carbon fiber frame, the tricopter frame can be stronger and lighter.

2 sou w88 e

smlsETle

Figure 4. Frame design

The yaw mechanism is whole revised. The novelty of this yaw mechanism is manufacturing
process. The whole rear arm is printed from 3D printed as a one piece. As Elite 3D printer at the
makerspace can print with two materials, support material that soluble in an acid bath, and ABS
for actual structure. Figure 5 shows final design of the yaw mechanism that attached on the rear

arm.

Figure 5. yaw mechanism
In order to test the thrust values and create a PID controller, a test rig was built that can

maximize the allowable freedom of the copter. One issue faced when testing on the ground is the
propellers grounded effect. The grounded effect is due to the thrust bouncing off the ground and
producing extra lift force. To eliminate the grounded effect produced, the test rig allows for the
tricopter to be elevated. In order to test all roll, pitch, and yaw values the test rig consists of a
ball in socket device. This allows for complete freedom in rotation and constrains the Z-axis,
preventing it from flying. Once everything is set up and attached, the tricopter can be tested and
values can be adjusted in order to maintain stability. Figure 6 below shows an image of the test
rig that was constructed.

Figure 6: Test Rig
When designing a tricopter, safety is always the first priority. In order to ensure that the

safety of those around the test rig two fail safes are put in place. The first act of safety is to
ensure that the initial thrust isn’t full power. Before the thrust can be adjusted the Arduino must
read that 1100 RPM of thrust was given to the propellers. The second safety mechanism allows
the user to cut the thrust by adjusting the joystick on the controller. This is put in place in case an
immediate shutdown of the propellers are needed.

CODE:

The interface that controls the tricopter is broken up between two microcontrollers: the
Arduino Nano and the Raspberry Pi. The Arduino Nano controls the thrust values of each
propeller and the kinematics of the tricopter. The Raspberry Pi is used to send live stream video
to the user as well as receive data from the Arduino Nano. The communication that is used
between the Arduino Nano and the Raspberry Pi is Serial communication. Through the serial
communication the IMU data is sent to the Raspberry Pi which is then sent to a web server,
where it is displayed in a GUI along with the camera feedback. When using the PiCam with
OpenCV it produces high delays and isn’t good for live streaming. Instead the PiCam is sending
its feedback directly to a server that can be accessed by a web browser.

Code 1 below displays an interrupt created using the Arduino interface. With the interrupt
below, the Arduino reads the values given by the IMU every 250 ms. This interrupt is for
controlling the propellers with the transmitter. Although 250 ms is not the fastest at which it can
run, it is the most efficient. Due to the fact that the reaction time of a human is around this speed,
any speed lower than 250 will not be observable. Instead, it will unnecessarily call the pulsein
functions, the most time consuming part of the code.

void init_timerl ovf interrupt (void)
{

cli(); // disable all interrupts
TCCR1A = 0; // Clean the registers
TCCR1B = 0;

TCCRIE |= (1 << cs811); //

TCCR1B |= (1 << CS10); // Prescaler 1024

//divide timerl timebase by 1024, overflow occurs every 250 ms
TIMSEl |= (1 << TOIEl); //enable timerl overflow interrupt
//TIMSE1 = 0x01; //enable timerl overflow interrupt

asm("SEI"); //enable global interrupt
}
ISR (TIMERL OVF _vect) {

receiver_ flag=l; // Sets flag to get receiver wvalues

Code 1: Interrupt for transmitter

void PID(float roll,float roll prev, float pitch, float pitch prev, float yaw, float yaw prev) {
// Roll wariables
static float Ir error;
kr=4.3;
cat ir=0.000;
dr= 0.1;

Pr_error;

Dr_error;

£5 Aol PID
Dr_error=roll prev-roll;
Pr_error-microZdegrees (desired roll)-roll;
Iz &rfort=FPr error™i0l;

adjust_roll= kr*Pr_error+ir*Ir_error+dr*Dr_error;

Code 2: PID

To obtain the given PID values that work best with the tricopter, the IMU is needed.
From the IMU, one can obtain the Euler angles produced by the copter. Once the angles are
given, it is possible to create a PID controller by playing with those numbers and multiplying by
set constants. Code 2 above shows a snippet of how the PID values are calculated and adjusted.
The PID values are calculated in the Arduino code and is then displayed on the web browser
through the help of the serial communication with the Raspberry Pi. The flight control system of
the tricopter is an example of a closed loop system, which can also be seen in the Code 2 above.

void get receiver values(void) {
int chl, ch2, ch3, ch4;
// Measure transmitter values with a timeout of 40000 us
chl= i,40000);
ch2 = selIn (RUDDER, H 40000) ;
ch3 = zeIn (ELEVATION, HIGH,40000);
chd4 = =zeln (ATILERCN, HIGH,40000);

ulseIn (THROTTLE, HI
ul

mom oo

ul
ul

if (chl > 0)
{Thrust = chl;}
if (ch2 > 0)
{desired yaw = ch2;}
if (ch3 > 0)
{desired pitch = ch3;}
if (ch4 > 0)
{desired roll = ch4;}

Code 3: Receiver values pulse in code
Code 3 above displays the receiver code that allows the propellers to be controlled by the

transmitter. The transmitter originally sends a ppm signal to the receiver module. This ppm
signal is split into six different channels. As shown above, the receiver code uses the pulseln
function to get the pulse widths of the various channels. For our purposes, four are used and they
correspond to thrust, yaw, pitch, and roll. A timeout is used to minimize the time spent in the
pulsein function. The pulse widths are then checked to see if they have valid values since in the
case of a loose connection any garbage values of 0 would make the tricopter fall from the sky
and crash.

def TCP_transfer():

data_byte = conn.r
data_string-str(data_byte, ‘'utf-8')

roll,pitch, yaw= data_string.split(',"')

0ll,pitch,yaw, sep
rver Says:hi™)

socket.error:
print(“Error Occured.™)

Code 4: Python TCP server
The code above sets up the server side of a TCP connection between the raspberry pi and

any other TCP compatible device. First, data is received and put into a 1024 byte buffer. This
data comes in the form of a byte string, a new data type brought into python 3. This data type is
not very clean so it is converted into utf-8 string format. Then the string is split into the roll and
pitch values sent by the arduino to the raspberry pi. These are then turned into floats and sent to
the global variables to be used by the GUI. Multiple try statements are used in the code for error
handling. The first one detects if the socket crashed, mostly for debugging purposes. The second
one handles incorrect values for the split method since occasionally raspberry will receive blank

6

values since it is just listening on the serial port and the arduino is only sending a periodic
message. This also ensures accurate values are received.

The last part of the software was implementing a GUI. This was done by using PyQt5, a
set of python bindings for Qt version 5. Qt is a desktop application software meant to streamline
the creation of GUI and does a decent job of reducing the normally large amount of code
associated with GUI development. Despite this, there was still a sizeable amount of setup code to
get even the simple tricopter GUI up and running. The main reason was that we wanted the TCP
server function to still run during the GUI which required the use of threading and timers. By
using the proper libraries, we were able to successfully maintain our TCP server and update
values accordingly. Finally, to make the GUI an overall package, it was arranged so that the web
server hosted on the raspberry pi could be launched with a simple button press.

CONCLUSION:

The tricopter was successfully built, although there were many iterations made in the

process. As the the built progressed, so did the difficulty in controlling the copter. After many
tests, it is speculated that the disturbance in the PID control system comes from the tail motor.
Due to the uniqueness of a tricopter, the tail motor is unlike that of another copter. Although the
PID control needs more fine tuning, the live visual feed works perfectly. Since the copter was
meant to be used for security purposes, the live feed is necessary for the tricopter design. With
the live feed, it is possible to obtain all the tricopter information from one's desktop.

In the future, the PID controller can be tuned to produce better results. The frame can be
redesigned in order to create better lift and maneuverability, in the air. The GUI will also go
through a redesign, making it more user friendly and provide more information about the
tricopter.

