
Team 1 - Jordan Adelson, Tom Sowers, Biman Nitin Herlekar            5/13/20 
 

ME-GY 6993: Advanced Mechatronics: Term Project Report 
Upgraded Smart Shades  

 

 
 
 

1 



Table of Contents 
 

Project Motivation​                                                                                                              ​Page 3 
 

Product Advancements​                                                                                                     ​Page 3 
(Term Project Vs. Propeller Project) 
 
Basic Functionality Improvements​                                                                                       ​Page 3 
Enhanced User Experience​                                                                                                 ​Page 3 
Additional Control Modes​                                                                                                     ​Page 3 
Microcontroller Usage and Integration​                                                                                 ​Page 4 

 
User Manual​                                                                                                                        ​Page 4 

 
Operating Smart Shades Through Our Web Application​                                                     ​Page 4 

 
Technical Details​                                                                                                                ​Page 7 

  
Web Application on the Raspberry Pi​                                                                                  ​Page 7  
Raspberry Pi Application to Receive Commands and 
Communicate Serially with the Arduino​                                                                               ​Page 9 
Arduino/Propeller Code Logic​                                                                                            ​Page 10 
Gesture Control​                                                                                                                  ​Page 11  
Voice Control​                                                                                                                      ​Page 12  
Hardware BOM​                                                                                                                  ​Page 13  
Integrated Stepper Motors, Belt-Driven Linear Actuators, and 
Inductive Limit Switches​                                                                                                     ​Page 14 
Phototransistor​                                                                                                                   ​Page 17 
Wiring Diagram​                                                                                                                  ​Page 18 
Propeller COG Usage ​                                                                                                       ​Page 19 

 
Future Goals​                                                                                                                     ​Page 19 

 
References​                                                                                                                        ​Page 20 

 
Commented Code​                                                                                                            ​Page 20 

 
Propeller Code​                                                                                                                   ​Page 20 
Arduino Code​                                                                                                                     ​Page 28 
Python Code to Send Data from Raspberry Pi to Arduino​                                                 ​Page 30 
Gesture Control Python Code​                                                                                            ​Page 32 
 

2 



Project Motivation 
 
Despite the many advancements in home automation since the turn of the century, the 
motorized window treatment market remains rather bleak. Most of the semi-affordable options 
are vertically-actuated roller shades, which leave much to be desired aesthetically. Similarly, 
most vendors require customers to purchase an all-in-one system, both curtains and mechanics, 
meaning that the fabric choices are quite limited when compared to traditional window 
coverings. As a result, consumers are often unable to find a product that perfectly suits the room 
they’ve carefully curated and may very well have to discard curtains that they’ve already fallen 
in love with in order to obtain the desired functionality. The only mechanized and customizable 
bi-parting drapes we came across were upwards of five hundred dollars. We set out to create a 
less expensive, multi-functional electromechanical system that allows customers to retrofit 
manual bi-parting shades in order to make them automatic. Although some existing solutions 
already allow for remote control or are compatible with hands-free personal assistants (Alexa, 
Google Home, etc.), we set out to incorporate even more user-friendly control modes including 
web app control (from a laptop or mobile device, for example), control based on outside light 
conditions, time-based control, gesture control, and voice control.  
 
Product Advancements (Term Project Vs. Propeller Project) 
 
Basic Functionality Improvements 
  
As per Professor Kapila’s suggestion, we opted to reduce the speed at which the shades move 
and altered the stepper motor accel/decel profile in order to dampen the noise generated by the 
actuators. Also at Professor Kapila’s recommendation, we implemented individual shade control 
such that the left and right shades can be moved independently of each other or simultaneously.  
 
Enhanced User Experience  
 
The first Smart Shades prototype we constructed for our Propeller project gave users the option 
of controlling the shades using the Simple IDE terminal. We used serial communication to 
display menu options and the user was able to input values that corresponded to certain actions 
(i.e. type 1 and press enter to close both shades). Of course, this control method is not practical 
if we are to eventually attempt to bring this device to market. Our main goal for the term project 
was to develop a web application hosted by a Raspberry Pi such that users can control their 
Smart Shades from a browser on any device on their LAN. 
 
Additional Control Modes 
 
We had already built in three distinct control modes: “Manual Control,” “Light Control” and “Time 
Control,” which will be covered in detail in the subsequent “User Manual” section of the report. 
Again, our initial goal was to enable users to toggle between these three control modes and 
effectively position their Smart Shades by accessing a web page on any device of their 

3 



choosing. Once we achieved this goal, we began working toward our stretch goal of 
incorporating additional user-friendly control modes, namely “Gesture Control” and “Voice 
Control.” These control modes will also be explained in depth later in the report.  
 
Microcontroller Usage and Integration 
 
Although controlling the shades with a Propeller was a requirement for our second project, we 
felt that, given its multi-core functionality, it would be beneficial to continue using the Parallax 
microcontroller going forward. Having a Cog dedicated to monitoring the state of the limit 
switches, for instance, ensures that there are no delays in stopping the shades when they reach 
the end of their travel.  
 
We also required a Raspberry Pi in order to host our web application. At first, we intended to 
establish a line of communication between the Pi and Propeller through a serial connection. 
However, we ran into a number of problems in doing so. When we used a ​USB to USB mini-B 
cable to connect the two microcontrollers, for example, we successfully sent information from 
the Prop to the Pi using the Pi terminal window, but we were unable to send information from 
the Pi to the Prop. We also attempted to use I2C through the Pi GPIO pin header, but we had 
trouble getting the Prop to act as an I2C slave. ​Unfortunately, there is very little information 
online detailing bi-directional communication between Raspberry Pi and Propeller, and given the 
project timeline, we decided to take an alternate approach. 
  
We changed the Propeller code logic such that different commands are executed when certain 
digital I/O pins are pulled high or low (see “Technical Details” section). We initially planned to 
use 3.3V to 5V logic level converters to safely connect GPIO pins on the Pi to digital I/O pins on 
the Prop. However, the shipment of these converters was delayed, so we instead used an 
Arduino as an intermediary between the Pi and the Prop. The Pi uses a serial connection to talk 
to the Arduino, and then digital I/O pins on the Arduino are directly connected to digital I/O pins 
on the Prop.  
 
Although using a Raspberry Pi, an Arduino and a Propeller may not be the most efficient or 
cost-effective method for controlling the shades, this approach gave us the unique opportunity 
to test our knowledge of all three microcontrollers that have been covered in the Advanced 
Mechatronics course. 
 
User Manual 
 
Operating Smart Shades Through Our Web Application 
 
This section details how customers can use the web application on their Local Area Network 
(LAN) to control their Smart Shades Device. The user can easily change the Smart Shades 
control scheme on the homepage as seen in Figure 1 on the next page. When a user clicks the 
“Manual Control Only” button, the shades will only open or close when manually triggered either 

4 



from the “Control” page as seen in Figure 2 on the next page, or through “Gesture Control” and 
“Voice Control” applications, which will be detailed later. The “Set Light Control Scheme” section 
can be used to configure the shades to either automatically open during the day (and close at 
night) or to automatically open at night (and close during the day). A phototransistor is used to 
indicate whether it is light or dark outside, but this will be covered in more detail in the technical 
section of the report. Finally, the “Time Control” portion of this page can be used to configure 
the shades to automatically open and close at specific times. Clicking the “Time Control” button 
sends the times selected by the user to the Raspberry Pi, allowing it to open and close the 
shades at the desired times. Note that our first Smart Shades prototype required the user to 
input the current time when the device booted up, but this is no longer necessary (the Python 
script on the Raspberry Pi checks the current time). In order to notify the user as to which 
control mode is currently active, the line of text that starts with “Current Mode” was added. 
When a page load event occurs in the HTML page’s life cycle, it executes a javascript function 
which reads the control mode value from the SQL server. Based on the value received from the 
SQL server, it prints the corresponding control mode name here to notify the user of the current 
state of their shades. 
 

 
Figure 1: Smart Shades Application Home Page 

 

5 



When a user clicks the “Control” tab from the header in either “Manual Control” or “Time 
Control” mode, they will see the page shown in Figure 2 below. From this page, users can 
manually command their shades. There are buttons to open or close both shades 
simultaneously and, alternatively, there are buttons to open or close the left and right shades 
independently. There are LEDs on the Propeller Activity Board corresponding to P26 and P27 
that indicate when the system is ready for an open or close command. The user is able to press 
the stop button at any time to stop both shades (even if one or both of the LEDs are illuminated) 
but will only be able to issue an open or close command if both LEDs are off. The reasoning 
behind this will be explained in depth in the subsequent technical section of the report. 
Whenever both LEDs are off, the stepper motors are disabled and the user is free to move the 
carriages by hand such that the shades are not fully open or closed. Similarly, the user can 
simply initiate open or close motion profiles and use the stop command to position the 
carriages/shades in desired locations (the stop button can be pressed even when controlling 
individual shades). 
 

 
Figure 2: Smart Shades Control Page 

 
 
 
 
 

6 



When the user selects the “Control” tab while “Light Control” mode is active, the page is 
displayed as shown in Figure 3 below. This is due to the nature of “Light Control” mode. If the 
user were to click open or close, the current light condition would override their choice resulting 
in the shades immediately reverting back to their original state. In other words, if the user were 
to choose the “Open During Day” scheme and then opt to manually close the shades during the 
day, the shades would immediately open again since “Light Control” mode is still enabled. We 
have avoided this issue by having the page dynamically render based on the control mode 
value. The stop button present on this page will stop the shades, exit “Light Control” mode and 
enter “Manual Control” mode. This causes the control buttons to reappear as shown in Figure 2. 

 

 
Figure 3: Control Page with Light Control Enabled 

 
Technical Details 
 
Web Application on the Raspberry Pi 
 
The web application that enables the user to control their shades from a browser on any device 
on their LAN is a .NET Core 2.2 application. .NET Core is a cross platform web application 
framework and can run on many different devices including the Raspberry Pi. The source code 
for this application is available on github as a public repo at this URL: 
https://github.com/tomsowers/SmartBlinds​.  
 
The web application was developed using the Visual Studio Community IDE. The web 
application has three main parts, the client side, the server side, and an SQL Server database. 
The client side of the application consists of HTML, Javascript and CSS used to create the web 
page that is rendered by the user’s browser. In order to handle styling bootstrap 4.0 was 
utilized. This framework is widely used to provide consistent styling across web applications, 
providing an easy way to implement a mobile first dynamic UI design. This can be seen by 

7 

https://github.com/tomsowers/SmartBlinds


opening the pages on a smartphone and desktop computer. The layout of the page 
automatically adapts to the view width of the device thanks to bootstrap. In addition to this the 
actions performed by the buttons on the pages are handled with javascript. When the buttons 
are clicked the axios framework is utilized to easily send HTTP requests. The server side of the 
application can then receive these HTTP requests on the mapped routes and perform various 
actions.  
 
The server side of the application is utilized to process the requests from the client side pages. 
This part of the application is written in C# and contains some SQL queries. The server side will 
take the information sent to it by the aforementioned HTTP requests and post data into an SQL 
database. The SQL database is utilized to allow multiple applications to talk to the Raspberry Pi 
all at once. Having multiple ways of controlling the shades (web app, gesture control, voice 
control) necessitated this design. The database acts as the single source of truth for the state of 
the shades.  
 
The SQL database is simple consisting of just one table for the shades. The table layout can be 
seen in the below figure. The first column for blind state corresponds to whether the shades 
should be open, closed, stopped, etc. The second column control mode corresponds to whether 
the user has selected manual control, light control or time control. The next two columns 
correspond to the open and close times selected by the user when initializing time control mode 
from the web application. The final column BlindID can be utilized if more than one set of 
shades need to be utilized. This column is a unique identifier for each shade connected to the 
system. Since we only have one prototype we haven’t implemented control options for more 
than one set of shades.  
 

 
Figure 4: SQL Table Design 

 

 
 

Figure 5: Blind State Table 

8 



 
 

Figure 6: Control Mode Table 
 

Raspberry Pi Application to Receive Commands and Communicate Serially with the Arduino 
 
In order for the Raspberry Pi to receive commands, a Python script was written. The script 
utilizes the pymssql package in order to connect to and execute commands on a SQL Server 
database. This script polls the previously mentioned SQL table. It then converts the values of 
blind state and control mode into another set of values detailed in Figure 7 below, which are 
then sent to the Arduino as strings over a serial connection. “Time Control” is also handled in 
this Python script. The application checks if control mode is set to the value corresponding to 
“Time Control” and if so checks the current time against the open and close times stored in the 
SQL table. Once it is time to open or close the shades based on the time control values, the 
script will send the Arduino the command to open or close the shades.  
 

 
 

Figure 7: Mapping of blind state and control mode to arduino values 

9 



Arduino/Propeller Code Logic 
 
All of the I/O pins that are utilized on the Arduino are designated as output pins. These pins are 
wired to I/O pins on the Propeller, which are in turn, designated as input pins. Each time the 
Python script running on the Pi sends a string through the serial connection, the Arduino parses 
the string as an integer and each output pin is driven high or low depending on the value 
received. As a result, the corresponding input pins on the Propeller are driven high or low 
accordingly. The table below shows the state of certain Arduino and Propeller pins resulting 
from unique commands/strings sent by the Raspberry Pi. The state of these input pins on the 
Propeller then dictate what the actuators/shades do. The commented Python script, Arduino 
code and Propeller code can all be found in the Appendix. 
 
 

 Shade1: 
Arduino Pin 6 
Prop Pin 16 

Shade2: 
Arduino Pin 7 
Prop Pin 17 

Dir: 
Arduino Pin 3 
Prop Pin 13 

Stp: 
Arduino Pin 10 
Prop Pin 0 

Light: 
Arduino Pin 11 
Prop Pin 1 

Close Both 
(String “1”) 

HIGH HIGH LOW LOW LOW 

Open Both 
(String “2”)  

HIGH HIGH HIGH LOW LOW 

Close Right 
(String “3”) 

HIGH LOW LOW LOW LOW 

Open Right 
(String “4”) 

HIGH LOW HIGH LOW LOW 

Close Left 
(String “5”) 

LOW HIGH LOW LOW LOW 

Open Left 
(String “6”) 

LOW HIGH HIGH LOW LOW 

Stop 
(String “7”) 

N/A N/A N/A HIGH LOW 

Light Scheme 1: 
Open @ Night 
(String “8”) 

N/A N/A LOW LOW HIGH 

Light Scheme 2: 
Closed @ Night 
(String “9”) 

N/A N/A HIGH LOW HIGH 

 

10 



Gesture Control 
 
In order to implement “Gesture Control” we utilized a Medium post [1]. The github repo 
corresponding to this post had a script using gestures to control music and lights. By modifying 
this script we were able to add a “Gesture Control” feature to our Smart Shades device. We 
replaced the commands with posting values into our SQL database. The script does require a 
web camera and a keyboard to be operated so we decided it would be best to run this program 
on our laptops. In order to use the script, the user must first capture their background by 
pressing the B key on their keyboard. Then the script will show what it is seeing and the user 
can recognize their gestures by pressing the spacebar. The L hand gesture commands the 
shades to open, the OK hand gesture commands them to close (see Figures 8 and 9 below) 
and a fist gesture will command the blinds to stop moving. Upon recognizing one of these 
gestures, the script will open a connection to the SQL server and post the corresponding value 
into it, causing the Raspberry Pi to receive the value and execute the command. Due to the way 
this was implemented, the user can run this script anywhere and be able to control their shades.  
 

 
Figure 8: Gesture Control Open Shades Command 

 

 
Figure 9: Gesture Control Close Shades Command 

11 



Voice Control 
 
While we are still in the early stages of development with regard to “Voice Control,” currently a 
user can say “Turn On” to open both shades and “Turn Off” to close both shades (see Figure 10 
below). We followed the steps outlined by the Google Assistant SDK Guide 
(​https://developers.google.com/assistant/sdk/guides/service/python​) and connected a 
microphone/speaker, effectively turning our Raspberry Pi into a Google Home.  
We then added the preexisting trait “On/Off” to our model so that we could program our Smart 
Shades device to associate an on/off voice command with an open/close shades command. In 
order to do so, we modified a block of sample code in the pushtotalk.py Python script provided 
by Google as seen in Figure 11 below. Much like with “Gesture Control,” when a user says 
“Turn On” or “Turn Off”,  the script opens a connection to the SQL server and posts the 
corresponding value. Then, the Raspberry Pi receives the value and executes an “Open” or 
“Close” command. 
 

 
Figure 10: Running Modified pushtotalk.py Script and Speaking a Turn On/Open Command 

  

 
Figure 11: Modified pushtotalk.py Code Block for Smart Shades Voice Control 

 

12 

https://developers.google.com/assistant/sdk/guides/service/python


 
Hardware BOM 
 

Item 
No. 

Description Part No. Supplier Qty. 

1 Stepper Motor with Integrated Driver and 
Controller 

17MDSI202S Anaheim 
Automation 

2 

2 drylin® ZLW-0630-basic toothed belt axis ZLW-20037463A Igus 2 

3 drylin® Bent Metal Motor Flange 
NEMA17 

MF-0630-NEMA17-SP Igus 2 

4 drylin® E Motor Coupling; d1: 5.00 mm; 
d2: 6mm square 

COU-AR-K-050-000-25
-26-B-AAAB 

Igus 2 

5 drylin® E initiator kit for installation size 
0630, inductive, 24 V, NPN NO, with 
support and 3 m connecting 

IK-0025-BG-3 Igus 4 

6 Propeller Activity Board WX 32912 Parallax 1 

7 Arduino Uno Rev3 with 
USB 2.0 Cable Type A/B 

A000066 
M000006 

Arduino 1 

8 Raspberry Pi 3 Model B+ Starter Kit 
(Including 2.5A Micro USB Power Supply) 

PI3P-STR32-C4-BLK CanaKit 1 

9 24V Power Supply LJH138 ALITOVE 1 

11 Phototransistor 350-00029 from 
WAM Parts Kit (28122) 

Parallax 1 

12 220 Ohm ¼ W 5% Resistors (red, red, 
brown) 

150-02210 from 
WAM Parts Kit (28122) 

Parallax 2 

13 10K Ohm ¼ W 5% Resistors (brown, 
black, orange) 

150-01030 from 
WAM Parts Kit (28122) 

Parallax 5 

 
 
 
 
 
 
 
 

13 



 
Integrated Stepper Motors, Belt-Driven Linear Actuators, and Inductive Limit Switches 
 
Each integrated stepper motor is coupled to its respective, belt-driven linear actuator via an 
angled mounting bracket and a flexible shaft coupling as shown below (motor 1 on the right and 
motor 2 on the left).  
 
 
  
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

14 



 
The motors were programmed using a USB to RS485 converter cable and SMPG-SMSI 
software that supports Anaheim Automation’s pulse generators and simple indexers. Through 
trial and error, we were able to find anmotion profile such that when initiated, each carriage 
travels the full length of the rail smoothly. Once the motors were programmed, the USB to 
RS485 cable was removed and the following control pins on each motor were wired to I/O pins 
on the Propeller Activity Board: Pin #4 (Input 1), Pin #6 (On/Off), Pin #7 (Direction In), and Pin 
#8 (Output 1). Also, Pin #9 (VIN) and Pin #10 were wired to the external 24V power source, and 
a common ground was established between the motors and the Propeller Activity Board (see 
wiring diagram for detailed schematics). Although each integrated stepper can store two 
different motion profiles, we are only using one for the purpose of this project, and thus, Pin #5 
(Input 2) remains open and is internally pulled up to +5VDC. 
 
As for the motor control inputs, when Pin #6 is high, the motor is enabled/energized whereas 
when it is low, the motor is disabled/deenergized. When Pin #7 is high, the motor shaft will spin 
in the clockwise direction whereas when it is low, the motor shaft will spin in the 
counterclockwise direction. Lastly, if the motor is energized, the instant Pin #4 (Input 1) is pulled 
low, motion profile 1 will be activated in the direction set by the state of Pin #7. Thus, in order to 
trigger an “open shades” command, the motor inputs are as follows: 
 

Open Shades (Pin #6 and Pin #7 Set Prior to Pin #4) 

Motor Input Pin Motor 1 (Right) Pin State Motor 2 (Left) Pin State 

4 LOW LOW 

6 HIGH HIGH 

7 HIGH LOW 

 
Conversely, in order to trigger a “close shades” command, the motor inputs are as follows: 
 

Close Shades (Pin #6 and Pin #7 Set Prior to Pin #4) 

Motor Input Pin Motor 1 (Right) Pin State Motor 2 (Left) Pin State 

4 LOW LOW 

6 HIGH HIGH 

7 LOW HIGH 

 
When a motion profile is complete, Pin #4 and Pin #6 return to their default states of high and 
low, respectively. Also, motor motion can be stopped at any time by pulling Pin #6 low. 

15 



As for the motor control output, Pin #8 almost always reads as high except for a finite, 
preprogrammed amount of time after a motion profile has completed when it reads low. The 
user is free to enter a new command once Pin #8 reads as high again. This is where the LED 
indicators referenced in the user manual section of this report come into play. If a motion profile 
is initiated and uninterrupted (meaning the carriages travel from one end of the linear rail to the 
other), the LEDs will turn off almost immediately after the carriages stop moving, indicating that 
the system is again ready for input. On the other hand, if a stop command is issued by the user, 
Pin #6 on each motor is pulled low, the motors are disabled, and the carriages/shades stop 
moving mid-travel. However, the indexers will still need to finish their index cycles before 
another command can be issued, which is why the LEDs remain illuminated for a period of time 
after motion has ceased. All this is to say that whenever an open or close command is issued, 
the user will always have to wait the same amount of time before another open or close 
command can be issued regardless of the initial position of the carriages.  
 
Unfortunately, motor 2 has a faulty output pin, and although Anaheim Automation has sent a 
replacement part, the new motor has yet to arrive due to COVID-related shipping delays. That 
being said, both motors have been programmed with identical motion profiles, and we have 
structured the code such that any time an open or close command is issued, motion profiles for 
both motors are initiated simultaneously. As a result, using feedback from only the output pin on 
motor 1 does not adversely affect functionality at all. 
 
Since the motors are only programmed with one motion profile, we had to incorporate limit 
switches into our design. If the carriages start out in the middle of their respective linear rails 
and an open command is issued, for example, without limit switches the carriages collide with 
the end blocks. Instead, if a carriage is in motion and trips a limit switch, the motor driving the 
carriage is immediately disabled. Each limit switch is wired to the 24V power source and a 
common ground is established between the limit switches and the motors/Propeller. A signal 
wire from each limit switch is connected to an I/O pin on the Propeller Activity Board and 3.3V 
via a 10K pull up resistor. Thus, when a limit switch is “inactive,” the state of the corresponding 
limit switch I/O pin reads as high. Conversely, when the metal underside of a carriage passes 
over an inductive limit switch and activates it, the state of the corresponding limit switch I/O pin 
reads as low. The code is structured such that if the shades are already open (the carriages are 
triggering the “open limit switches”), an open command cannot be executed. The same goes for 
the “close limit switches.” Below is a picture of one of the inductive limit switches and the 
breadboard wiring for all four limit switches:  
 
 
 
 
 
 
 
 

16 



Phototransistor 
 
The phototransistor is wired up in the same manner as described in in WAM Chapter 7 as show 
below (adapted from Figure 7-20 on Page 233) along with a picture of the breadboard wiring for 
the phototransistor and pushbuttons: 
  
                                 3.3V 
 
 
 
 
 
 P15 
 
 
 
 
 
While the phototransistor is in darkness, P15 will read as low 
whereas bright light will result in a high P15 reading. 
Depending on which light scheme the user selects, the 
shades will open or close accordingly based on light conditions.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

17 



Wiring Diagram 
 
Not pictured in the wiring diagram: 

● P26 and P27 LED indicators as they are built into the Propeller Activity Board 
● Microphone/Speaker 

 
 

 

18 



Propeller Cog Usage 
 
This will become quite evident upon reviewing the code, but to clarify, the Smart Shades make 
use of 8 Propeller Cogs, which perform the following functions: 
 

0. Determine Which Shade Command to Execute Based on Arduino Pin Logic 
1. Monitor State of Arduino Pins 6, 7, 3 & 11 
2. Control Motor 1 
3. Control Motor 2 
4. Monitor State of Motor 1 Output 
5. Monitor State of Limit Switches 
6. Monitor State of Arduino Pin 10 (“Stop” Pin) 
7. Monitor State of Phototransistor 

 
It is important to note here that the Propeller code need not be changed for different curtain 
widths. In this sense, the Smart Shade system is easily customizable given that Igus can supply 
belt-driven, linear actuators at various stroke lengths and the stepper motors are easily 
reprogrammable to account for differences in rail length. 
 
Future Goals 
 
When we are once again able to access physical prototyping equipment, we would like to refine 
the electronics packaging/eliminate messy wiring by creating a custom PCB containing the 
Arduino, Propeller and other requisite components. This board would, in turn, be attached to the 
Raspberry Pi.  
 
In addition, we would like to design a mounting system for the linear rails and develop brackets 
that can effectively attach curtains to the actuator carriages. Ideally, the user would be able to 
easily attach and detach the shades without the use of tools, perhaps using a clamp of sorts. 
The wall mounting procedure for the linear actuators should also be as minimally invasive as 
possible and should be able to accommodate windows of various shapes and sizes. 
 
Lastly, we would like to make “Gesture Control” and “Voice Control” more accessible to the 
user, meaning the user should have the ability to enable these control modes without running 
Python scripts. Similarly, we intend to modify the code on the Raspberry Pi (which would come 
preinstalled) to launch when powered on by the user such that the Smart Shades are 
immediately ready for operation once they are mounted. 
 
 
 
 
 
 

19 



References 
 
[1]: Heintz, Brenner. “Training a Neural Network to Detect Gestures with OpenCV in Python.” 
Medium​, Towards Data Science, 12 Feb. 2020,  
towardsdatascience.com/training-a-neural-network-to-detect-gestures-with-opencv-in-python-e0
9b0a12bdf1. 
 
Commented Code 
 
Propeller Code 
 

 

20 



 
 
 
 
 
 
 
 
 
 
 
 

21 



 
 
 
 
 
 
 
 
 
 
 
 
 
 

22 



 
 
 
 
 
 
 
 
 

23 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

24 



 
 
 
 
 
 
 
 
 
 
 
 

25 



 
 
 
 
 
 
 
 
 
 
 

26 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

27 



Arduino Code 
 

 

28 



 
 
 
 

29 



Python Code to Send Data from Raspberry Pi to Arduino 
 

 

30 



 

 
 
 
 
 
 
 
 
 
 
 

31 



Gesture Control Python Code 
 

 

32 



 

33 



 

34 



 

35 



 

 
 
 
 

36 


