Team 1 - Jordan Adelson, Tom Sowers, Biman Nitin Herlekar 5/13/20

ME-GY 6993: Advanced Mechatronics: Term Project Report
Upgraded Smart Shades

Table of Contents

Project Motivation

Page 3

Product Advancements

Page 3

(Term Project Vs. Propeller Project)

Basic Functionality Improvements

Page 3

Enhanced User Experience

Page 3

Additional Control Modes

Page 3

Microcontroller Usage and Integration

Page 4

User Manual

Page 4

Operating Smart Shades Through Our Web Application

Technical Details

Page 4

Page 7

Web Application on the Raspberry Pi

Page 7

Raspberry Pi Application to Receive Commands and
Communicate Serially with the Arduino

Page 9

Arduino/Propeller Code Logic

Gesture Control

Voice Control

Hardware BOM

Integrated Stepper Motors, Belt-Driven Linear Actuators, and
Inductive Limit Switches

Phototransistor

Wiring Diagram

Propeller COG Usage

Future Goals

Page 10
Page 11
Page 12
Page 13

Page 14
Page 17
Page 18
Page 19

Page 19

References

Page 20

Commented Code

Page 20

Propeller Code

Page 20

Arduino Code

Page 28

Python Code to Send Data from Raspberry Pi to Arduino

Page 30

Gesture Control Python Code

Page 32

Project Motivation

Despite the many advancements in home automation since the turn of the century, the
motorized window treatment market remains rather bleak. Most of the semi-affordable options
are vertically-actuated roller shades, which leave much to be desired aesthetically. Similarly,
most vendors require customers to purchase an all-in-one system, both curtains and mechanics,
meaning that the fabric choices are quite limited when compared to traditional window
coverings. As a result, consumers are often unable to find a product that perfectly suits the room
they’ve carefully curated and may very well have to discard curtains that they’ve already fallen
in love with in order to obtain the desired functionality. The only mechanized and customizable
bi-parting drapes we came across were upwards of five hundred dollars. We set out to create a
less expensive, multi-functional electromechanical system that allows customers to retrofit
manual bi-parting shades in order to make them automatic. Although some existing solutions
already allow for remote control or are compatible with hands-free personal assistants (Alexa,
Google Home, etc.), we set out to incorporate even more user-friendly control modes including
web app control (from a laptop or mobile device, for example), control based on outside light
conditions, time-based control, gesture control, and voice control.

Product Advancements (Term Project Vs. Propeller Project)

Basic Functionality Improvements

As per Professor Kapila’s suggestion, we opted to reduce the speed at which the shades move

and altered the stepper motor accel/decel profile in order to dampen the noise generated by the
actuators. Also at Professor Kapila’s recommendation, we implemented individual shade control
such that the left and right shades can be moved independently of each other or simultaneously.

Enhanced User Experience

The first Smart Shades prototype we constructed for our Propeller project gave users the option
of controlling the shades using the Simple IDE terminal. We used serial communication to
display menu options and the user was able to input values that corresponded to certain actions
(i.e. type 1 and press enter to close both shades). Of course, this control method is not practical
if we are to eventually attempt to bring this device to market. Our main goal for the term project
was to develop a web application hosted by a Raspberry Pi such that users can control their
Smart Shades from a browser on any device on their LAN.

Ad(ditional Control Modes

We had already built in three distinct control modes: “Manual Control,” “Light Control” and “Time
Control,” which will be covered in detail in the subsequent “User Manual” section of the report.
Again, our initial goal was to enable users to toggle between these three control modes and
effectively position their Smart Shades by accessing a web page on any device of their

choosing. Once we achieved this goal, we began working toward our stretch goal of
incorporating additional user-friendly control modes, namely “Gesture Control” and “Voice
Control.” These control modes will also be explained in depth later in the report.

Microcontroller Usage and Integration

Although controlling the shades with a Propeller was a requirement for our second project, we
felt that, given its multi-core functionality, it would be beneficial to continue using the Parallax
microcontroller going forward. Having a Cog dedicated to monitoring the state of the limit
switches, for instance, ensures that there are no delays in stopping the shades when they reach
the end of their travel.

We also required a Raspberry Pi in order to host our web application. At first, we intended to
establish a line of communication between the Pi and Propeller through a serial connection.
However, we ran into a number of problems in doing so. When we used a USB to USB mini-B
cable to connect the two microcontrollers, for example, we successfully sent information from
the Prop to the Pi using the Pi terminal window, but we were unable to send information from
the Pi to the Prop. We also attempted to use 12C through the Pi GPIO pin header, but we had
trouble getting the Prop to act as an 12C slave. Unfortunately, there is very little information
online detailing bi-directional communication between Raspberry Pi and Propeller, and given the
project timeline, we decided to take an alternate approach.

We changed the Propeller code logic such that different commands are executed when certain
digital I/0O pins are pulled high or low (see “Technical Details” section). We initially planned to
use 3.3V to 5V logic level converters to safely connect GPIO pins on the Pi to digital I/O pins on
the Prop. However, the shipment of these converters was delayed, so we instead used an
Arduino as an intermediary between the Pi and the Prop. The Pi uses a serial connection to talk
to the Arduino, and then digital I/O pins on the Arduino are directly connected to digital I/O pins
on the Prop.

Although using a Raspberry Pi, an Arduino and a Propeller may not be the most efficient or
cost-effective method for controlling the shades, this approach gave us the unique opportunity
to test our knowledge of all three microcontrollers that have been covered in the Advanced
Mechatronics course.

User Manual

Operating Smart Shades Through Our Web Application

This section details how customers can use the web application on their Local Area Network
(LAN) to control their Smart Shades Device. The user can easily change the Smart Shades
control scheme on the homepage as seen in Figure 1 on the next page. When a user clicks the
“Manual Control Only” button, the shades will only open or close when manually triggered either

from the “Control” page as seen in Figure 2 on the next page, or through “Gesture Control” and
“Voice Control” applications, which will be detailed later. The “Set Light Control Scheme” section
can be used to configure the shades to either automatically open during the day (and close at
night) or to automatically open at night (and close during the day). A phototransistor is used to
indicate whether it is light or dark outside, but this will be covered in more detail in the technical
section of the report. Finally, the “Time Control” portion of this page can be used to configure
the shades to automatically open and close at specific times. Clicking the “Time Control” button
sends the times selected by the user to the Raspberry Pi, allowing it to open and close the
shades at the desired times. Note that our first Smart Shades prototype required the user to
input the current time when the device booted up, but this is no longer necessary (the Python
script on the Raspberry Pi checks the current time). In order to notify the user as to which
control mode is currently active, the line of text that starts with “Current Mode” was added.
When a page load event occurs in the HTML page’s life cycle, it executes a javascript function
which reads the control mode value from the SQL server. Based on the value received from the
SQL server, it prints the corresponding control mode name here to notify the user of the current
state of their shades.

SmartBlinds Home Control Privacy

Control Your Shades

Set Your Control Method Below

Current Mode: Time Control

Manual Control Only

Select Light Control Scheme:

® Open During Day
Open During Night

Light Control

Open at: 01:45 PM

Close at: 01:45 PM

Time Control

Figure 1: Smart Shades Application Home Page

When a user clicks the “Control” tab from the header in either “Manual Control” or “Time
Control” mode, they will see the page shown in Figure 2 below. From this page, users can
manually command their shades. There are buttons to open or close both shades
simultaneously and, alternatively, there are buttons to open or close the left and right shades
independently. There are LEDs on the Propeller Activity Board corresponding to P26 and P27
that indicate when the system is ready for an open or close command. The user is able to press
the stop button at any time to stop both shades (even if one or both of the LEDs are illuminated)
but will only be able to issue an open or close command if both LEDs are off. The reasoning
behind this will be explained in depth in the subsequent technical section of the report.
Whenever both LEDs are off, the stepper motors are disabled and the user is free to move the
carriages by hand such that the shades are not fully open or closed. Similarly, the user can
simply initiate open or close motion profiles and use the stop command to position the
carriages/shades in desired locations (the stop button can be pressed even when controlling
individual shades).

SmartBlinds Home Control Privacy

Control Your Shades

Control Both Shades:

Control Left Shade

Open Left | Close Left

Control Right Shade

Figure 2: Smart Shades Control Page

When the user selects the “Control” tab while “Light Control” mode is active, the page is
displayed as shown in Figure 3 below. This is due to the nature of “Light Control” mode. If the
user were to click open or close, the current light condition would override their choice resulting
in the shades immediately reverting back to their original state. In other words, if the user were
to choose the “Open During Day” scheme and then opt to manually close the shades during the
day, the shades would immediately open again since “Light Control” mode is still enabled. We
have avoided this issue by having the page dynamically render based on the control mode
value. The stop button present on this page will stop the shades, exit “Light Control” mode and
enter “Manual Control” mode. This causes the control buttons to reappear as shown in Figure 2.

SmartBlinds Home Control Privacy

Control Your Shades

Light Control Mode Enabled, Please Disable Light Control For Additional Control
Options

Control Both Shades:

Figure 3: Control Page with Light Control Enabled

Technical Details

Web Application on the Raspberry Pi

The web application that enables the user to control their shades from a browser on any device
on their LAN is a .NET Core 2.2 application. .NET Core is a cross platform web application
framework and can run on many different devices including the Raspberry Pi. The source code
for this application is available on github as a public repo at this URL:
https://github.com/tomsowers/SmartBlinds.

The web application was developed using the Visual Studio Community IDE. The web
application has three main parts, the client side, the server side, and an SQL Server database.
The client side of the application consists of HTML, Javascript and CSS used to create the web
page that is rendered by the user’s browser. In order to handle styling bootstrap 4.0 was
utilized. This framework is widely used to provide consistent styling across web applications,
providing an easy way to implement a mobile first dynamic Ul design. This can be seen by

https://github.com/tomsowers/SmartBlinds

opening the pages on a smartphone and desktop computer. The layout of the page
automatically adapts to the view width of the device thanks to bootstrap. In addition to this the
actions performed by the buttons on the pages are handled with javascript. When the buttons
are clicked the axios framework is utilized to easily send HTTP requests. The server side of the
application can then receive these HTTP requests on the mapped routes and perform various
actions.

The server side of the application is utilized to process the requests from the client side pages.
This part of the application is written in C# and contains some SQL queries. The server side will
take the information sent to it by the aforementioned HTTP requests and post data into an SQL
database. The SQL database is utilized to allow multiple applications to talk to the Raspberry Pi
all at once. Having multiple ways of controlling the shades (web app, gesture control, voice
control) necessitated this design. The database acts as the single source of truth for the state of
the shades.

The SQL database is simple consisting of just one table for the shades. The table layout can be
seen in the below figure. The first column for blind state corresponds to whether the shades
should be open, closed, stopped, etc. The second column control mode corresponds to whether
the user has selected manual control, light control or time control. The next two columns
correspond to the open and close times selected by the user when initializing time control mode
from the web application. The final column BlindID can be utilized if more than one set of
shades need to be utilized. This column is a unique identifier for each shade connected to the
system. Since we only have one prototype we haven’t implemented control options for more
than one set of shades.

FH Results 2 Messages

blindState controlMode timecontrolopentime timecontrolclosetime BlindID

1 &2 0 22:58 22:59 1

Figure 4: SQL Table Design

Value Blind State
0 Close
1 Open
2 Stop
3 Open Left
4 Open Right
5 Close Left

6 Close Right
1

Figure 5: Blind State Table

\Value Control Mode
0 Manual
1 Time
2 Light Control Closed @Night
3 Light Control Open@ Night

Figure 6: Control Mode Table

Raspberry Pi Application to Receive Commands and Communicate Serially with the Arduino

In order for the Raspberry Pi to receive commands, a Python script was written. The script
utilizes the pymssql package in order to connect to and execute commands on a SQL Server
database. This script polls the previously mentioned SQL table. It then converts the values of
blind state and control mode into another set of values detailed in Figure 7 below, which are
then sent to the Arduino as strings over a serial connection. “Time Control” is also handled in
this Python script. The application checks if control mode is set to the value corresponding to
“Time Control” and if so checks the current time against the open and close times stored in the
SQL table. Once it is time to open or close the shades based on the time control values, the
script will send the Arduino the command to open or close the shades.

Command Serial Write String
Close Both Shades 1
Open Both Shades 2
Close Right Shades 3
Open Right Shades 4
Close Left Shades 5
Open Left Shades 6
Stop Shades 7
8

Light Scheme 1
(Open @ Night)

Light Scheme 2 9
(Closed @ Night)

Figure 7: Mapping of blind state and control mode to arduino values

Arduino/Propeller Code Logic

All of the I/O pins that are utilized on the Arduino are designated as output pins. These pins are
wired to I/O pins on the Propeller, which are in turn, designated as input pins. Each time the
Python script running on the Pi sends a string through the serial connection, the Arduino parses
the string as an integer and each output pin is driven high or low depending on the value
received. As a result, the corresponding input pins on the Propeller are driven high or low
accordingly. The table below shows the state of certain Arduino and Propeller pins resulting
from unique commands/strings sent by the Raspberry Pi. The state of these input pins on the
Propeller then dictate what the actuators/shades do. The commented Python script, Arduino
code and Propeller code can all be found in the Appendix.

Shade1: Shade2: Dir: Stp: Light:
Arduino Pin 6 | Arduino Pin 7 | Arduino Pin 3 | Arduino Pin 10 | Arduino Pin 11
Prop Pin 16 Prop Pin 17 Prop Pin 13 Prop Pin O Prop Pin 1
Close Both HIGH HIGH LOW LOW LOW
(String “17)
Open Both HIGH HIGH HIGH LOW LOW
(String “2™)
Close Right HIGH LOW LOW LOW LOW
(String “3”)
Open Right HIGH LOW HIGH LOW LOW
(String “4”)
Close Left LOW HIGH LOW LOW LOW
(String “5”)
Open Left LOW HIGH HIGH LOW LOW
(String “6”)
Stop N/A N/A N/A HIGH LOW
(String “77)
Light Scheme 1: | N/A N/A LOW LOW HIGH
Open @ Night
(String “8”)
Light Scheme 2: | N/A N/A HIGH LOW HIGH
Closed @ Night
(String “9”)

10

Gesture Control

In order to implement “Gesture Control” we utilized a Medium post [1]. The github repo
corresponding to this post had a script using gestures to control music and lights. By modifying
this script we were able to add a “Gesture Control” feature to our Smart Shades device. We
replaced the commands with posting values into our SQL database. The script does require a
web camera and a keyboard to be operated so we decided it would be best to run this program
on our laptops. In order to use the script, the user must first capture their background by
pressing the B key on their keyboard. Then the script will show what it is seeing and the user
can recognize their gestures by pressing the spacebar. The L hand gesture commands the
shades to open, the OK hand gesture commands them to close (see Figures 8 and 9 below)
and a fist gesture will command the blinds to stop moving. Upon recognizing one of these
gestures, the script will open a connection to the SQL server and post the corresponding value
into it, causing the Raspberry Pi to receive the value and execute the command. Due to the way
this was implemented, the user can run this script anywhere and be able to control their shades.

= o x &

Bcriginal

Prediction: Okay

Action: Close Blir

Figure 9: Gesture Control Close Shades Command

Voice Control

While we are still in the early stages of development with regard to “Voice Control,” currently a
user can say “Turn On” to open both shades and “Turn Off’ to close both shades (see Figure 10
below). We followed the steps outlined by the Google Assistant SDK Guide
(https://developers.google.com/assistant/sdk/guides/service/python) and connected a
microphone/speaker, effectively turning our Raspberry Pi into a Google Home.

We then added the preexisting trait “On/Off” to our model so that we could program our Smart
Shades device to associate an on/off voice command with an open/close shades command. In
order to do so, we modified a block of sample code in the pushtotalk.py Python script provided
by Google as seen in Figure 11 below. Much like with “Gesture Control,” when a user says
“Turn On” or “Turn Off’, the script opens a connection to the SQL server and posts the
corresponding value. Then, the Raspberry Pi receives the value and executes an “Open” or
“Close” command.

ﬂ'ilaspbelryp\ local - PUTTY = o X _!;E
check ()

Figure 10: Running Modified pushtotalk.py Script and Speaking a Turn On/Open Command

[;"E'raspberrypi.lmcal - PuTTY - O X
GNU nano 3.2

pushtotalk.py

ds.OnOff"')

03_orders"')

1ho

1artBlinds set b

Figure 11: Modified pushtotalk.py Code Block for Smart Shades Voice Control

12

https://developers.google.com/assistant/sdk/guides/service/python

Hardware BOM

black, orange)

WAM Parts Kit (28122)

Iltem | Description Part No. Supplier Qty.

No.

1 Stepper Motor with Integrated Driver and | 17MDSI202S Anaheim 2
Controller Automation

2 drylin® ZLW-0630-basic toothed belt axis | ZLW-20037463A Igus 2

3 drylin® Bent Metal Motor Flange MF-0630-NEMA17-SP | Igus 2
NEMA17

4 drylin® E Motor Coupling; d1: 5.00 mm; COU-AR-K-050-000-25 | Igus 2
d2: 6mm square -26-B-AAAB

5 drylin® E initiator kit for installation size IK-0025-BG-3 lgus 4
0630, inductive, 24 V, NPN NO, with
support and 3 m connecting

6 Propeller Activity Board WX 32912 Parallax 1

7 Arduino Uno Rev3 with A000066 Arduino 1
USB 2.0 Cable Type A/B MO000006

8 Raspberry Pi 3 Model B+ Starter Kit PI3P-STR32-C4-BLK CanaKit 1
(Including 2.5A Micro USB Power Supply)

9 24V Power Supply LJH138 ALITOVE 1

11 Phototransistor 350-00029 from Parallax 1

WAM Parts Kit (28122)

12 220 Ohm 2 W 5% Resistors (red, red, 150-02210 from Parallax 2
brown) WAM Parts Kit (28122)

13 10K Ohm %2 W 5% Resistors (brown, 150-01030 from Parallax 5

13

Integrated Stepper Motors, Belt-Driven Linear Actuators, and Inductive Limit Switches

Each integrated stepper motor is coupled to its respective, belt-driven linear actuator via an
angled mounting bracket and a flexible shaft coupling as shown below (motor 1 on the right and
motor 2 on the left).

14

The motors were programmed using a USB to RS485 converter cable and SMPG-SMSI
software that supports Anaheim Automation’s pulse generators and simple indexers. Through
trial and error, we were able to find anmotion profile such that when initiated, each carriage
travels the full length of the rail smoothly. Once the motors were programmed, the USB to
RS485 cable was removed and the following control pins on each motor were wired to I/O pins
on the Propeller Activity Board: Pin #4 (Input 1), Pin #6 (On/Off), Pin #7 (Direction In), and Pin
#8 (Output 1). Also, Pin #9 (VIN) and Pin #10 were wired to the external 24V power source, and
a common ground was established between the motors and the Propeller Activity Board (see
wiring diagram for detailed schematics). Although each integrated stepper can store two
different motion profiles, we are only using one for the purpose of this project, and thus, Pin #5
(Input 2) remains open and is internally pulled up to +5VDC.

As for the motor control inputs, when Pin #6 is high, the motor is enabled/energized whereas
when it is low, the motor is disabled/deenergized. When Pin #7 is high, the motor shaft will spin
in the clockwise direction whereas when it is low, the motor shaft will spin in the
counterclockwise direction. Lastly, if the motor is energized, the instant Pin #4 (Input 1) is pulled
low, motion profile 1 will be activated in the direction set by the state of Pin #7. Thus, in order to
trigger an “open shades” command, the motor inputs are as follows:

Open Shades (Pin #6 and Pin #7 Set Prior to Pin #4)

Motor Input Pin

Motor 1 (Right) Pin State

Motor 2 (Left) Pin State

4 LOW LOW
6 HIGH HIGH
7 HIGH LOW

Conversely, in order to trigger a “close shades” command, the motor inputs are as follows:

Close Shades (Pin #6 and Pin #7 Set Prior to Pin #4)

Motor Input Pin

Motor 1 (Right) Pin State

Motor 2 (Left) Pin State

4 LOW LOW
6 HIGH HIGH
7 LOW HIGH

When a motion profile is complete, Pin #4 and Pin #6 return to their default states of high and
low, respectively. Also, motor motion can be stopped at any time by pulling Pin #6 low.

15

As for the motor control output, Pin #8 almost always reads as high except for a finite,
preprogrammed amount of time after a motion profile has completed when it reads low. The
user is free to enter a new command once Pin #8 reads as high again. This is where the LED
indicators referenced in the user manual section of this report come into play. If a motion profile
is initiated and uninterrupted (meaning the carriages travel from one end of the linear rail to the
other), the LEDs will turn off almost immediately after the carriages stop moving, indicating that
the system is again ready for input. On the other hand, if a stop command is issued by the user,
Pin #6 on each motor is pulled low, the motors are disabled, and the carriages/shades stop
moving mid-travel. However, the indexers will still need to finish their index cycles before
another command can be issued, which is why the LEDs remain illuminated for a period of time
after motion has ceased. All this is to say that whenever an open or close command is issued,
the user will always have to wait the same amount of time before another open or close
command can be issued regardless of the initial position of the carriages.

Unfortunately, motor 2 has a faulty output pin, and although Anaheim Automation has sent a
replacement part, the new motor has yet to arrive due to COVID-related shipping delays. That
being said, both motors have been programmed with identical motion profiles, and we have
structured the code such that any time an open or close command is issued, motion profiles for
both motors are initiated simultaneously. As a result, using feedback from only the output pin on
motor 1 does not adversely affect functionality at all.

Since the motors are only programmed with one motion profile, we had to incorporate limit
switches into our design. If the carriages start out in the middle of their respective linear rails
and an open command is issued, for example, without limit switches the carriages collide with
the end blocks. Instead, if a carriage is in motion and trips a limit switch, the motor driving the
carriage is immediately disabled. Each limit switch is wired to the 24V power source and a
common ground is established between the limit switches and the motors/Propeller. A signal
wire from each limit switch is connected to an I/O pin on the Propeller Activity Board and 3.3V
via a 10K pull up resistor. Thus, when a limit switch is “inactive,” the state of the corresponding
limit switch 1/O pin reads as high. Conversely, when the metal underside of a carriage passes
over an inductive limit switch and activates it, the state of the corresponding limit switch 1/O pin
reads as low. The code is structured such that if the shades are already open (the carriages are
triggering the “open limit switches”), an open command cannot be executed. The same goes for
the “close limit switches.” Below is a picture of one of the inductive limit switches and the
breadboard wiring for all four limit switches:

16

Phototransistor

The phototransistor is wired up in the same manner as described in in WAM Chapter 7 as show
below (adapted from Figure 7-20 on Page 233) along with a picture of the breadboard wiring for
the phototransistor and pushbuttons:

3.3V

P15
2200

10 kQ

Vss

While the phototransistor is in darkness, P15 will read as low
whereas bright light will result in a high P15 reading.
Depending on which light scheme the user selects, the
shades will open or close accordingly based on light conditions.

17

Wiring Diagram

Not pictured in the wiring diagram:
e P26 and P27 LED indicators as they are built into the Propeller Activity Board
e Microphone/Speaker

B()
A-)
IGND

INPUT 1
Motor 2 Close Limit Switch INPUT 2

_5]
P‘ etz
—— ON/OFF
Motor 2 Open Limit Switch

DIRECTION IN

a I Motor 1 Close Limit Switch

Motor 1 Open Limit Switch 8 OUTPUT 1
Propeller Microcontroller 9
VIN
— Integrated Stepper Motor 2

17MDSI SERIES

B(+)
A=)
IGND

INPUT 1
INPUT 2
ONIOFF
DIRECTION IN

24 Pawer Supply

Phototransistor

1 i OUTPUT 1
VIN
] [; M Integrated Stepper Motor 1
B e o] | et 17MDSI SERIES
Raspberry Pi 3 Model B+

L.

= = . T 3
2.5A Micro USB remm Arduing

Power Supply

USB 2.0 Cable Type A/B
(Power + Serial Communication)

fritzing

18

Propeller Cog Usage

This will become quite evident upon reviewing the code, but to clarify, the Smart Shades make
use of 8 Propeller Cogs, which perform the following functions:

Determine Which Shade Command to Execute Based on Arduino Pin Logic
Monitor State of Arduino Pins 6,7, 3 & 11

Control Motor 1

Control Motor 2

Monitor State of Motor 1 Output

Monitor State of Limit Switches

Monitor State of Arduino Pin 10 (“Stop” Pin)

Monitor State of Phototransistor

Noakowdh-=2O

It is important to note here that the Propeller code need not be changed for different curtain
widths. In this sense, the Smart Shade system is easily customizable given that Igus can supply
belt-driven, linear actuators at various stroke lengths and the stepper motors are easily
reprogrammable to account for differences in rail length.

Future Goals

When we are once again able to access physical prototyping equipment, we would like to refine
the electronics packaging/eliminate messy wiring by creating a custom PCB containing the
Arduino, Propeller and other requisite components. This board would, in turn, be attached to the
Raspberry Pi.

In addition, we would like to design a mounting system for the linear rails and develop brackets
that can effectively attach curtains to the actuator carriages. Ideally, the user would be able to
easily attach and detach the shades without the use of tools, perhaps using a clamp of sorts.
The wall mounting procedure for the linear actuators should also be as minimally invasive as
possible and should be able to accommodate windows of various shapes and sizes.

Lastly, we would like to make “Gesture Control” and “Voice Control” more accessible to the
user, meaning the user should have the ability to enable these control modes without running
Python scripts. Similarly, we intend to modify the code on the Raspberry Pi (which would come
preinstalled) to launch when powered on by the user such that the Smart Shades are
immediately ready for operation once they are mounted.

19

References

[1]: Heintz, Brenner. “Training a Neural Network to Detect Gestures with OpenCV in Python.”
Medium, Towards Data Science, 12 Feb. 2020,
towardsdatascience.com/training-a-neural-network-to-detect-gestures-with-opencv-in-python-e0
9b0al2bdfl.

Commented Code

Propeller Code

UpgradedSmartShadesPropellerCode_AdvMecha2020_Term-Project_Team1--Adelson-Sowers-Herlekar.c @

1//UpgradedSmartShades AdvMecha2020 Term-Project Team 1 -- Adelson-Sowers-Herlekar
2

3#include "simpletools.h" // Include simple tools

4

Svoid arduinopinstates(void *parl) ;

6void motorlcontrol (voeld *par?);

Jwvoid motorZcontrol (void *par3);

8void motoroutputstate(void *pard);

9void limitswitchstates(void *parb);

10void stopstate(void *par6);

11wvoid phototransistorstate(void *par7);

12

13//Global vars for cogs to share

l4static volatile int

15mode, manual, 1light,

l6hour, minute, second, openhour, openmin, closehour, closemin,
17motorlin, motorlonoff, motorldir, motorlout, ledl,
18motor2in, motor2onoff, motor2dir, led2,
19stateofmotorl, stateofmotor2,
201sclose?2, stateoflsclose2, lsopen2, stateoflsopen2,
2llsclosel, stateoflsclosel, lsopenl, statecflsopenl,
22 phototransistor, stateofphototransistor,
#3shadel, shade?, direction, stop,
24 stateofshadel, stateofshade?, stateofdirection, stateofstop, stateoflight;
25

26

2l

28unsigned int stackl1[40 + 25]; //Stack vars for cogl
29unsigned int stack2[40 + 25]; //Stack vars for cog?2
30unsigned int stack3([40 + 25]; //Stack vars for cog3
3lunsigned int stack4[40 + 25]; //Stack vars for cog4d
32unsigned int stack5[40 + 25]; //Stack vars for cogb
33unsigned int stack6[40 + 25]; //Stack vars for cogé6
34unsigned int stack7[40 + 25]; //Stack vars for cog7?

35

36int main() // Main function
3 {

38 mode = 0; manual = 0;

39 hour = 0; minute = 0; second = 0;

40 openhour = 25; openmin = 61; closehour = 25; closemin = 61;

41 motorlin 2; motorlonoff = 3; motorldir = 4; motorlout = 5; ledl = 26;
42 motor2in = 6; motorZ2onoff = 7; motor2dir = 8; led2 = 27;
43 1lsclose2 = 10; lsopen2 = 11; lsclosel = 12; lsopenl = 14;
44 phototransistor = 15;
45
46 shadel = 16;
47 shade2 = 17;
8 direction = 13;

20

UpgradedSmartShadesPropellerCode_AdvMecha2020_Term-Project_Team1--Adelson-Sowers-Herlekar.c &

49 stop = 0;
e light = 1;
51
92 set direction(motorlin,l);
53 set direction(motorlonoff,1);
54 set direction(motorldir,1);
5 set direction(motorlout,0);
8§ sel direction(ledl, 1);
Bl set direction(motor2in,l);
58 set direction(motor2onoff,1);
59 set direction(motor2dir,1);
60 set direction(led2, 1);
Bl set direction(lsclose2, 0);
62 set direction(lsopen2, 0);
@5 sel direction(lsclosel, 0);
64 set direction(lsopenl, 0);
65 set direction(phototransistor, 0);
66
67 set direction(shadel, 0);
68 set direction(shade2, 0);
69 set direction(direction, 0);
70 set direction(stop, 0);
Wil set direction(light, 0);
i
73 //Launch cogl for monitoring state of Arduino pins 6, 7, 3 & 11
74 cogstart(&arduinopinstates, NULL, stackl, sizeof(stackl));
75 //Launch cog2 for controlling motor 1
76 cogstart (&motorlcontrol, NULL, stack2, sizeof (stack2?));
77 //Launch cog3 for controlling motor 2
78 cogstart(smotor2control, NULL, stack3, sizeof(stack3));
79 //Launch cog4 for monitoring state of motor output
80 cogstart (&motoroutputstate, NULL, stack4, sizeof (stackd));
81 //Launch cog 5 for monitoring state of limit switches
82 cogstart(&limitswitchstates, NULL, stackb5, sizeof (stackb)):;
83 //Launch cog 6 for monitoring state of Arduino pin 10 (stop pin)
84 cogstart (&stopstate, NULL, stack6, sizeof (stackb6));
85 //Launch cog 7 for monitoring state of phototransistor
86 cogstart(aphototransistorstate, NULL, stack7, sizeof(stack7)):
87
88
89 while(l) //Cog 0 for determining which shade command to execute based on Arduino pin legic
90 {

91 //Arduino pin logic to stop shades
92 if (stateofstop == 1)

98 {

94 manual = 7;

95 }

96

21

UpgradedSmartShadesPropellerCode_AdvMecha2020_Term-Project_Team1--Adelson-Sowers-Herlekar.c &

close both shades
1 & stateofshade?

open both shades
1 & stateofshade?2

close right shade
1 & stateofshade?

open right shade
1 & stateofshade2

c¢lose 1eft shade

0 & stateofshade?2

open left shade
0 & stateofshade?2

*parl)

input (shadel) ;
input(shade?) ;
input(direction);

g7 //Arduino pin logic to
98 else if (stateofshadel
99 {

100 manual = 1;

101 }

10z

103 //Arduino pin logic to

104 else if (stateofshadel

105 {

106 manual = 2;

107 }

108

109 //Arduino pin logic to

110 else if (stateofshadel

i i {

bl manual = 3;

ibiLE }

114

115 //Arduino pin logic to

116 else if (stateocfshadel

Qe 15T {

118 manual = 4;

ILILE) }

126

ikl //Arduino pin logic to

122 else if (stateofshadel

123 {

124 manual = 5;

125 }

126

127 //Arduino pin logic to

128 else if (stateofshadel

129 {

130 manual = 6;

131! }

2 |

s)

134

135void arduinopinstates(void

136 {

137 while(1)

138 {

=8 stateofshadel =

140 stateofshade2 =

141 stateofdirection =

ik stateoflight = input(light);

e)

144}

145

1

//Monitor state of

& stateofdirection == 0 &
& stateofdirection == 1 &
& stateofdirection == 0 &
& stateofdirection == 1 &
& stateofdirection == 0 &
& stateofdirection == 1 &
Arduine pins ©; Ty 3 & 11

stateoflight

stateoflight

stateoflight

stateoflight

stateoflight

stateoflight

0)

0)

0)

0)

0)

0)

22

UpgradedSmartShadesPropellerCode_AdvMecha2020_Term-Project_Team1--Adelson-Sowers-Herlekar.c @

146wvoid motoricontrol (void *par2) //Control motor 1

SR {

148 while (1)

1) {

150 low(motorlonoff); //Disable motor 1

1.5 high(motorlin) ;

152 lew(ledl): [f/Tuen off LED ingdicater 1

153

154 L/Cloge motor 1. shade: if meter 1. elose limit switeh is inactive and...
155 //user inputs close both or close right command or...

156 //current time matches close shades time set by user or...

15 //1light scheme 1 has been selected and it is daytime or...

158 //light scheme 2 has been selected and it is nighttime

159 if (stateoflsclosel == 1 &

160 (manual == || manual == |

161 (stateoflight == 1 & stateofdirection == 0 & stateofphototransistor == 1) ||
162 (stateoflight == 1 & stateofdirection == 1 & stateofphototransistor == 0)))
163 {

164 high(ledl); //Turn on LED indicator 1

165 high (motorldir); //Set motor 1 direction to close

166 high(motorlonoff); //Enable motor 1

167 low(motorlin); //Initiate motion profile

168

169 //While motion PEofile is being ekedlited; disable motof 1 iTess

174 //user inputs stop command or...

kil //motor 1 close limit switch is triggered

172 while (stateofmotorl == 1)

17 {

174 if (manual == 7 || stateoflsclosel == 0)

175 {

176 pause (100) ;

L7 low(motorlonoff); //Disable motor 1

178 }

179 }

180

181 manual = 0;

1.82 }

183

184 //Open motor 1 shade if motor 1 open limit switch is inactive and...
1.85 //user inputs epen both or open right command or...

186 //current time matches open shades time set by user or...

187 //light scheme 1 has been selected and it is nighttime or...

188 //1light scheme 2 has been selected and it is daytime

189 else if (stateoflsopenl == 1 &

190 (manual == || manual == |1

191 (stateoflight == 1 & stateofdirection == 0 & stateofphototransistor == 0) ||
L (stateoflight == 1 & stateofdirection == 1 & stateofphctotransistor == 1)))
193 {

194 high(ledl); //Turn on LED indicator 1

23

UpgradedSmartShadesPropellerCode_AdvMecha2020_Term-Project_Team1--Adelson-Sowers-Herlekar.c @

195 low(motorldir); //Set motor 1 direction to open

196 high(motorlonoff); //Enable motor 1

197 low(motorlin); //Initiate motion profile

198 stateofmotor2 = 1;

199

200 //While motion profile is being executed, disable motor 1 if...

201 //user inputs stop command or...

202 //motor 1 open limit switch is triggered

203 while (stateofmotorl == 1)

204 {

205 if (manual == 7 || stateoflsopenl == 0)

206 {

207 pause(100) ;

208 low(motorlonoff); //Disable motor 1

209 }

200 }

270

202 manual = 0;

L] }

204

215 //Motor 2 has faulty output pin so motor 1 output pin is used for motor 2 feedback
216 //Initate motion profile without moving motor 1 if...

ity //motor 2 close limit switch is inactive and...

218 //user inputs close left command or...

219 //motor 1 close limit switch is triggered (motor 1 shade already closed) and...
220 //user inputs close both command or...

22 //current time matches close shades time set by user or...

209 //1light scheme 1 has been selected and it is daytime or...

Sliey //light scheme 2 has been selected and it is nighttime

224 else if (stateoflsclose?2 == 1 & (manual == || (stateoflsclosel == 0 & (manual == ||
225 (stateoflight == 1 & stateofdirection == 0 & stateofphototransistor == 1) ||
226 (stateoflight == 1 & stateofdirection == 1 & stateofphototransistor == 0)))))
220 {

i high(ledl); //Turn on LED indicator 1

229 high(motorlonoff); //Enable motor 1

230 low(motorlin); //Initiate motion profile

231 low(motorlonoff); //Immediately disable motor 1 such that there is no movement
232

233 while (stateofmotorl == 1)

234 {

255 }

236

237 manual = 0;

238 }

239

24

UpgradedSmartShadesPropellerCode_AdvMecha2020_Term-Project_Team1--Adelson-Sowers-Herlekar.c @

240 //Motor 2 has faulty output pin so motor 1 output pin is used for motor 2 feedback
241 //Initate motion profile without moving motor 1 if...

242 //motor 2 open limit switch is inactive and...

Slilz) //user inputs open left command or...

244 //motor 1 open limit switch is triggered (motor 1 shade already open) and...
245 //user inputs open both command or...

246 //current time matches open shades time set by user or...

247 //1light scheme 1 has been selected and it is nighttime or...

248 //1light scheme 2 has been selected and it is daytime

249 else if (stateoflsopen?2 == 1 & (manual == || (stateoflsopenl == 0 & (manual == |
250 (stateoflight == 1 & stateofdirection == 0 & stateofphototransistor == 0) |
251l (stateoflight == 1 & stateofdirection == 1 & stateofphototransistor == 1)))))
252 {

253 high(ledl); //Turn on LED indicator 1

254 high(motorlonoff); //Enable motor 1

255 low{motorlin); //Initiate motion profile

256 low(motorlonoff); //Immediately disable motor 1 such that there is no movement
257

258 while (stateofmotorl == 1)

259 {

260 }

261

262 manual = 0;

263 }

264 }

265}

266

267void motorZcontrol (void *par3) //Control motor 2

268 {

269 while(1)

270 {

271 low(motor2onoff); //Enable motor 2

2792 high(motor2in) ;

213 low(led2); //Turn off LED indicator 2

274

205 //Close motor 2 shade if motor 2 close limit switch is inactive and...

276 //user inputs close both or close left command or...

277 //current time matches close shades time set by user or...

278 //light scheme 1 has been selected and it is daytime or...

279 //1light scheme 2 has been selected and it is nighttime

280 if (stateoflsclose2 == 1 &

281 (manual == || manual == |

282 (stateoflight == 1 & stateofdirection == 0 & stateofphototransistor == 1) ||
283 (stateoflight == 1 & stateofdirection == 1 & stateofphototransistor == 0)))
284 {

285 high(led2); //Turn on LED indicator 2

286 low(motor2dir); //Set motor 2 direction to close

287 high(motor2onoff); //Enable motor 2

288 low(motor2in); //Initiate motion profile

289

25

UpgradedSmartShadesPropellerCode_AdvMecha2020_Term-Project_Team1--Adelson-Sowers-Herlekar.c @

290 //While motion profile is being executed, disable motor 2 if...
291 //user inputs stop command or...

292 //motor 2 close limit switch is triggered

293 while (stateofmotorl == 1)

294 {

295 if (manual == || stateoflsclose? == 0)

296 {

SO pause (100) ;

298 Jow(motor2onoff); //Disable motor 2

299 }

300 }

Siell

302 manual = 0;

303 }

304

305 //Open motor 2 shade if motor 2 open limit switeh is inactive and...
306 //user inputs open both or open left command or...

Al //current time matches open shades time set by user or...

308 //light scheme 1 has been selected and it is nighttime or...

309 //light scheme 2 has been selected and it is daytime

310 else if (stateoflsopen?2 = 1 &

ST (manual == || manual == i

312 (stateoflight == 1 & stateofdirection == 0 & stateofphototransistor == 0) ||
213 (stateoflight == 1 & stateofdirection == 1 & stateofphototransistor == 1)))
314 {

315 high(led2); //Turn on LED indicator 2

316 high(motor2dir); //Set motor 2 direction to open

317 high(motor2onoff); //Enable motor 2

318 Jow(motor2in); //Initiate motion profile

319

320 //While motion profile is being executed, disable motor 2 if...
321 //user inputs stop command or...

B9 //motor 2 open limit switch is triggered

223 while (stateofmotorl == 1)

GYL: {

395 if (manual == || stateoflsopen2 == 0)

326 {

S pause(100) ;

328 low(motor2onoff); //Disable motor 2

329 }

330 }

SISl

382 manual = 0;

333 }

334 }

s |

336

26

UpgradedSmartShadesPropellerCode_AdvMecha2020_Term-Project_Team1--Adelson-Sowers-Herlekar.c

337void motoroutputstate(void *par4d) //Monitor state of motor 1 output
g {

339 while (1)

340 {

344 stateofmotorl = input(motorlout);

342 '} \

343}

344

345void Iimitswitchstates(void *parb) //Monitor state of limit switches
346

347 while (1)

348 {

349 stateoflsclose? = input(lsclose?);

350 stateoflsopen?2 = input(lsopen2);

351 stateoflsclosel = input(lsclosel);

SHELY stateoflsopenl = input(lsopenl);

353 }

&4)

(0%

(O8]
o

w
(G RNG IS |

6void stopstate(void *par6) //Monitor state of Arduino pin 10 (stop pin)
1

(6%}

358 while(1)

E58 |

360 stateofstop = input(stop):;

361 }

362 }

363

364void phototransistorstate(void *par7) //Monitor state of phototransistor
365 {

366 while(1)

5157/ .

368 stateofphototransistor = input(phototransistor):;
ST .

SR

27

Arduino Code

UpgradedSmartShadesArduinoCode_AdvMecha2020_Term-Project_Team_1

//UpgradedSmartShades AdvMecha2020 Term-Project Team 1 -- Adelson-Sowers-Herlekar

int mode = 0:

int lightmode = 0;
int shadel = 6:
int shade2 = 7:
int dir = 3;

int stp = 10:

int light = 11:

void setup() {

pinMode (shadel, COUTPUT):; //Wired to Propeller pin 16
pinMode (shade2, OUTPUT): //Wired to Propeller pin 17
pinMode (dir, CUTPUT); //Wired to Propeller pin 13
pinMode (stp, OUTFUT):; //Wired to Propeller pin 0
pinMode (light, OUTPUT): //Wired to Propeller pin 1

digitalWrite (shadel, LOW);
digitalWrite (shade2, LOW):
digitalWrite(dir, LOW);:
digitalWrite (stp, LOW):
digitalWrite (light, LOW);:

Serial.begin(9600) ;

void loop() {
delay (100) ;

if (Serial.available())

{
//Convert string received from Raspberry Pi to integer and store as variable "mode"
mode = Serial.parselnt();

//5et pin logic based on value of "mode™

if {mode == 1) //Set pin logic to stop shades and disable light control
digitalWrite (stp, HIGH);
digitalWrite (light, LOW):
lightmode = 0;:

if (lightmode == 0) //If light control is disabled...
{

if (mode == 1) //Set pin logic to close both shades
{

digitalWrite (stp, LOW);:

digitalWrite (shadel, HIGH):

digitalWrite (shade2, HIGH):

digitalWrite (dir, LOW):

UpgradedSmartShadesArduinoCode_AdvMecha2020_Term-Project_Team_1

if (mode == 2) //Set pin logic to open both shades
{

digitalWrite (stp, LOW);

digitalWrite (shadel, HIGH);

digitalWrite (shade2, HIGH):

digitalWrite (dir, HIGH):

if (mode == 3) //Set pin logic to close right shade
{

digitalWrite (stp, LOW);

digitalWrite (shadel, HIGH):

digitalWrite (shade2, LOW) ¢

digitalWrite(dir, LOW):

if (mode == 4) //Set pin logic to open right shade
{

digitalWrite (stp, LOW);:

digitalWrite (shadel, HIGH):

digitalWrite (shade2, LOW):

digitalWrite (dir, HIGH);

if (mode == 5) //Set pin logic to close left shade
{

digitalWrite (stp, LOW);:

digitalWrite (shadel, LOW);:

digitalWrite (shade2, HIGH):

digitalWrite(dir, LOW):

if (mode == 6) //Set pin logic to open left shade
{
digitalWrite (stp, LOW):
digitalWrite (shadel, LOW) ¢
digitalWrite (shade2, HIGH):
digitalWrite (dir, HIGH);

if (mode == 8) //Set pin logic to enable light contrecl scheme 1

{
lightmode = 1;
digitalWrite (stp, LOW);
digitalWrite (light, HIGH):
digitalWrite (dir, LOW):

if (mode == 9) //Set pin logic to enable light contrecl scheme 2

{
lightmode = 1;
digitalWrite (stp, LOW):
digitalWrite (light, HIGH):
digitalWrite (dir, HIGH):

29

Python Code to Send Data from Raspberry Pi to Arduino

#import required libraries

import serial

import pymssql

import time

from datetime import datetime

fcreate serial connection to arduino
ser = serial.Serial('/dev/ttyACMO',9600)

run = True
f#create connection ot SQL server
cnxn = pymssql.connect ('sl4.winhost.com', 'DB 134003 orders user', 'Electronicsl', 'DB 134003 orders')
treturn object to interact with server
cursor = cnxn.cursor()
#while loop to run forever
while (run) :
#get the values from the database
cursor.execute ("select * from dbo.SmartBlinds where BlindID = 1")
row = cursor.fetchone ()
$read the first record's values
blindState = row[0]
controlMode = row[1]
openTime = row([2]
closeTime = row[3]
sendval = 0
if (controlMode == 1):
#Time control mode is enabled, check the time
now = datetime.now ()
timeNowH = now.strftime ("%H")
timeNowM = now.strftime ("%M")
openTimeNew = openTime.split(':"')
closeTimeNew = closeTime.split(':')
#check if it is time to open or close the shades
if (openTimeNew[0] == timeNowH and openTimeNew[l] == timeNowM) :
fopen blinds
sendvVal = 2
elif(closeTimeNew[0] == timeNowH and closeTimeNew[l] == timeNowM) :
#close blinds
sendVal = 1

if (sendval == 0):
#if sendVal has a value other than 0 then we want to skip this

30

#if sendVal has a value other than 0 then we want to skip this
$and send the time control command

$check if light control mode is active

1f (controlMode == 2 or controlMode == 3):
#light control mode arduino values
1f (controlMode == 2):
sendVal = 9
else:
sendVal = 8
else:

#normal mode

#determine the current shades state

if(blindState == 0):
#close both blinds
sendvVal = 1

elif (blindState == 1):
#open both blinds
sendVal = 2

elif (blindState == 2):
#stop blinds
sendVal = 7

elif(blindState == 3):
#open left blind
sendVal = 6

elif(blindState == 4):
#open right blind
sendVal = 4

elif(blindState == 5):
#close left blind
sendVal = 5

=1if (blindState == 6):
#close right blind
sendVal = 3

print (sendVal) #display the value being send
sendvValstring = str(sendval)
ser.write(sendValstring) #send the value over the serial conn.

time.sleep(l) #wait 1 second between loops to avoid issues polling
#50L Server

31

Gesture Control Python Code

#! /usr/bin/env python3

import numpy as np

f 1 keras.models import load model
t pygamerbf

t time

import pyodbc

General S

prediction =
action = "'
score = 0

img_counter = 500

fconnect to SQL database of shade info
cnxn = pyodbc.connect ('DRIVE I, Server};SERVER=tc
|cursor = cnxn.cursor ()

Turn on/off the ability to save images,
save images, selected gesture = Fa
smart_home = True

e, 'peace'

AT D54,
'bri': 254}

on_command = {'transitiontime': 0, 'on': True
off command = {'transitiontime': 0, 'on': Fal:

gesture_names = {0: 'Fist',
1 HEY,
2: "Okay';
3: 'Palm’,
4

'Peace'}

#location of the trained neural network

def predict_rgb_image (img) :
result = gesture_ names[model.predict classes(img) [0]]
print (result)
return (result)

def predict rgb image wgg(image):
image = np.array(image, dtype='float32')
image /= 255
pred array = model.predict (image)
print (f'pred array: (pred array}')
result = gesture_ names [np.argmax(pred array)]
print (f'Result: {result}')
print (max (pred_array[0]))
score = float("%0.2f" % (max(pred array[0]) * 100))
print (result)
return result, score

s14.winhost

com; DATABASE=DB

134003 orders;UID=DB_13400

3_orders

user;

PWD=Electronicsl')

model = load model {'C:/Users/tomso/AppData/Local/Programs/Python/Python36/Scripts/project kojak-master/models/VGG cross validated.h5')

32

parameters

cap_region_x begin = 0.5 # start point/total width
cap region y end = 0.8 # start point/total width
threshold = 60 § binary threshold

blurValue = 41 § GaussianBlur parameter
bgSubThreshold = 50
learningRate = 0

variableslt
isBgCaptured = 0 # bool, whether the background captured
triggerSwitch = False # if true, keyboard simulator works

#function to remove the background from an image
def remove background (frame) :
fgmask = bgModel.apply(frame, learningRate=learningRate)

kernel = np.ones((3, 3), np.uint8)
fgmask = cv2.erode (fgmask, kernel, iterations=1)
res = cv2.bitwise and(frame, frame, mask=fgmask)

return res

Camera
camera = cv2.VideoCapture (0)
camera.set (10, 200)
#main loop to classify gestures
while camera.isOpened/() :
ret, frame = camera.read()
frame = cv2.bilateralFilter(frame, 5, 50, 100) # smoothing filter
frame = cv2.flip(frame, 1) # flip the frame horizontally
cv2.rectangle (frame, (int(cap region x begin * frame.shape([1l]), 0),
(frame.shape[1], int(cap region y end * frame.shape[0])), (255, 0, 0), 2)

cv2.imshow('original', frame)

Run once background is captured
I isBgCaptured == 1:
img = remove background (frame)
img = img[0:int (cap region y end * frame.shape[0]),
int (cap region x begin * frame.shapell]):frame.shapel[1l]] # clip the ROI
t cv2.imshow('mask', img)

convert the image into binary image

gray = cv2.cvtColor(img, cv2.COLOR BGR2GRAY)

blur = cv2.GaussianBlur (gray, (blurValue, blurValue), 0)

cv2.imshow('blur', blur)

ret, thresh = cv2.threshold(blur, threshold, 255, cv2.THRESH BINARY + cv2.THRESH OTSU)

Draw the text

cv2.putText (thresh, f"Prediction: {prediction} ({score}%)", (50, 30), cv2.FONT HERSHEY SIMPLEX,

{255, 255, 255)

cv2.putText (thresh, f"Action: {action}", (50, 80), cv2.FONT HERSHEY SIMPLEX, 1,
(255, 255, 255)) # Draw the text

cv2.imshow('ori', thresh)

1,

33

get the contours
threshl = copy.deepcopy (thresh)

contours, hierarchy = cv2.findContours(threshl, cv2.RETR TREE, cv2.CHAIN APPROX SIMPLE)

length = len(contours)

maxArea = -1
if length > 0:
for i in range(length): # find the biggest contour (according to area)
temp = contours[i]
area = cv2.contourArea (temp)
if area > maxArea:
maxArea = area
ci =1

res = contours[ci]

hull = cv2.convexHull (res)

drawing = np.zeros(img.shape, np.uint8)
cv2.drawContours (drawing, [res], 0, (0, 255, 0), 2)
cv2.drawContours (drawing, [hull], 0, (0, 0, 255), 3)

cv2.imshow ('output', drawing)

Keyboard OP
k = cv2.waitKey(10)

if k == 27: # press ESC to exit all windows at any time
cnxn.close ()
break
1if k == ord('b'): # press 'b' to capture the background

bgModel = cv2.createBackgroundSubtractorMOG2 (0, bgSubThreshold)

time.sleep(2)
isBgCaptured = 1
print ('Background captured')

elif k == ord('r'): # press 'r' to reset the background
time.sleep (1)
bgModel = None
triggerSwitch = False
isBgCaptured = 0
print ("Reset background')
elif k == 32:
If space bar pressed
cv2.imshow('original', frame)
copies 1 channel BW image to all 3 RGB channels
target = np.stack((thresh,) * 3, axis=-1)
target = cv2.resize(target, (224, 224))
target = target.reshape(l, 224, 224, 3)
prediction, score = predict rgb image vgg(target)

print ('prediction")
if smart home:
if prediction == 'Palm':
ey
action = "Lights on, music on"

34

except ConnectionError:
smart home = False
pass

elif prediction == 'Fist':
try:
action = 'Stop Shades'
cursor.execute ("update SmartBlinds set blindState = 2 where BlindID = 1")
cnxn.commit ()
except ConnectionError:

smart home = False
pass -
elif prediction == 'L':
BTy
action = 'Open Blinds'
print{'test')
cursor.execute ("update SmartBlinds set blindState = 1 where BlindID = 1")

cnxn.commit ()
except ConnectionError:
smart home = False

pass
elif prediction == 'Okay':
try:
action = 'Close Blinds'

print ('test")
cursor.execute ("update SmartBlinds set blindState = 0 where BlindID = 1™)
cnxn.commit ()

except ConnectionError:

smart home = False
pass
elif prediction == 'Peace':
tryse
action = "'
print('test')
cursor.execute ("update SmartBlinds set closeBlinds = 0 where BlindID = 1")

cnxn.commit ()

except ConnectionError:
smart_home = False
pass

else:
pass

if save_images:

img_name = f"./frames/drawings/drawing {selected gesture} {img counter}.jpg".format (
img counter)

cv2.imwrite (img name, drawing)
print ("{} written".format (img name))

img _name2 = f"./frames/silhouettes/{selected gesture} {img_counter}.jpg".format (

35

cv?2.imwrite (img name, drawing)
print ("{} written".format (img name))

img name2 = f"./frames/silhouettes/{selected gesture} {img counter}.jpg".format
img_counter)

cv2.imwrite (img name2, thresh)

print(™{} WLLLLEH".format(img_name2))

img name3 = f"./frames/masks/mask {selected gesture} {img counter}.jpg".format (
img counter)

cv2.imwrite (img name3, img)

print ("{} written".format (img name3))

img counter += 1
k == ord('t"):
print ('Tracker turned on.")

cap = cv2.VideoCapture (0)
ret, frame = cap.read()

Select Region of Interest (ROTI)
r = cv2.selectROI (frame)

Crop image
imCrop = framel[int(r[l]):int(r[l] + r[31)s int(r[0]):2int(r[0] + r[2]1)]

setup initial location of window
r, h, ¢, w= 250, 400, 400, 400
track window = (c, r, w, h)
set up the ROI for tracking
roi = imCrop
hsv_roi = cv2.cvtColor(roi, cv2.COLOR BGRZ2HSV)
mask = cv2.inRange (hsv roi, np.array((0., 60., 32.)), np.array((180., 255., 255.)))
roi_hist = cv2.calcHist([hsv_roi], [0], mask, [180], [0, 180])
cv2.normalize (roi hist, roi hist, 0, 255, cv2.NORM MINMAX)
Setup the termination criteria, either 10 iteration or move by at least 1 pt
termgcrit = (cv2.TERM CRITERIA EPS | cv2.TERM CRITERIA COUNT, 10, 1)
while (1):
ret, frame = cap.read()
if ret == True:
hsv = cv2.cvtColor (frame, cv2.COLOR BGR2ZHSV)
dst = cv2.calcBackProject ([hsv], [0], roi hist, [0, 180], 1)
apply meanshift to get the new location
ret, track window = cv2.CamShift (dst, track window, term crit)
Draw it on image
pts = cvZ.boxPoints (ret)
pts = np.int0(pts)
img2 = cv2.polylines (frame, [pts], True, (0, 255, 0), 2)
cvZ2.imshow('img2', img2)
k = cv2.waitKey(60) & Oxff
if k == 27: # if ESC key
break
else:
cv2.imwrite (chr (k) +

".jpg", img2)
else:
break
cv2.destroyAllWindows ()
cap.release ()

(

36

