

ME - GY 9966

MS Project Report

The Swarm Robotic Game

Submitted by
Cuddalore Parthasarathy Sridhar

N16077628
scp392

To the department of
Mechatronics and Robotics Engineering

(Fall 2017)

�1

Abstract
In a world where self driving cars already exist, it is time humans start to get comfortable living
with robots. To get the interaction started many small robotic games have been devised that
work in a way that humans control them with a remote or program them and watch the robot in
actions. We take this interaction to the next step by letting the autonomous robots play with
the humans.

The robots we use in the game are all planar omnidirectional. The gameplay in simple worlds
could be described as a catch and catch game. All the robots work together to catch the
human player. The player’s score is based on the time it took for the robots to catch the player.
The swarm of robots communicate between themselves making dynamic formations that are
hard to dodge by the player.

Acknowledgement
Thanks to Professor Vikram Kapila for providing the fixed space for this project in the Lab and
also for procuring most of the components required for the project. I also would like to thank Dr
Mizanoor Rahman for timely checks on progress and coordinating biweekly review. The
knowledge on swarming and formation control is purely form a class with Dr. Ludovic Righetti.
All his class lectures slides, papers presented, homework exercises contribute to over ninety
percent of my references. I would like to thank him for taking the time to help me understand
certain implementations of swarming better.

�2

Table of Contents

Abstract	 2

Acknowledgement 	 2

Table of Contents	 3

1. The Arena	 4

2. The Robot	 5

3. Robot Operating System 	 6

4. Python	 6

5. Libraries	 6

6. Lab Experiment Setup	 7

7. Camera Feed	 8

8. Sensing Robots	 9

9. Robot Position	 11

10. Robot Heading	 11

11. Moving to Goal	 12

12. Data Structure	 13

13. Multi-Threading and OOP	 13

14. Initialization	 14

15. Tracking	 14

16. Swarming	 15

16.1 Adaptive Swarming	 15

16.2 Formation Control	 16

17. Plans for the next semester	 16

�3

1. The Arena

The arena is now planned to be a 8 ft square to accommodate around 8 to 12 robots and 1
human player. The sensing element is still not finalized. The possibilities are the following

1. One camera on the ceiling

2. Multiple cameras around the arena

3. Capacitance based sensing floor

4. Resistance based sensing floor

The Arena is supposed to be like a dark room immersive sound experience environment with
lights only on the robots.

�4

8 x 8 ft

2. The Robot
Omni-Directional robot are typically robots with Mecanum wheels like the one in the picture
below.

Considering the cost and time required to build these robots, an alternate choice to procure an
educational robotic toy Sphere SPRK+ was chosen.

Spheros is by configuration a differential drive robot placed inside a sphere. The company
provides ros packages and general api’s that allow developers to connect with a sphero. The
Sphere has 2 bright multicolored LED’s, used Bluetooth as mode of communication and has a
built in IMU based stabilizer.

�5

3. Robot Operating System
The complexity of the entire system demands a heterogeneous computer cluster architecture
such as ROS. Having analyzed the practical advantages and limitations on making this choice,
ROS was decided not to be used for this project.

Reasons:

ROS is highly platform dependent. Each package of ROS is written very specific to a particular
ubuntu release and also a specific ROS version. Combining multiple packages that are
chronologically far apart in their release date will demand different release of OS or ROS which
creates further complexities.

4. Python
Sphero provides general purpose API that can be used by developers to connect to spheros. I
am using this api to connect with sphero. This provides us access to control l the LED’s on the
Sphere and the motor velocities.

5. Libraries
The sphere API does not handle connection to BLE devices on the hardware level. BluePy is a
project that provides API that allows access to BLE devices from Linux machines. BlueZ is also
another project that is the official Linux bluetooth protocol stack. All these three libraries/ API
are used in combination to connect to multiple Sphere SPRK+ robots simultaneously from a
linux computer.

�6

6. Lab Experiment Setup

A Logitech camera is mounted on the ceiling, centered at the

centre of the black floor plate to minimize parallax error.

�7

7. Camera Feed
The above raw camera feed is cropped and mapped from pixels to 100 x 100 unit matrix to
enable conventional XY terminologies.

Bottom Left is [0,0]

Top Right is [100,100]

�8

8. Sensing Robots
To start with a very simple single camera on the ceiling method is adopted to find the robots
location. Since our robots do not have a unique marker on them tracking becomes a bit
challenging. With the LED’s on the robot turned on we do blob detection using OpenCV2 in
Python on the live camera feed.

The kernel size have been carefully chosen after multiple rounds of experimentation to
minimize the blob size. As the blob size increases the distance between the robots have to be
increased.

As the distance between two robots is less than 15cm, two individual blobs fuse to look like
one huge blob. This limits the number of robots on the arena and the range of motions
possible.

�9

The software filters brought down the minimum Euclidian distance between two robots to be
15 cm. Another layer of hardware polarized filter was aded to the camera lens as an experiment
to improve performance.

With this filter in place the robots can get as close as 1cm reopening the full range of motions
possible for the robots.

�10

9. Robot Position
The centroid of each blob is considered its [x,y] position.

10. Robot Heading

Knowing the robot’s heading is very important to control it. All the attempts made to access the
IMU’s raw data failed. Hence odometry based state estimation is not possible. The alternate
approach taken to calculate the robot’s heading is to just make the robot move and calculate
its heading every frame based on the blob’s location.

• If the blob moved from A[x,y] to B[x’,y’] in time dt

• B-A [∆x,∆y] is a vector depicting the motion

• ata2(∆y/∆x) provides us with the heading of the robot

Assumptions and Limitations: 

• We can find the heading of the robot only if it moves at least once

• We cannot update the heading if the robot does not move

• We will still be able to make stand and rotation to angle functions based on state prediction,
provided the initial heading before the rotation is known

�11

B

A

11. Moving to Goal
As the position and heading of the robot is known with respect to the global frame, we move
the robot to any goal using a P controller.

The velocity ‘V’ of the robot is chosen proportional to the distance error and the angle error is
used to calculate the angle steps ∆Theta.

Control Outputs:

Left Wheel Velocity = f(V - ∆Theta)

Right Wheel Velocity = f(V + ∆Theta)

This will further be updates to a PD controller.

Now the robots move forward and eventually turn towards the goal.

In the future this will be changed to join to goal and start moving if the robot is initially at rest.

�12

12. Data Structure
As having one long while loop that keeps iterating the states of the robot one after the other
would be too computationally inefficient, the tasks have been split into three scripts running
individually.

The Blob Updater script continuously detects blobs in the video feed and stores the position of
each blob in global frame in to binary memory location

The Controller script connects to the robots, reads output from the Blob Updater and carried
out multiple tasks.

1. Decides the [Robot IP, Blob] Location pair based on continues state monitoring

2. Decides the [Robot IP, Goal] pair base on the least cost for the entire system

3. Provides wheel velocities for each robot to go to its corresponding goal

The Goal Updater script reads the [Robot IP, position and heading] pair from the Controller and
provides the Controller new set of goals that are estimated by the Formation Controller
programmed in this script.

Communication between scripts now use pickle. The communication module will be updated
to use Google Protobufs as it is has a reduced computational cost as opposed to using pickle.

13. Multi-Threading and OOP
As all the robots needs to move together and we have a central computer that connects to all
the robots, the Controller script cannot address robots one after the other. State tracking, goal
allocation and determining the wheel velocities for each robot has to happen in parallel. This
demands multi-threading.

Each robot is made an object of the class bots and each robot can access only the data of its
neighbors making the system decentralized.

Each robots runs an individual thread inside the Controller script for each of its tasks. For one
complete iteration we have n threads where n = no. of robots x no. of tasks

�13

Blob Updater Controller Goal Updater

14. Initialization
The blobs location are known to the main controller but the controller has no clue as to which
blob is which robot. Hence we do sequential initialization of all the robots one after the other.
All the robots are placed in a random location on the floor plate with all LED’s turned off. Now
we turn on One robots LED’s and map the new blob that appeared to this robots IP.

Limitations:

• No robots can move until all the robots are initialized

• All the robots have to be initialized at the start itself

This is a very crude of way of getting things done. The game play demands dynamically adding
and removing robots into the arena. So I am planning to restructure the initialization module
completely.

15. Tracking
As the robot moves based on the control output, the feedback we get is the new location of
blobs. We iterate these blob location with each of the robot object’s state-position to measure
the Euclidian distance. The robot_xy to new_blob_xy distance will be minimum for the true
pairs as the robot cannot jump or hit each other. The new_blob_xy position is updated as the
robot objects current position.

�14

16. Swarming

16.1 Adaptive Swarming
The robots move to take a formation. If the formation is disturbed the robot moves back to the
formation dynamically reallocating positions based on the least cost for the system.

They can switch formations. Here I show them switching from a upward arrow formation to a
downward facing formation

�15

16.2 Formation Control
In formation control robots do not switch places. A predefined network is built for each
formation and at the start each robot moves to take its position to maintain edge controls
provided by the graph network.

The graph network we have is always a routed out branching and lets say ‘robot A’ is the root.
Now if any robot other than robot A is moved that robot will come back to its position to hold
formation. Instead if robot A is moved, all the other robots move corresponding to robot A to
hold the formation.

Right now Adaptive Swarming is implemented on real robots with a few limitation in the range
of operation as robots cannot collide.

Formation Control is now being implemented in a simulation with six differential drive robots.
After completing a series of experiments in the simulation and understanding the behavior of
the swarm, I will soon implement the same on sphero robots.

17. Plans for the next semester
1. Update P to PD controllers

2. Change adaptive swarming to true formation control

3. Track humans and robots simultaneously without occluding the tracking of any robot

4. Restructure the entire project to reduce computation cost

5. Convert static initializer function to a dynamic initializer

6. Find a trade of between being centralize and decentralized in terms if data handling with

higher priority to minimizing computational cost.

�16

	Abstract
	Acknowledgement
	Table of Contents
	1. The Arena
	2. The Robot
	3. Robot Operating System
	4. Python
	5. Libraries
	6. Lab Experiment Setup
	7. Camera Feed
	8. Sensing Robots
	9. Robot Position
	10. Robot Heading
	11. Moving to Goal
	12. Data Structure
	13. Multi-Threading and OOP
	14. Initialization
	15. Tracking
	16. Swarming
	16.1 Adaptive Swarming
	16.2 Formation Control
	17. Plans for the next semester

