

ME 5643

Integrated Term
Project
Mechatronics

Guangzhou Li – gl1439 – N1778058
Apratim Bajpai – ab6462 – N1
Haareeth Parimi – vhp219 – N13733624

1

Serial Number Heading Page
1. Motivation 1
2. Goal 1
3. Theory 1
4. Code 2
5. Electronic Circuits 13
6. Bill of material 14
7. Improvements 15
8. Future Development 15

2

1. Motivation
Who doesn’t love watching kids grow up and play around? It’s a joy to watch children learn new words. With this thought in
mind we have come up with a system that helps kids learn words fun way with interactive sensors and monitors the
surrounding environments.

2. Goal
To develop a teaching and monitoring system that gives feedback to children in a fun way and helps them.

3. Theory
We use potentiometer and ADC together to distinguish different alphabets in English. Based on the voltage the wiper
terminal creates we determine words and point to the word. As a monitoring System we have a digital thermometer that
measures the temperature of the milk bottle. The thermometer would glow “RED” if the temperature is too hot, “BLUE” if
it’s too cold and “GREEN” if its optimum. We also have a night lamp that would turn on when there is not enough light in
the room and turn on a light lamp. The user has freedom to change the color of light.

3

4. CODE:

'
' {$STAMP BS2}
' {$PBASIC 2.5}
'
' ===

' -----[Program Description]---

' -----[Revision History]--

' -----[I/O Definitions]---

TX PIN 5 ' serial output to LCD

Xaxis PIN 6 ' data from accelerometer

CS PIN 0 'ADC Chip Select
CLK PIN 1 'ADC Clock
Datain1 PIN 2 '1st Alphabet
Datain2 PIN 3 '2nd Alphabet
Datain3 PIN 4 '3rd Alphabet

servoPoint PIN 15 'Standard Servo

Correct PIN 7

Enable555 PIN 9 'Reset of 555 timer

' -----[Constants]---

baud CON 84 ' baudrate for the uart protocol

scalecon CON 13316 ' scaling factor for accelerometer
' -----[Variables]---

4

xraw VAR Word
Xo VAR Word
ADC1 VAR Byte
ADC2 VAR Byte
ADC3 VAR Byte
Alpha1 VAR Nib
Alpha2 VAR Nib
Alpha3 VAR Nib

i VAR Byte

nightLamp VAR Bit

'peizo

index VAR Byte
offset VAR Nib

noteLetter VAR Byte
noteFreq VAR Word
noteDuration VAR Word
noteOctave VAR Nib
noteDot VAR Bit

' -----[EEPROM Data]---

Notes DATA "E", "E", "G", "E", "E", "E", "G", "E", "G", "C", "B", "A",
 "A", "G", "D", "E", "F", "D", "D", "D", "E", "F", "D", "F",
 "B", "A", "G", "B", "C", "C", "C", "Q"

Octaves DATA 7, 6, 7, 6, 6, 6, 6, 7, 6, 6, 6, 6,
 7, 6, 6, 7, 6, 6, 6, 6, 6, 6, 7, 6,
 6, 7, 6, 6, 6, 6, 6

Durations DATA 2, 2, 2, 2, 2, 4, 2, 4, 2, 2, 4, 4,
 4, 4, 4, 4, 4, 4, 4, 4, 2, 4, 4, 4,
 4, 4, 4, 4, 4, 4, 2

Dots DATA 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0,
 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0,
 0, 0, 0, 0, 0, 0, 1

' -----[Initialization]--

setup:
 HIGH TX ' setup serial output pin

5

 PAUSE 100 ' allow LCD to initialize

 SEROUT TX, baud, [$19, $0C] ' cursor on, clear display

 'A
 SEROUT TX, baud,[$F8,$00,$11,$11,$1F,$11,$11,$0A,$04]

 'B
 SEROUT TX, baud,[$F9,$00,$0F,$11,$11,$0F,$11,$11,$0F]

 'C
 SEROUT TX, baud,[$FA,$00,$0E,$11,$01,$01,$01,$11,$0E]

 'D
 SEROUT TX, baud,[$FB,$00,$0F,$11,$11,$11,$11,$11,$0F]

 'E
 SEROUT TX, baud,[$FC,$00,$1F,$01,$01,$1F,$01,$01,$1F]

 'R
 SEROUT TX, baud,[$FD,$00,$11,$09,$05,$0F,$11,$11,$0F]

 'T
 SEROUT TX, baud,[$FE,$00,$04,$04,$04,$04,$04,$04,$1F]

 LOW Enable555

' -----[Program Code]--
Main:

 IF(IN8 = 1) THEN
 nightLamp = nightLamp ^ 1
 ENDIF

 IF(nightLamp = 1) THEN
 HIGH Enable555
 DO UNTIL noteLetter = "Q"
 READ Notes + index, noteLetter

 LOOKDOWN noteLetter, ["C", "d", "D", "e", "E",
 "F", "g", "G", "a", "A",
 "b", "B", "R", "Q"], offset

 LOOKUP offset, [4186, 4435, 4699, 4978, 5274,
 5588, 5920, 6272, 6645, 7040,
 7459, 7902, 0, 0], noteFreq

6

 READ Octaves + index, noteOctave
 noteOctave = 8 - noteOctave
 noteFreq = noteFreq / (DCD noteOctave)

 READ Durations + index, noteDuration
 noteDuration = 1000 / noteDuration

 READ Dots + index, noteDot
 IF noteDot = 1 THEN noteDuration = noteDuration * 3 / 2

 FREQOUT 10, noteDuration, noteFreq

 index = index + 1
 LOOP
 ELSE
 GOSUB Play
 LOW Enable555
 ENDIF

 GOTO Main

' -----[Subroutines]---

dispReverse:

HIGH CS
LOW CS
LOW CLK
PULSOUT CLK, 210
SHIFTIN Datain3,CLK,MSBPOST,[ADC3\8]
IF (ADC3<32) THEN
 SEROUT TX, baud,[$0] 'A
 Alpha3 = 0
ELSEIF(ADC3<64) THEN
 SEROUT TX, baud,[$1] 'B
 Alpha3 = 1
ELSEIF(ADC3<96) THEN
 SEROUT TX, baud,[$2] 'C
 Alpha3 = 2
ELSEIF(ADC3<128) THEN
 SEROUT TX, baud,[$3] 'D
 Alpha3 = 3
ELSEIF(ADC3<160) THEN
 SEROUT TX, baud,[$4] 'E
 Alpha3 = 4
ELSEIF(ADC3<192) THEN

7

 SEROUT TX, baud,[$4F] 'O
 Alpha3 = 5
ELSEIF(ADC3<224) THEN
 SEROUT TX, baud,[$5] 'R
 Alpha3 = 6
ELSEIF(ADC3<256) THEN
 SEROUT TX, baud,[$6] 'T
 Alpha3 = 7
ENDIF

HIGH CS
LOW CS
LOW CLK
PULSOUT CLK, 210
SHIFTIN Datain2,CLK,MSBPOST,[ADC2\8]
IF (ADC2<32) THEN
 SEROUT TX, baud,[$0] 'A
 Alpha2 = 0
ELSEIF(ADC2<64) THEN
 SEROUT TX, baud,[$1] 'B
 Alpha2 = 1
ELSEIF(ADC2<96) THEN
 SEROUT TX, baud,[$2] 'C
 Alpha2 = 2
ELSEIF(ADC2<128) THEN
 SEROUT TX, baud,[$3] 'D
 Alpha2 = 3
ELSEIF(ADC2<160) THEN
 SEROUT TX, baud,[$4] 'E
 Alpha2 = 4
ELSEIF(ADC2<192) THEN
 SEROUT TX, baud,[$4F] 'O
 Alpha2 = 5
ELSEIF(ADC2<224) THEN
 SEROUT TX, baud,[$5] 'R
 Alpha2 = 6
ELSEIF(ADC2<256) THEN
 SEROUT TX, baud,[$6] 'T
 Alpha2 = 7
ENDIF

HIGH CS
LOW CS
LOW CLK
PULSOUT CLK, 210
SHIFTIN Datain1,CLK,MSBPOST,[ADC1\8]
IF (ADC1<32) THEN

8

 SEROUT TX, baud,[$0] 'A
 Alpha1 = 0
ELSEIF(ADC1<64) THEN
 SEROUT TX, baud,[$1] 'B
 Alpha1 = 1
ELSEIF(ADC1<96) THEN
 SEROUT TX, baud,[$2] 'C
 Alpha1 = 2
ELSEIF(ADC1<128) THEN
 SEROUT TX, baud,[$3] 'D
 Alpha1 = 3
ELSEIF(ADC1<160) THEN
 SEROUT TX, baud,[$4] 'E
 Alpha1 = 4
ELSEIF(ADC1<192) THEN
 SEROUT TX, baud,[$4F] 'O
 Alpha1 = 5
ELSEIF(ADC1<224) THEN
 SEROUT TX, baud,[$5] 'R
 Alpha1 = 6
ELSEIF(ADC1<256) THEN
 SEROUT TX, baud,[$6] 'T
 Alpha1 = 7
ENDIF

RETURN

dispStraight:

HIGH CS
LOW CS
LOW CLK
PULSOUT CLK, 210
SHIFTIN Datain1,CLK,MSBPOST,[ADC1\8]
IF (ADC1<32) THEN
 SEROUT TX, baud,[$41] 'A
 Alpha1 = 0
ELSEIF(ADC1<64) THEN
 SEROUT TX, baud,[$42] 'B
 Alpha1 = 1
ELSEIF(ADC1<96) THEN
 SEROUT TX, baud,[$43] 'C
 Alpha1 = 2
ELSEIF(ADC1<128) THEN
 SEROUT TX, baud,[$44] 'D
 Alpha1 = 3

9

ELSEIF(ADC1<160) THEN
 SEROUT TX, baud,[$45] 'E
 Alpha1 = 4
ELSEIF(ADC1<192) THEN
 SEROUT TX, baud,[$4F] 'O
 Alpha1 = 5
ELSEIF(ADC1<224) THEN
 SEROUT TX, baud,[$52] 'R
 Alpha1 = 6
ELSEIF(ADC1<256) THEN
 SEROUT TX, baud,[$54] 'T
 Alpha1 = 7
ENDIF

HIGH CS
LOW CS
LOW CLK
PULSOUT CLK, 210
SHIFTIN Datain2,CLK,MSBPOST,[ADC2\8]
IF (ADC2<32) THEN
 SEROUT TX, baud,[$41] 'A
 Alpha2 = 0
ELSEIF(ADC2<64) THEN
 SEROUT TX, baud,[$42] 'B
 Alpha2 = 1
ELSEIF(ADC2<96) THEN
 SEROUT TX, baud,[$43] 'C
 Alpha2 = 2
ELSEIF(ADC2<128) THEN
 SEROUT TX, baud,[$44] 'D
 Alpha2 = 3
ELSEIF(ADC2<160) THEN
 SEROUT TX, baud,[$45] 'E
 Alpha2 = 4
ELSEIF(ADC2<192) THEN
 SEROUT TX, baud,[$4F] 'O
 Alpha2 = 5
ELSEIF(ADC2<224) THEN
 SEROUT TX, baud,[$52] 'R
 Alpha2 = 6
ELSEIF(ADC2<256) THEN
 SEROUT TX, baud,[$54] 'T
 Alpha2 = 7
ENDIF

HIGH CS
LOW CS

10

LOW CLK
PULSOUT CLK, 210
SHIFTIN Datain3,CLK,MSBPOST,[ADC3\8]
IF (ADC3<32) THEN
 SEROUT TX, baud,[$41] 'A
 Alpha3 = 0
ELSEIF(ADC3<64) THEN
 SEROUT TX, baud,[$42] 'B
 Alpha3 = 1
ELSEIF(ADC3<96) THEN
 SEROUT TX, baud,[$43] 'C
 Alpha3 = 2
ELSEIF(ADC3<128) THEN
 SEROUT TX, baud,[$44] 'D
 Alpha3 = 3
ELSEIF(ADC3<160) THEN
 SEROUT TX, baud,[$45] 'E
 Alpha3 = 4
ELSEIF(ADC3<192) THEN
 SEROUT TX, baud,[$4F] 'O
 Alpha3 = 5
ELSEIF(ADC3<224) THEN
 SEROUT TX, baud,[$52] 'R
 Alpha3 = 6
ELSEIF(ADC3<256) THEN
 SEROUT TX, baud,[$54] 'T
 Alpha3 = 7
ENDIF

RETURN

gotoCOD:
 FOR i = 1 TO 100
 PULSOUT servoPoint, 180
 PAUSE 20
 NEXT
 RETURN

gotoCAT:
 FOR i = 1 TO 100
 PULSOUT servoPoint, 360
 PAUSE 20
 NEXT
 RETURN

gotoBAT:
 FOR i = 1 TO 100

11

 PULSOUT servoPoint, 540
 PAUSE 20
 NEXT
 RETURN

gotoDOE:
 FOR i = 1 TO 100
 PULSOUT servoPoint, 720
 PAUSE 20
 NEXT
 RETURN

gotoRAT:
 FOR i = 1 TO 100
 PULSOUT servoPoint, 900
 PAUSE 20
 NEXT
 RETURN

gotoBEE:
 FOR i = 1 TO 100
 PULSOUT servoPoint, 1080
 PAUSE 20
 NEXT
 RETURN

compareWord:
'COD
IF((Alpha1=2) AND (Alpha2=5) AND (Alpha3=3))THEN
 GOSUB gotoCOD
 HIGH Correct

'CAT
ELSEIF((Alpha1=2) AND (Alpha2=0) AND (Alpha3=7)) THEN
 GOSUB gotoCAT
 HIGH Correct

'BAT
ELSEIF((Alpha1=1) AND (Alpha2=0) AND (Alpha3=7)) THEN
 GOSUB gotoBAT
 HIGH Correct

'DOE
ELSEIF((Alpha1=3) AND (Alpha2=5) AND (Alpha3=4)) THEN
 GOSUB gotoDOE

12

 HIGH Correct

'RAT
ELSEIF((Alpha1=6) AND (Alpha2=0) AND (Alpha3=7)) THEN
 GOSUB gotoRAT
 HIGH Correct

'BEE
ELSEIF((Alpha1=1) AND (Alpha2=4) AND (Alpha3=4)) THEN
 GOSUB gotoBEE
 HIGH Correct

'NONE
ELSE
 LOW Correct

ENDIF

RETURN

Play:

 ' your code here
 PULSIN Xaxis, 1, xraw
 Xo=xraw**scalecon-508
 DEBUG HOME, SDEC Xo , CR, SDEC xraw

 IF (Xo.HIGHBIT = 1) THEN
 SEROUT TX, baud,[$0C,$9A]
 'SEROUT TX, baud,[$6,$0,$2,$1,$3,$4,$5]
 GOSUB dispReverse
 ELSE
 SEROUT TX, baud,[$0C,$87]
 GOSUB dispStraight
 'SEROUT TX, baud,[$43,$41,$54,$52]
 ENDIF

 GOSUB compareWord

RETURN

13

5. Electronic Circuits
ADC:

Servo Motor:

14

LCD:

6. Bill-of-material
Component Cost/Piece in USD Quantity Cost
Basic Stamp 2 99.95 1 99.95
Potentiometer 0.3 3 0.9
ADC 1.3 3 3.9
Standard servo 15 1 15
Bicolor LED 1.5 1 1.5
555timer 0.5 1 0.5
LCD display 5 1 5
Accelerometer 3 1 3
Resistor pack 10 1 10
Wire spool 5 3 15
Battery 1.2 1 1.2
Total cost $142.75 $155.95

15

7. Improvements
Using all the alphabets, in the English Language.
Increasing the number of words that can be learnt.
Making the system more robust.
Coding can be optimized for better efficiency.
Use of EEPROM to save memory.
Displaying pictures on the LCD.

8. Future Development
ABC: Automatic Barrier Constructor

9. Conclusion

