ME 5643

Integrated Term Project

Mechatronics

Guangzhou Li – gl1439 – N1778058
Apratim Bajpai – ab6462 – N1
Haareeth Parimi – vhp219 – N13733624
<table>
<thead>
<tr>
<th>Serial Number</th>
<th>Heading</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Motivation</td>
<td>1</td>
</tr>
<tr>
<td>2.</td>
<td>Goal</td>
<td>1</td>
</tr>
<tr>
<td>3.</td>
<td>Theory</td>
<td>1</td>
</tr>
<tr>
<td>4.</td>
<td>Code</td>
<td>2</td>
</tr>
<tr>
<td>5.</td>
<td>Electronic Circuits</td>
<td>13</td>
</tr>
<tr>
<td>6.</td>
<td>Bill of material</td>
<td>14</td>
</tr>
<tr>
<td>7.</td>
<td>Improvements</td>
<td>15</td>
</tr>
<tr>
<td>8.</td>
<td>Future Development</td>
<td>15</td>
</tr>
</tbody>
</table>
1. Motivation

Who doesn’t love watching kids grow up and play around? It’s a joy to watch children learn new words. With this thought in mind we have come up with a system that helps kids learn words fun way with interactive sensors and monitors the surrounding environments.

2. Goal

To develop a teaching and monitoring system that gives feedback to children in a fun way and helps them.

3. Theory

We use potentiometer and ADC together to distinguish different alphabets in English. Based on the voltage the wiper terminal creates we determine words and point to the word. As a monitoring System we have a digital thermometer that measures the temperature of the milk bottle. The thermometer would glow “RED” if the temperature is too hot, ”BLUE” if it’s too cold and “GREEN” if its optimum. We also have a night lamp that would turn on when there is not enough light in the room and turn on a light lamp. The user has freedom to change the color of light.
4. CODE:

' ' ' {$STAMP BS2}
' ' {$SPBASIC 2.5}
' '
' ===

' -----[Program Description]---

' -----[Revision History]---

' -----[I/O Definitions]---

TX PIN 5 ' serial output to LCD
Xaxis PIN 6 ' data from accelerometer
CS PIN 0 'ADC Chip Select
CLK PIN 1 'ADC Clock
Datain1 PIN 2 '1st Alphabet
Datain2 PIN 3 '2nd Alphabet
Datain3 PIN 4 '3rd Alphabet
servoPoint PIN 15 'Standard Servo
Correct PIN 7

Enable555 PIN 9 'Reset of 555 timer

' -----[Constants]---

baud CON 84 ' baudrate for the uart protocol
scalecon CON 13316 ' scaling factor for accelerometer

' -----[Variables]---
xraw VAR Word
Xo VAR Word
ADC1 VAR Byte
ADC2 VAR Byte
ADC3 VAR Byte
Alpha1 VAR Nib
Alpha2 VAR Nib
Alpha3 VAR Nib
i VAR Byte
nightLamp VAR Bit

'peizo

index VAR Byte
offset VAR Nib

noteLetter VAR Byte
noteFreq VAR Word
noteDuration VAR Word
noteOctave VAR Nib
noteDot VAR Bit

' -----[EEPROM Data]---

Octaves DATA 7, 6, 7, 6, 6, 6, 6, 6, 6, 6, 6,
 7, 6, 6, 7, 6, 6, 6, 6, 6, 6, 6, 7, 6,
 6, 7, 6, 6, 6, 6, 6, 6

Durations DATA 2, 2, 2, 2, 2, 4, 2, 4, 2, 2, 4, 4,
 4, 4, 4, 4, 4, 4, 2, 4, 4, 4, 4, 4, 2

Dots DATA 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0,
 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0,
 0, 0, 0, 0, 0, 0, 1

' -----[Initialization]--

setup:
 HIGH TX ' setup serial output pin
SEROUT TX, baud, [$19, $0C] ' cursor on, clear display

'A
SEROUT TX, baud,[$F8,$00,$11,$11,$1F,$11,$11,$0A,$04]

'B
SEROUT TX, baud,[$F9,$00,$0F,$11,$11,$0F,$11,$11,$0F]

'C
SEROUT TX, baud,[$FA,$00,$0E,$11,$01,$01,$01,$11,$0E]

'D
SEROUT TX, baud,[$FB,$00,$0F,$11,$11,$11,$11,$11,$0F]

'E
SEROUT TX, baud,[$FC,$00,$1F,$01,$01,$1F,$01,$01,$1F]

'R
SEROUT TX, baud,[$FD,$00,$11,$09,$05,$0F,$11,$11,$0F]

'T
SEROUT TX, baud,[$FE,$00,$04,$04,$04,$04,$04,$04,$1F]

LOW Enable555

' ---- [Program Code]---
Main:

IF(IN8 = 1) THEN
 nightLamp = nightLamp ^ 1
ENDIF

IF(nightLamp = 1) THEN
 HIGH Enable555
 DO UNTIL noteLetter = "Q"
 READ Notes + index, noteLetter
 LOOKUP offset, [4186, 4435, 4699, 4978, 5274, 5588, 5920, 6272, 6645, 7040, 7459, 7902, 0, 0], noteFreq
READ Octaves + index, noteOctave
noteOctave = 8 - noteOctave
noteFreq = noteFreq / (DCD noteOctave)

READ Durations + index, noteDuration
noteDuration = 1000 / noteDuration

READ Dots + index, noteDot
IF noteDot = 1 THEN noteDuration = noteDuration * 3 / 2

FREQOUT 10, noteDuration, noteFreq

index = index + 1
LOOP
ELSE
GOSUB Play
LOW Enable555
ENDIF

GOTO Main

' -----[Subroutines]---
dispReverse:

HIGH CS
LOW CS
LOW CLK
PULSOUT CLK, 210
SHIFTIN Datain3,CLK,MSBPOST,[ADC3\8]
IF (ADC3<32) THEN
 SEROUT TX, baud,[\$0] 'A
 Alpha3 = 0
ELSEIF(ADC3<64) THEN
 SEROUT TX, baud,[\$1] 'B
 Alpha3 = 1
ELSEIF(ADC3<96) THEN
 SEROUT TX, baud,[\$2] 'C
 Alpha3 = 2
ELSEIF(ADC3<128) THEN
 SEROUT TX, baud,[\$3] 'D
 Alpha3 = 3
ELSEIF(ADC3<160) THEN
 SEROUT TX, baud,[\$4] 'E
 Alpha3 = 4
ELSEIF(ADC3<192) THEN
SEROUT TX, baud,[$4F] 'O
Alpha3 = 5
ELSEIF(ADC3<224) THEN
 SEROUT TX, baud,[$5] 'R
 Alpha3 = 6
ELSEIF(ADC3<256) THEN
 SEROUT TX, baud,[$6] 'T
 Alpha3 = 7
ENDIF

HIGH CS
LOW CS
LOW CLK
PULSOUT CLK, 210
SHIFTIN Datain2,CLK,MSBPOST,[ADC2]\8
IF (ADC2<32) THEN
 SEROUT TX, baud,[S0] 'A
 Alpha2 = 0
ELSEIF(ADC2<64) THEN
 SEROUT TX, baud,[S1] 'B
 Alpha2 = 1
ELSEIF(ADC2<96) THEN
 SEROUT TX, baud,[S2] 'C
 Alpha2 = 2
ELSEIF(ADC2<128) THEN
 SEROUT TX, baud,[S3] 'D
 Alpha2 = 3
ELSEIF(ADC2<160) THEN
 SEROUT TX, baud,[S4] 'E
 Alpha2 = 4
ELSEIF(ADC2<192) THEN
 SEROUT TX, baud,[S4F] 'O
 Alpha2 = 5
ELSEIF(ADC2<224) THEN
 SEROUT TX, baud,[S5] 'R
 Alpha2 = 6
ELSEIF(ADC2<256) THEN
 SEROUT TX, baud,[S6] 'T
 Alpha2 = 7
ENDIF

HIGH CS
LOW CS
LOW CLK
PULSOUT CLK, 210
SHIFTIN Datain1,CLK,MSBPOST,[ADC1]\8
IF (ADC1<32) THEN
SEROUT TX, baud,[$0] 'A
Alpha1 = 0
ELSEIF(ADC1<64) THEN
 SEROUT TX, baud,[$1] 'B
 Alpha1 = 1
ELSEIF(ADC1<96) THEN
 SEROUT TX, baud,[$2] 'C
 Alpha1 = 2
ELSEIF(ADC1<128) THEN
 SEROUT TX, baud,[$3] 'D
 Alpha1 = 3
ELSEIF(ADC1<160) THEN
 SEROUT TX, baud,[$4] 'E
 Alpha1 = 4
ELSEIF(ADC1<192) THEN
 SEROUT TX, baud,[$4F] 'O
 Alpha1 = 5
ELSEIF(ADC1<224) THEN
 SEROUT TX, baud,[$5] 'R
 Alpha1 = 6
ELSEIF(ADC1<256) THEN
 SEROUT TX, baud,[$6] 'T
 Alpha1 = 7
ENDIF
RETURN

dispStraight:

HIGH CS
LOW CS
LOW CLK
PULSOUT CLK, 210
SHIFTIN Datain1,CLK,MSBPOST,[ADC1\8]
IF (ADC1<32) THEN
 SEROUT TX, baud,[$41] 'A
 Alpha1 = 0
ELSEIF(ADC1<64) THEN
 SEROUT TX, baud,[$42] 'B
 Alpha1 = 1
ELSEIF(ADC1<96) THEN
 SEROUT TX, baud,[$43] 'C
 Alpha1 = 2
ELSEIF(ADC1<128) THEN
 SEROUT TX, baud,[$44] 'D
 Alpha1 = 3
ELSEIF(ADC1<160) THEN
 SEROUT TX, baud,[\$45] 'E
 Alpha1 = 4
ELSEIF(ADC1<192) THEN
 SEROUT TX, baud,[\$4F] 'O
 Alpha1 = 5
ELSEIF(ADC1<224) THEN
 SEROUT TX, baud,[\$52] 'R
 Alpha1 = 6
ELSEIF(ADC1<256) THEN
 SEROUT TX, baud,[\$54] 'T
 Alpha1 = 7
ENDIF

HIGH CS
LOW CS
LOW CLK
PULSOUT CLK, 210
SHIFTIN Datain2,CLK,MSBPOST,[ADC2\8]
IF (ADC2<32) THEN
 SEROUT TX, baud,[\$41] 'A
 Alpha2 = 0
ELSEIF(ADC2<64) THEN
 SEROUT TX, baud,[\$42] 'B
 Alpha2 = 1
ELSEIF(ADC2<96) THEN
 SEROUT TX, baud,[\$43] 'C
 Alpha2 = 2
ELSEIF(ADC2<128) THEN
 SEROUT TX, baud,[\$44] 'D
 Alpha2 = 3
ELSEIF(ADC2<160) THEN
 SEROUT TX, baud,[\$45] 'E
 Alpha2 = 4
ELSEIF(ADC2<192) THEN
 SEROUT TX, baud,[\$4F] 'O
 Alpha2 = 5
ELSEIF(ADC2<224) THEN
 SEROUT TX, baud,[\$52] 'R
 Alpha2 = 6
ELSEIF(ADC2<256) THEN
 SEROUT TX, baud,[\$54] 'T
 Alpha2 = 7
ENDIF

HIGH CS
LOW CS
LOW CLK
PULSOUT CLK, 210
SHIFTIN Datain3,CLK,MSBPOST,[ADC3\8]
IF (ADC3<32) THEN
 SEROUT TX, baud,[${41}] 'A
 Alpha3 = 0
ELSEIF(ADC3<64) THEN
 SEROUT TX, baud,[${42}] 'B
 Alpha3 = 1
ELSEIF(ADC3<96) THEN
 SEROUT TX, baud,[${43}] 'C
 Alpha3 = 2
ELSEIF(ADC3<128) THEN
 SEROUT TX, baud,[${44}] 'D
 Alpha3 = 3
ELSEIF(ADC3<160) THEN
 SEROUT TX, baud,[${45}] 'E
 Alpha3 = 4
ELSEIF(ADC3<192) THEN
 SEROUT TX, baud,[${4F}] 'O
 Alpha3 = 5
ELSEIF(ADC3<224) THEN
 SEROUT TX, baud,[${52}] 'R
 Alpha3 = 6
ELSEIF(ADC3<256) THEN
 SEROUT TX, baud,[${54}] 'T
 Alpha3 = 7
ENDIF
RETURN

gotoCOD:
 FOR i = 1 TO 100
 PULSOUT servoPoint, 180
 PAUSE 20
 NEXT
RETURN

gotoCAT:
 FOR i = 1 TO 100
 PULSOUT servoPoint, 360
 PAUSE 20
 NEXT
RETURN

gotoBAT:
 FOR i = 1 TO 100
PULSOUT servoPoint, 540
PAUSE 20
NEXT
RETURN
gotoDOE:
FOR i = 1 TO 100
 PULSOUT servoPoint, 720
 PAUSE 20
NEXT
RETURN
gotoRAT:
FOR i = 1 TO 100
 PULSOUT servoPoint, 900
 PAUSE 20
NEXT
RETURN
gotoBEE:
FOR i = 1 TO 100
 PULSOUT servoPoint, 1080
 PAUSE 20
NEXT
RETURN
compareWord:
'COD
IF((Alpha1=2) AND (Alpha2=5) AND (Alpha3=3))THEN
 GOSUB gotoCOD
 HIGH Correct

'CAT
ELSEIF((Alpha1=2) AND (Alpha2=0) AND (Alpha3=7)) THEN
 GOSUB gotoCAT
 HIGH Correct

'BAT
ELSEIF((Alpha1=1) AND (Alpha2=0) AND (Alpha3=7)) THEN
 GOSUB gotoBAT
 HIGH Correct

'DOE
ELSEIF((Alpha1=3) AND (Alpha2=5) AND (Alpha3=4)) THEN
 GOSUB gotoDOE
'RAT
ELSEIF((Alpha1=6) AND (Alpha2=0) AND (Alpha3=7)) THEN
 GOSUB gotoRAT
 HIGH Correct

'BEE
ELSEIF((Alpha1=1) AND (Alpha2=4) AND (Alpha3=4)) THEN
 GOSUB gotoBEE
 HIGH Correct

'NONE
ELSE
 LOW Correct
ENDIF
ENDIF

RETURN

Play:

' your code here
PULSIN Xaxis, 1, xraw
Xo=xraw**scalecon-508
DEBUG HOME, SDEC Xo , CR, SDEC xraw

IF (Xo.HIGHBIT = 1) THEN
 SEROUT TX, baud,[0C,9A]
 'SEROUT TX, baud,[6,0,2,1,3,4,5]
 GOSUB dispReverse
ELSE
 SEROUT TX, baud,[0C,87]
 GOSUB dispStraight
 'SEROUT TX, baud,[43,41,54,52]
ENDIF

GOSUB compareWord

RETURN
5. Electronic Circuits

ADC:

![ADC Circuit Diagram]

Servo Motor:

![Servo Motor Diagram]
6. Bill-of-material

<table>
<thead>
<tr>
<th>Component</th>
<th>Cost/Piece in USD</th>
<th>Quantity</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic Stamp 2</td>
<td>99.95</td>
<td>1</td>
<td>99.95</td>
</tr>
<tr>
<td>Potentiometer</td>
<td>0.3</td>
<td>3</td>
<td>0.9</td>
</tr>
<tr>
<td>ADC</td>
<td>1.3</td>
<td>3</td>
<td>3.9</td>
</tr>
<tr>
<td>Standard servo</td>
<td>15</td>
<td>1</td>
<td>15</td>
</tr>
<tr>
<td>Bicolor LED</td>
<td>1.5</td>
<td>1</td>
<td>1.5</td>
</tr>
<tr>
<td>555timer</td>
<td>0.5</td>
<td>1</td>
<td>0.5</td>
</tr>
<tr>
<td>LCD display</td>
<td>5</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>Accelerometer</td>
<td>3</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Resistor pack</td>
<td>10</td>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>Wire spool</td>
<td>5</td>
<td>3</td>
<td>15</td>
</tr>
<tr>
<td>Battery</td>
<td>1.2</td>
<td>1</td>
<td>1.2</td>
</tr>
<tr>
<td>Total cost</td>
<td>$142.75</td>
<td></td>
<td>$155.95</td>
</tr>
</tbody>
</table>
7. Improvements

Using all the alphabets, in the English Language.
Increasing the number of words that can be learnt.
Making the system more robust.
Coding can be optimized for better efficiency.
Use of EEPROM to save memory.
Displaying pictures on the LCD.

8. Future Development

ABC: Automatic Barrier Constructor