

MG-GY 6933
Advanced Mechatronics

 Final Report

Instructor:
 Professor Vikram Kapila

Team:

Kshitij Jindal (kj1290)
Yang Liu (yl6101)

Shiheng Wang (sw4018)

2019.05.16

Table of Content
Overview 3

1.1 Goal 3
1.2 Objective of the Project 3
1.3 Measurement 4

Introduction 5
2.1 Control Policy 6

Development 7
4.1 Phase I -- Arduino 7
4.2 Phase II -- Propeller 7
4.3 Phase III -- Raspberry Pi 8

4.3.1 OpenCV & Camera 8
a. Real-time Face detection 9
b. Distance detection 10
c. Color Detection 13

4.3.2 Communication between R-Pi and Arduino 15

Conclusion and Result 17

At current stage, the direction control was not implemented yet. But we can use Picame do
real-time face detection, distance detection and color detection. Through the camera, can return
value to raspberry pi and send it to arduino. At the sem time, we can get the value from sensors
which connected to Arduino by using Raspberry Pi. The problem is, how to make them work
simultaneously and when datas are huge, how to guarantee obtain them accurately. 17

Future Works 17

Reference 18

Appendix[Done] 19
Raspberry pi 3B 19
Arduino Uno 20
ELP High Speed 120fps PCB USB2.0 Webcam 21
L298N H-bridge Motor Controller 23
Step-down DC-DC Converter Module for Raspberry Pi 24
Rotary Encoder & Wheel Set 24
DC 3V - 6V Dual Axis Gear Motor 25

1

Table of Figures

Figure 1. ​Grid workspace with objective and obstacle. 4
Figure 2. Ideal Work Space ​5
Figure 3. Control Policy 6
Figure 4. Single Face Detected ​10
Figure 5. Multiple Different Format of Face Detected 10 ​Figure
6. Triangle Similarity 11 ​Figure
7. ​Camera with OpenCV Detecting Moving Face and Returning Distance 12
Figure 8(a). Camera detected distance ​12
Figure 8(b). Measured distance by ruler ​12
Figure 9(a). Test code for setting HSV trackbar ​13
Figure 9(b). Test code for finding HSV threshold ​13
Figure 10. Finding the Biggest Contour ​13
Figure 11(a). Threshold adjustment 14
Figure 11(b).Threshold adjustment 14
Figure 12. Threshold parameters found ​ 15
Figure 13. PiConfig ​ 16
Figure 14. Verify Arduino port number ​ ​16

2

Overview

1.1 Goal

The goal of this project is to prototype of an autonomous delivery bot, which represents an

autonomous waiter in real life. The goal of the project includes:

● Allow users to control the robot by sending command of objective location

● To build a small size bot which can move to target location and stop when encounters

obstacles in midway.

1.2 Objective of the Project

The objective of this project includes:

● A defined test environment and workspace for prototype.

● A small scale delivery bot, which can accurately navigate but not yet with items

pick-and-place function.

● Develop an algorithm for detecting the distance from the bot to objective

location/obstacle using OpenCV and camera, and showing the distance with centimeter

unit

● Set block with human front face picture as objective location, and colored (blue) box as

obstacle, the bot would start to move when it detect the objective location, but stop while

detect obstacle.

● A screen mounted on the bot showing the front view captured by the bot.

3

1.3 Measurement

The success of the system would be measured by following factors:

● Communicate and control the arduino through sending command to the R-Pi terminal.

● The distance detected by the camera and OpenCV matches with the distance manually

measured on the grid paper coordinate.

● Circle and contour out the objective detected, and show in real-time on the screen

mounted on the screen.

Figure 1. Grid workspace with objective and obstacle.

4

Introduction

In real world, automatic delivery bot should be design to work in different environment without

requiring users to set up specific lines for the robot to follow, and the bot should be “smart

enough” to do obstacle avoidance. With the knowledges the team learned so far, they found that

utilizing OpenCV and object detection together would bring the robot to move as close as

possible to the objective behavior. However, due to the calculation power limit of the GPU

Raspberry Pi, the object detection would be relatively slow with respect to the car motion.

Hereby, in this project, the team utilized face detection and color detection with OpenCV, and

the human face represented the objective, and certain color represented obstacles. The delivery

bot would first detect objective, and once the objective was detected, it would return the distance

to go for the robot, and then trigger the bot to move. On the robot’s way to the objective location,

colored box would manually place to the workspace, and if it was detected within center range of

the view, the robot would stop moving. Once the colored box was taken away, the robot would

restart its motion.

Figure 2. Ideal Work space

5

2.1 Control Policy

Figure 3. Control Policy

6

Development

4.1 Phase I -- Arduino

For the first phase, the team built a car with Arduino as a microcontroller. Since the objective

was to deliver, the team chose Ackermann Steering which prevents slipping. The forward

kinematics was done and then Proportional gain controller was applied to make the robot reach

the objective. Encoder was used as the inly sensor in this phase, which detected rotation of each

rear wheel and then a mean velocity was calculated. Through Euler integration, the current

position was estimated and then the distance to the goal position was re-calculated. The gain for

the steering angle and DC motor speed was adjusted based on trial and error.

4.2 Phase II -- Propeller

In the second phase, the team integrated rotary encoder and parallax accelerometer to improve

the localization of the car. The team implemented Extended Kalman Filter to improve the results

obtained by both the sensors. Accelerometer was used in the prediction step and values from the

rotary encoder was used in the update step.

7

4.3 Phase III -- Raspberry Pi

 4.3.1 OpenCV & Camera

OpenCV, the library created for real-time computer vision, was used in this project for visual

detection, and the team initially planned to incorporate OpenCV and TensorFlow on Raspberry

Pi for object detection. However, based on the limited calculation strength of the Raspberry Pi

GPU, the speed of returning information of detected object to the processor would be relatively

slow - comparing with the speed of signal communication for controlling the wheel motors.

Thus, in order for the car to detect target position as well as unwanted object, the team tried four

other methods: face detection, distance detection, color detection and April tag. Eventually, face

detection, color detection and distance detection were integrated and utilized together.

In addition, ​because the team targeted on real-time detection, PiCamera was not the option

because it was not a USB camera and the OpenCV library has no function for detecting and

reading from the camera directly. To use it, the team tried to save picture every shot time, but

such method slowed done the information calculation, as well as occupied unnecessary memory.

 a. Real-time Face detection

OpenCV was already with build-in trainers and detectors, and for face detection, Haar

feature-based cascade classifiers was used, which ​is a machine learning based approach where a

cascade function is trained from a lot of positive and negative images, and then used to detect

8

objects in other images. [1] ​The pre-trained Haar cascade classifiers was stored in the XML file,

and then with following python code[1], it could be load for the use of face detection.

import​ numpy ​as​ np
import​ cv2 ​as​ cv
face_cascade =​ ​cv.CascadeClassifier​(​'haarcascade_frontalface_default.xml'​)

After loading the classifier, following code was utilized to setup the camera start video stream.

Because the USB camera was used for real-time video capturing, instead of using ​img =

cv.imread​(​'sachin.jpg'​)​for reading an image, following command was utilized:

Once the video was captured, it was converted into grayscale with following code:

After that, it was load into the classifier, and wherever a face was detected, a rectangle would be

drawn around with following code. In addition, the screen would return “found a face” as a

output signal, which could be used as a trigger and sent to Arduino for wheel motor control.

Eventually, with following code, a video stream window would be showing on the screen.

9

https://docs.opencv.org/3.4.1/d1/de5/classcv_1_1CascadeClassifier.html
https://docs.opencv.org/3.4.1/d1/de5/classcv_1_1CascadeClassifier.html
https://docs.opencv.org/3.4.1/d4/da8/group__imgcodecs.html#ga288b8b3da0892bd651fce07b3bbd3a56
https://docs.opencv.org/3.4.1/d4/da8/group__imgcodecs.html#ga288b8b3da0892bd651fce07b3bbd3a56

In ​Figure 3. below, there’s one face of real human being detected, and in ​Figure 4. there was the

other face detected, which was a picture instead of real person in front of the camera. That

indicate the success of real-time face detection.

 ​Figure 4. Single Face Detected​ ​Figure 5. Multiple different format of face detected

 b. Distance detection

For distance measurement, the​ Triangle Similarity[2]​ method demonstrated in​ Figure 5​ was

utilized. To use this method, a picture with known width (W) and known distance (D) to the

camera was taken at first. Then get the pixels (P) of the known width, and calculate the focal

length (F) of the camera using Equation 1 on next page.

Figure 6. Triangle Similarity

10

 F = (P * D) / W (Equation 1)

After that, the image could be moved closer to the camera, which brought the distance change,

and the newer distance would be D’, which could be calculated using ​Equation 2​ below.

 D’ = (F * W) / P (Equation 2)

In this project, the camera was calibrated based on a human face (W*H ~18cm*13cm) printed on

paper, which was ~7cm*5cm. When doing the calculation and coding, the team read similar

project online, and studied from code shared[3]. Eventually, as shown in ​Figure 6 below, the

camera captured human face in real-time and returned the distance from that face to the camera.

Relative code was attached in Appendix.

Figure 7. Camera with OpenCV detecting moving face and returning distance.

As shown in ​Figure 8(a) and Figure 8(b) on next page, when the face picture was moving, the

real-time distance was detected, and when it stayed somewhere 30cm far from the camera, the

team measured the distance with ruler, and the results matched.

11

Figure 8(a) Camera detected distance Figure 8(b) Measured distance by ruler

 c. Color Detection

The video capture process of color detection was the same as face and distance detection. After

capturing videos, the next step was to turn video captured from RGB colored profile into HSV

profile, and then create a mask based on the HSV range. Because the camera and environment

difference, the HSV threshold could be different, and HSV for standard color might not be

utilized specifically for this project. Thus, the first step was to run following code find the HSV

range for color used in this project.

Figure 9(a) Test code for setting HSV trackbar

Figure 9(b). Test code for finding HSV threshold

12

The purpose of this HSV mask was to filter the video, and made it easier for contour finding.

With such a mask, the contour of objective color could be found and returned in array list.

However, while there would be both noise and more than one object with target color, so a set of

additional command was added to find the biggest contour. There’s one more thing needs to be

pointed out: the online tutorials the team found for color detection was detection color from

single image, of which there’s always objective color, but it ignore the condition whenever

there’s no objective color detected, in which the command for find maximum contour would

crash. To fix that, try-except structure was implemented as shown below in ​Figure 9​.

Figure 10. Finding the Biggest Contour

With running above code, a series of window would show up, including a colorTest window

with trackbar for manually adjusting HSV range, a mask-plain window, original frame window

and a result window with contours in yellow color and biggest contour in green. As shown in

Figure 10(a) and ​Figure 10(b)​, the grayscale mask-plain window would be representing the

color captured while the threshold parameters were adjusted.

13

Figure 11(a). Threshold adjustment​ ​Figure 11(b).Threshold adjustment

Figure 12. Threshold parameters found

As shown in above ​Figure 11​, after adjusting the HSV range, the [16,140,116,207,255,255]

parameters gave color detection ideal enough.

 4.3.2 Communication between R-Pi and Arduino

In order to communicate Raspberry Pi with Arduino, connect those two through USB first.

14

Therefore, ​sensors, motors, and actuators which connected to Arduino can send values to and

from the Raspberry Pi. This way, computing intensive tasks can be separated. For Raspberry Pi

program, pyserial package need to be installed first. Then import serial and create serial object.

In Raspberry Pi interface, be sure to enable Serial and I2C in PiConfig​.

Figure 13. PiConfig

For Arduino part, make sure write and upload the program. Before run the program, execute “ls/dev/tty*”

to verify the port number of Arduino.

Figure 14. Verify Arduino port number

15

Conclusion and Result

At current stage, the direction control was not implemented yet. However, real-time face

detection, distance detection and color detection can be done by using Picamera. Through the

camera, value can be returned to raspberry pi and send it to arduino. At the same time, value can

obtained from sensors which connected to Arduino by using Raspberry Pi. The problem is, how

to make them work simultaneously and when datas are huge, how to guarantee obtain them

accurately.

Future Works

For future work, additional calculation and programming could be added to get the off-center

angel of the objective detected. As shown below in Figure 15, with x,y distance measured, the

off-center angle could be calculated. Similarly, for current stage, as long as there’s objective item

captured by the camera, no matter the object was just on the border or at the center. For future

stage, since the x pixel position could be detected, a range could be defined and only when the

location of detected object was in that range, the R-Pi would taking the detected item as

objective.

Figure 15. Off-center angle Figure 16. Narrow the edge

16

Reference

[1] Face Haar Cascade:
https://docs.opencv.org/3.4.1/d7/d8b/tutorial_py_face_detection.html

[2] Distance measurement:
https://www.pyimagesearch.com/2015/01/19/find-distance-camera-objectmarker-using-python-o
pencv/

[3] Face detection & distance:
https://www.youtube.com/watch?v=xfSw3mC35qU

[4] Color detection:
https://www.bluetin.io/opencv/object-detection-tracking-opencv-python/

[5] TensorFlow:
https://github.com/EdjeElectronics/TensorFlow-Object-Detection-on-the-Raspberry-Pi

17

https://docs.opencv.org/3.4.1/d7/d8b/tutorial_py_face_detection.html
https://www.pyimagesearch.com/2015/01/19/find-distance-camera-objectmarker-using-python-opencv/
https://www.pyimagesearch.com/2015/01/19/find-distance-camera-objectmarker-using-python-opencv/
https://www.youtube.com/watch?v=xfSw3mC35qU
https://www.bluetin.io/opencv/object-detection-tracking-opencv-python/
https://github.com/EdjeElectronics/TensorFlow-Object-Detection-on-the-Raspberry-Pi

Appendix[Done]

- Raspberry pi 3B

https://www.raspberrypi.org/products/raspberry-pi-3-model-b/
● Quad Core 1.2GHz Broadcom BCM2837 64bit CPU

● 1GB RAM

● BCM43438 wireless LAN and Bluetooth Low Energy (BLE) on board

18

https://www.raspberrypi.org/products/raspberry-pi-3-model-b/

● 100 Base Ethernet

● 40-pin extended GPIO

● 4 USB 2 ports

● 4 Pole stereo output and composite video port

● Full size HDMI

● CSI camera port for connecting a Raspberry Pi camera

● DSI display port for connecting a Raspberry Pi touchscreen display

● Micro SD port for loading your operating system and storing data

● Upgraded switched Micro USB power source up to 2.5A

- Arduino Uno

https://store.arduino.cc/usa/arduino-uno-rev3

Microcontroller ATmega328

Operating Voltage 5V

Input Voltage
(recommended) 7-12V

Input Voltage (limit) 6-20V

Digital I/O Pins 14 (of which 6 provide PWM output)

PWM Digital I/O Pins 6

Analog Input Pins 6

DC Current per I/O Pin 20 mA

19

https://store.arduino.cc/usa/arduino-uno-rev3

DC Current for 3.3V Pin 50 mA

Flash Memory 32 KB (ATmega328P) of which 0.5 KB used by bootloader

SRAM 2 KB (ATmega328P)

EEPROM 1 KB (ATmega328P)

Clock Speed 16 MHz

LED_BUILTIN 13

Length 68.6 mm

Width 53.4 mm

Weight 25 g

- ELP High Speed 120fps PCB USB2.0 Webcam

Board 2 Mega Pixels 1080P OV2710 CMOS Camera Module With
2.1mm Lens ELP-USBFHD01M-L21

http://www.webcamerausb.com/elp-high-speed-120fps-pcb-usb20-webcam-board-2-mega-pixels-
1080p-ov2710-cmos-camera-module-with-21mm-lens-elpusbfhd01ml21-p-78.html

Model ELP-USBFHD01M-L21

Sensor OV2710

Sensor Size 1/2.7 inch

Pixel Size 3μm x 3μm

image area 5856 μm x 3276 μm

Max. Resolution FULL HD 1920(H)X1080(V)

Compression format MJPEG / YUV2（YUYV）

20

http://www.webcamerausb.com/elp-high-speed-120fps-pcb-usb20-webcam-board-2-mega-pixels-1080p-ov2710-cmos-camera-module-with-21mm-lens-elpusbfhd01ml21-p-78.html
http://www.webcamerausb.com/elp-high-speed-120fps-pcb-usb20-webcam-board-2-mega-pixels-1080p-ov2710-cmos-camera-module-with-21mm-lens-elpusbfhd01ml21-p-78.html

Resolution & frame 320X240 QVGA MJPEG @120fps/ 352X288 CIF MJPEG @120fps
640X480 VGA MJPEG@120fps/ 800X600 SVGA MJPEG@60fps
1024X768 XGA MJPEG@30fps/ 1280X720 HD MJPEG@60fps
1280X1024 SXGA MJPEG@30fps/ 1920X1080 FHD MJPEG@30fps

Special function Lens correction/ Defective pixel correction/ Black sun cancellation

Mini illumination 0. 05lux

Shutter Type Electronic rolling shutter / Frame exposure

USB protocol USB2.0 HS/FS

Connecting Port type USB2.0 High Speed

OTG protocol USB2.0 OTG

Free Drive Protocol USB Video Class（UVC）

AEC Support

AEB Support

AGC Support

Adjustable parameters Brightness, Contrast, Saturation, Hue, Sharpness, Gamma,
White balance, Backlight Contrast, Exposure

Lens Parameter Standard 2.1 mm, optional/2.5/2.8/3.6/6mm/FOV(D)187 Degree/170
Degree

Night vision Support, need to equipped IR sensor 850nm or 940nm lens and IR LED
Board

LED board power
connector

Support 2P-2.0mm socket

Power supply USB BUS POWER 4P-2.0mm socket

Power supply DC5V

Operating Voltage 120mA~220mA

Working current 0～60℃

Working temperature -20～75℃

Board size /Weight 38X38mm（Compatible 32X32mm）/ about 30g

Cable Standard 1M / optional 2M,3M,5M

Operating system request WinXP/Vista/Win7/Win8
Linux with UVC（above linux-2.6.26）
MAC-OS X 10.4.8 or later
Wince with UVC
Android 4.0 or above with UVC

21

- L298N H-bridge Motor Controller

https://www.amazon.com/H-bridge-Controller-DROK-Stepper-Regulator/dp/B07MR2S1YX

● Parameter:

● Chip: L298N

● Logic voltage: 5V

● Logic current 0mA-36mA

● Storage Temperature: -20 ℃ to ℃ to +135

● Operating mode: H-bridge driver (dual)

● Drive voltage: 5V-35V

● Drive current: 2A (MAX single bridge)

● Maximum power: 25W

● Dimensions: 43x43x27mm

22

https://www.amazon.com/H-bridge-Controller-DROK-Stepper-Regulator/dp/B07MR2S1YX

- Step-down DC-DC Converter Module for Raspberry Pi

-
https://www.sunfounder.com/step-down-dc-dc-converter-module-for-raspberry-pi.html

● With a USB port; 4 pins for output voltage

● With power indicator light

● Input voltage: 5V – 40V

● Output voltage: DC 5V; output current: 2A

● PCB size: 4.4 x 2.7 cm

- Rotary Encoder & Wheel Set

https://tinkersphere.com/parts-components/1472-rotary-encoder-wheel-set.html

● Number of notches per wheel: 20

● Input Voltage(VCC): 4.5V to 5.5V DC

● Input Current: 25mA

● Measurement Frequency: 100 kHz

● Signal Output: Square Wave (GND to VCC)

● Encoder Size: 24mm

● Pinout:
○ 5V: Power
○ GND: Ground

23

https://www.sunfounder.com/step-down-dc-dc-converter-module-for-raspberry-pi.html
https://tinkersphere.com/parts-components/1472-rotary-encoder-wheel-set.html

○ OUT: Signal (to your Arduino or other microcontroller)

- DC 3V - 6V Dual Axis Gear Motor

https://usa.banggood.com/DC-3V-6V-Dual-Axis-Gear-Motor-2-Axis-TT-Motor-Reducer-Motor-p-
916210.html?gmcCountry=US¤cy=USD&createTmp=1&utm_source=googleshopping&ut
m_medium=cpc_bgcs&utm_content=garman&utm_campaign=pla-usg-ele-diy1-pc&gclid=CjwK
CAjw8e7mBRBsEiwAPVxxiO_DKQviUrFcuuWQGQx8k92F2M30XK_S1KEEdW2Gd5qJC2XZ7z
kSwxoCMdIQAvD_BwE&cur_warehouse=CN

● Strong magnetic with anti-interference

● Double axis gear motor

● Reduction ratio: 1:48

● Working voltage: 3V ~ 6V

● Unloads current: ≤200mA @ 6V, ≤150mA @ 3V

● Unloads speed: 200 ± 10%RPM @ 6V, 90 ± 10%RPM @ 3V

24

https://usa.banggood.com/DC-3V-6V-Dual-Axis-Gear-Motor-2-Axis-TT-Motor-Reducer-Motor-p-916210.html?gmcCountry=US¤cy=USD&createTmp=1&utm_source=googleshopping&utm_medium=cpc_bgcs&utm_content=garman&utm_campaign=pla-usg-ele-diy1-pc&gclid=CjwKCAjw8e7mBRBsEiwAPVxxiO_DKQviUrFcuuWQGQx8k92F2M30XK_S1KEEdW2Gd5qJC2XZ7zkSwxoCMdIQAvD_BwE&cur_warehouse=CN
https://usa.banggood.com/DC-3V-6V-Dual-Axis-Gear-Motor-2-Axis-TT-Motor-Reducer-Motor-p-916210.html?gmcCountry=US¤cy=USD&createTmp=1&utm_source=googleshopping&utm_medium=cpc_bgcs&utm_content=garman&utm_campaign=pla-usg-ele-diy1-pc&gclid=CjwKCAjw8e7mBRBsEiwAPVxxiO_DKQviUrFcuuWQGQx8k92F2M30XK_S1KEEdW2Gd5qJC2XZ7zkSwxoCMdIQAvD_BwE&cur_warehouse=CN
https://usa.banggood.com/DC-3V-6V-Dual-Axis-Gear-Motor-2-Axis-TT-Motor-Reducer-Motor-p-916210.html?gmcCountry=US¤cy=USD&createTmp=1&utm_source=googleshopping&utm_medium=cpc_bgcs&utm_content=garman&utm_campaign=pla-usg-ele-diy1-pc&gclid=CjwKCAjw8e7mBRBsEiwAPVxxiO_DKQviUrFcuuWQGQx8k92F2M30XK_S1KEEdW2Gd5qJC2XZ7zkSwxoCMdIQAvD_BwE&cur_warehouse=CN
https://usa.banggood.com/DC-3V-6V-Dual-Axis-Gear-Motor-2-Axis-TT-Motor-Reducer-Motor-p-916210.html?gmcCountry=US¤cy=USD&createTmp=1&utm_source=googleshopping&utm_medium=cpc_bgcs&utm_content=garman&utm_campaign=pla-usg-ele-diy1-pc&gclid=CjwKCAjw8e7mBRBsEiwAPVxxiO_DKQviUrFcuuWQGQx8k92F2M30XK_S1KEEdW2Gd5qJC2XZ7zkSwxoCMdIQAvD_BwE&cur_warehouse=CN
https://usa.banggood.com/DC-3V-6V-Dual-Axis-Gear-Motor-2-Axis-TT-Motor-Reducer-Motor-p-916210.html?gmcCountry=US¤cy=USD&createTmp=1&utm_source=googleshopping&utm_medium=cpc_bgcs&utm_content=garman&utm_campaign=pla-usg-ele-diy1-pc&gclid=CjwKCAjw8e7mBRBsEiwAPVxxiO_DKQviUrFcuuWQGQx8k92F2M30XK_S1KEEdW2Gd5qJC2XZ7zkSwxoCMdIQAvD_BwE&cur_warehouse=CN

