
Team 6

Riccardo Castellani

Edoardo Mura

Andrea Pacilli

Mechatronics’ project

Purposes

The goal of our project was to build an hunting and tracking system that is able to follow

an object moving in the surrounding space. The system will use a Ping sensor to sense the

moving objects, and will use two servo motors to rotate it on two different axes.

The Basic Stamp will command the whole system and an appropriate algorithm will drive

the sensor through the object hunting.

The sensor will continuously rotate until an object falls in its range of activity. As soon as

the object is hooked up the system will follow it. In case the Ping looses sight of the

hunted object, the system will start again a sweep search in the space until the object is

captured again.

The basic principles of the algorithm are the following:

- the system has to work in an open space and will use the ability of the Ping sensor

to measures the distances to detect objects in an open space;

- when the object is captured the Ping will stop rotating and an LCD display will

continuously update the position and the distance of the detected object;

- when a movement is detected the servo motors will be appropriately controlled to

move the sensor and keep it in touch with the target.

A compass, along with servo rotation angles, will also be used to measures the target

position in the 3D space.

Hardware solutions

The following hardware components have been used:

• Ping sensor

• Standard servo motor (2)

• Hitachi HM55B Compass Module

• LCD display

• 555 Timer (2)

• Piezo speaker

• Diodes (2)

• Capacitors & Resistors (several)

The Ping sensor

The Ping sensor is an ultrasonic sensor that is able to measures the distance of an object

by computing the time that an ultrasonic wave takes to go back and forward. The Ping

transmits an ultrasonic burst and returns an output pulse proportional to the time required

for the burst echo to return to the sensor.

The Standard servo

The Standard servo motors allow movements in a range of 0 to 180 degrees, by the way,

only a portion of the available range will be used. The first servo will support the Ping

and will rotate on the vertical axis, while the second one will rotate on an horizontal axis

and will be connected to the first servo in such a way to move both the Ping sensor and

the other servo.

The vertical servo will range an angle of approximately 157.5° and will move left to right

from the position 1000 to 250 and the other way round right to left from 250 to 1000.

The horizontal servo will move up and down from the position 1000 to 550 and

backwards.

The compass

A compass module (Hitachi HM55B) will continuously monitor the direction of the Ping

sensor, returning the angle between the detected object and the magnetic Nord.

By the way, because the compass has to stand on a plane and steady surface, an algorithm

has been implemented to add to the magnetic angle detected by the compass to the angle

ranged by the vertical servo. The compass will be standing on the steady support of the

radar.

The LCD

A 2x16 serial LCD display will be used to report the activity of the Ping sensor. The

display will output the position and the distance of the object, while if a pushbutton is

pressed it will display the altitude.

The speaker

A sound emitter (piezo speaker) will be turned on to communicate the observers of an

object detection.

The 555 timer

Two 555 timers, connected in cascade, will be used in the astable mode to drive the piezo

speaker; such off-loaded configuration for the speaker beeping will prevent the BS2 from

slowing down and focus its computational capabilities where truly needed. The purpose

of the piezo speaker is beeping when the object is detected.

To achieve this goal, each of the two 555 timer has a specific task:

• First 555: when powered up, sends high-low pulses to the second 555 timer,

setting the beeping rate;

Duty cycle is set to 50% through a diode in parallel with R2; Ω=== kRRR 1021
,

FC µ10= , hence resulting in:

msCRttt lowhigh 3.69693.0 =××===

Hz
t

F 215.7
2

1
==

• Second 555: driven on from the first one, generates a ~4.8kHz high-low pulse

sequence (square wave) that induces the piezo crystal to vibrate. Such frequency

is purposely close to the piezo resonating frequency to get a louder sound.

Duty cycle is set to 50% through a diode in parallel with R2; Ω=== kRRR 1021

,

FC µ015.0= , hence resulting in:

msCRttt lowhigh 1039.0693.0 =××===

kHz
t

F 81.4
2

1
==

Algorithm and software solutions

The code structure

The algorithm is mainly divided in four pieces, one for each movement direction of the

Ping sensor, left, up, right and down.

The Ping will start rotating by tracking a squared spiral around the centered position. As

soon as an object is detected the Ping will stop and the LCD will display the

corresponding information.

A main Do loop is used to track the spiral until the boundaries are not exceeded to avoid

damaging the servo motors.

Four big For next loop are used to move the motors in the different directions, and in

each loop the algorithm will be able to measure the distance of the object using the Ping,

display the results of the hunt on the LCD and start a sub Do loop if the distance if

smaller than a prefixed one.

Once we enter this loop it means an object has been found and the Ping will continue

monitoring the situation, the compass will measure the position and the BS2 will display

on the LCD screen the information we were looking for. The loop will stop as soon as the

distance exceeds again the prefixed limit.

Because the Ping is tracking during the hunt a square spiral, that is basically a sequence

of squares with bigger sides, the For loops that are used to control the servo motors have

counters that are variables (maxtimerA and maxtimerL) that changes every time

depending on the size of the square.

Similarly, because we had to move the motors in different positions every time, we had to

monitor the duration of the pulse that was used on the Pulsout command for the servos.

The duration is then a variable (for example lateral+deltaL for the left subroutine) that

changes every time the main Do loop is crossed; depending on which direction the Ping

is moving, a different delta is added or subtracted to the duration corresponding to the

starting position (lateral).

Once we have a way of monitoring the motor’s position going left to right, and up and

down, we are able to compute the corresponding position in geometric degrees. In such a

way we are able to relate this angle with the one given from the compass showing the

magnetic Nord and we can the display on the LCD the position in the absolute frame of

reference.

First of all the compass is fix on the rigid support and lined up with the frame of

reference attached to the base. Then by adding the angle swept by the Ping projection in

the compass plane to the one measured by the compass itself we are able to find the

desired position.

Both angles of the rotating servos can be easily found using a proportion between the

counter used for the servos and the physical angle of 158° swept by the sensor (or 80°

depending on which servo we are looking at). In fact if the counter timer was growing

from 1 to maxtimer and an object is detected, the For loop momentarily stops by entering

the sub Do loop. Anyway the value of the counter timer is stored and can be used. For

example if an object is detected when the counter is equal to timer we have that the angle

swept by the Ping is

lateraldeltaLtimerLtimerdeltaLleLpartialAng +−∗∗=)max/)2((

because the sensor was moving from a position that was lateral-deltaL to a new position

lateral+deltaL it was seeping a distance of 2deltaL.

That is the distance we have to scale with the ratio time/maxtimer. Then at the ratio just

found we must subtract deltaL and add lateral but, to avoid the risk of going negative, we

will compute first the addition and then the subtraction.

deltaLlateraltimerLtimerdeltaLleLpartialAng −+∗∗= max/)2(

The result just obtained has to be now transformed in physical degrees, and this will be

done using the following proportion

13806**750/)158*(lepartialAngleLpartialAngleLpartialAng ==

The math just shown is of course valid only for one of the four direction, different

equations must be used in the other cases but the idea stays the same.

The rotation matrix

Our problem is cinematically similar to the one shown in the picture below.

So, the two angle ϑ1 and ϑ2 are the one swept by the servos, while we can see the little

cube as the Ping sensor mount on the second servo. Our target will be moving on the

frame of reference attached to the Ping sensor while the position outputted by the

algorithm has to be the one relative to the frame of reference attached to the solid base.

To achieve such measures we had to use some mechanics basic theory and we had to

compute the various rotation matrixes.

The frames of references used in our project are the one shown below

The frame attached on the Ping will be named x’’y’’z’’, the one attached to vertical servo

x’y’z’, while the one that is fix and attached to the base will be xyz.

The coordinates in the x’y’z’ frame can be report in the fixed frame using the R
y
 matrix

because the x’y’z’ rotates on the y axis. Then we will have our coordinates as

'xRx
y=

and similarly we have for the other

''' xRx
z=

If we now rename φ and ϑ the two angles we have

















−+

































−

=

















0

0

'

'

'

cos0sin

010

sin0cos

1l

z

y

x

z

y

x

ϕϕ

ϕϕ

and

















+































 −

=

















+































 −

=

















22

0

0

0

0

100

0cossin

0sincos

0

0

''

''

''

100

0cossin

0sincos

'

'

'

l

d

lz

y

x

z

y

x

ϑϑ

ϑϑ

ϑϑ

ϑϑ

Where l1 is the distance between the frames xyz and x’y’z’, l2 the distance between x‘y’z’

and x’’y’’z’’, while d is the distance detected by the Ping. The distance d of course will

be only on the x’’ coordinate due to the way the Ping was aligned with x’’y’’z’’.

The final coordinates will then be

















+⋅⋅

−⋅

−⋅⋅

=

















ϕϕϑ

ϑ

ϕϕϑ

cossincos

sin

sincoscos

2

1

2

ld

ld

ld

z

y

x

And those will be the one computed by the algorithm. Then to find the angle swept in the

plane of the compass we will have to compute the tan
-1

 function of the coordinates

x

y1tan −=α

This angle will then be added to the one measured by the compass using the following

equation

βα +−=)360(TotalAngle

where β is the one measured by the compass.

Because the partialAngles computed in the previous paragraph are the one relative to the

left and down positions of the servos to found the ϑ and φ angles used in the matrixes we

have to subtract 75° and 40°. During this calculus the angle could go negative and the

BS2 would not notice it.

We then had to implement a little algorithm to monitor the signs of those angles and

consequently adjust the equations in the rotation matrixes. The code can be found in the

Compute_Angle subroutine in the main code attached at the end of the report.

The Ping sensor

To use the Ping sensor the commands Pulsout and pulsing have been use as shown

below.

 PULSOUT 13, 5

 PULSIN 13, 1, time

 cmDistance = 2260 ** time

 DEBUG HOME, "Target distance: ", DEC3 cmDistance, " cm "

The command Pulsout is used to generate a pulse on Pin 13 with a width of duration of 5

in 2 µs units.

The command Pulsin on the other hand is used to measure the width of the returning

echo. The Pin used is always the same and is the one that controls the Ping sensor, Pin

13. The command Pulsin is able to measures the duration of a certain state (in our case 1

that corresponds to high) and stores the results in a variable (time).

Because the duration is measured in units of 2 µs to find the distance in cm we have to

compute the following passages:

tcdis
air

⋅=

Where dis is the distance, cair the speed of sound in the air and t is the time stored by the

command Pulsin.

Because the pulse goes back and forwards we have to divide dis by 2

2

tc
dis air ⋅

=

Then, because we want our measure in cm we will have to multiply everything by 100

and because the time is measured in BS2’s units, of 2 µs, we also have to multiply t by 2

and divide it by 10
6

46 1010

2

2

100 tctc
dis airair ⋅

=
⋅⋅

=

Now we have to take into account the speed of sound in the air that is approximately

344.8 m/s at room temperature

tdis ⋅= 03448.0

The problem now is that the BS2 program can’t handle numbers and multiplications for

numbers less than unity. This is the reason why we have to use the operator ** multiply

high, these operators multiplies two numbers returning the high 16 bits of the result.

So we now have

tdis **)6553603448.0(⋅=

At this point we have stored in the variable dis the distance in cm and we can now work

with it.

The Standard servo

The Standard servo is a servo motors that is able to rotate of a certain angle back and

forwards. This micro controlled motor receive sequences of high and low signals that

tells him how much and in which direction to rotate.

Normally to move such a servo a For loop would be used in the following way

 FOR COUNTER = 1 TO 150

 PULSOUT 14, 750

 PAUSE 30

 NEXT

Such a loop delivers 150 pulses while the command Pulsout tells the BS2 where to send

those pulses (Pin 14 in this case) and their duration. In such a way we can control the

position that will be reached by the servo, in fact the larger is the duration of those pulses

the furtherer the servo will be moved. The pause is used to separate a pulse from the

other.

Another very important parameter is the counter, if it is too small the servo will not reach

the desired position while, if too long, there will be a pause before the next command is

executed; this is the reason why the choice of this counter is fundamental for an

optimization of the algorithm.

For our project two servos have been used. The first rotating on a vertical axis, from left

to right, and the second up and down on an horizontal axis. The angle range was decide

in such a way to not interfere with other hardware parts and to sweep a sufficient space.

The first servo, connected to Pin 14, is able to sweep approximately 160° (that is in the

pulse duration language from 250 to 1000), while the second one, controlled by Pin 15,

will sweep more or less 90° (from 550 to 1000).

The following commands were used to control our system

 FOR timer = 1 TO maxtimer

 […]

 PULSOUT 14, lateral+deltaL

 PAUSE 30

 […]

 NEXT

as we can see the duration of the pulse is a variable (lateral+deltaL) so the path swept by

the servo changes depending on the side of the spiral that is sweeping. Consequently

because the duration is a variable, also the counter has to change and goes from 1 to

maxtimer, depends on the side.

The compass

The compass is able to return the x and y magnetic field strength measurement as shown

in the picture below.

Of course if the x component is maximum and the y component is null, the compass is

facing the magnetic nord otherwise the angle θ is given from the relation

x

y−
= −1tanϑ

The following code was use to return the request variables

 HIGH En: LOW En

 SHIFTOUT DinDout,clk,MSBFIRST,[Reset\4]

 HIGH En: LOW En

 SHIFTOUT DinDout,clk,MSBFIRST,[Measure\4]

 status = 0

 DO

 HIGH En: LOW En

 SHIFTOUT DinDout,clk,MSBFIRST,[Report\4]

 SHIFTIN DinDout,clk,MSBPOST,[Status\4]

 LOOP UNTIL status = Ready

 SHIFTIN DinDout,clk,MSBPOST,[x\11,y\11]

 HIGH En

 IF (y.BIT10 = 1) THEN y = y | NegMask

 IF (x.BIT10 = 1) THEN x = x | NegMask

High En: Low En and the first Shiftout command are used to reset the compass. The

second sequence of Highs and Lows with the second Shiftout are used to start the

measurement and status=0 is for clearing the previous status.

In the Do loop first a measurement of the status command is sent to the compass using

the Shiftout while later, a Shiftin command is used to acquire the status. The Do loop will

then be stopped when the condition status=Ready is satisfied.

With the next Shiftin the value of x and y are returned and with the last High command

the module is turned off. The last two If conditions are used to deal with negative

numbers.

In such a way we are able to compute the angle between the frame of reference used in

the algorithm, that is the same of the compass, and the magnetic Nord. Then by adding

and subtracting this angle to the one swept by the Ping we can monitor the position of our

object in the space.

Conclusions and further developments

The principals limits in our project where given form the technical specifics of the Ping

sensor. First of all the range limits within which a target can be detected goes from 2cm

to 3m. Then, the width of the “visible” cone doesn’t permit an accurate directionality.

At the same time the velocity of the servos doesn’t permit a fast search of the lost target.

Then to improve the performances of the system a more accurate sensor and faster servos

would be enough.

Anyway, just by increasing the velocity, the performances may not increase, in fact the

high inertias play a fundamental role. A delay in the response was noticed when an object

is detected and the command to stop the servo is given.

