MG-GY 6933

Advanced Mechatronics
Final Report

Instructor:
Professor Vikram Kapila

Team:
Kshitij Jindal (kj1290)
Yang Liu (yl6101)
Shiheng Wang (sw4018)

2019.05.16

Table of Content

Overview
1.1 Goal
1.2 Objective of the Project
1.3 Measurement

Introduction
2.1 Control Policy

Development

4.1 Phase I -- Arduino

4.2 Phase II -- Propeller

4.3 Phase III -- Raspberry Pi

4.3.1 OpenCV & Camera

a. Real-time Face detection
b. Distance detection
c. Color Detection

4.3.2 Communication between R-Pi and Arduino

Conclusion and Result

At current stage, the direction control was not implemented yet. But we can use Picame do
real-time face detection, distance detection and color detection. Through the camera, can return
value to raspberry pi and send it to arduino. At the sem time, we can get the value from sensors
which connected to Arduino by using Raspberry Pi. The problem is, how to make them work
simultaneously and when datas are huge, how to guarantee obtain them accurately.

Future Works
Reference

Appendix[Done]
Raspberry pi 3B
Arduino Uno
ELP High Speed 120fps PCB USB2.0 Webcam
L298N H-bridge Motor Controller
Step-down DC-DC Converter Module for Raspberry Pi
Rotary Encoder & Wheel Set
DC 3V - 6V Dual Axis Gear Motor

A W W W

N W

O 0 0 N 3 2

10
13
15

17

17

17

18

19
19
20
21
23
24
24
25

Table of Figures

Figure 1. Grid workspace with objective and obstacle.
Figure 2. Ideal Work Space

Figure 3. Control Policy

Figure 4. Single Face Detected

Figure 5. Multiple Different Format of Face Detected
6. Triangle Similarity

7. Camera with OpenCV Detecting Moving Face and Returning Distance
Figure 8(a). Camera detected distance

Figure 8(b). Measured distance by ruler

Figure 9(a). Test code for setting HSV trackbar
Figure 9(b). Test code for finding HSV threshold
Figure 10. Finding the Biggest Contour

Figure 11(a). Threshold adjustment

Figure 11(b). Threshold adjustment

Figure 12. Threshold parameters found

Figure 13. PiConfig

Figure 14. Verify Arduino port number

4
5
6
10
10 Figure
11 Figure
12
12
12
13
13
13
14
14
15
16
16

Overview

1.1 Goal

The goal of this project is to prototype of an autonomous delivery bot, which represents an
autonomous waiter in real life. The goal of the project includes:

e Allow users to control the robot by sending command of objective location

e To build a small size bot which can move to target location and stop when encounters

obstacles in midway.

1.2 Objective of the Project

The objective of this project includes:

e A defined test environment and workspace for prototype.

e A small scale delivery bot, which can accurately navigate but not yet with items
pick-and-place function.

e Develop an algorithm for detecting the distance from the bot to objective
location/obstacle using OpenCV and camera, and showing the distance with centimeter
unit

e Set block with human front face picture as objective location, and colored (blue) box as
obstacle, the bot would start to move when it detect the objective location, but stop while
detect obstacle.

e A screen mounted on the bot showing the front view captured by the bot.

1.3 Measurement

The success of the system would be measured by following factors:
e Communicate and control the arduino through sending command to the R-Pi terminal.
e The distance detected by the camera and OpenCV matches with the distance manually
measured on the grid paper coordinate.
e Circle and contour out the objective detected, and show in real-time on the screen

mounted on the screen.

Figure 1. Grid workspace with objective and obstacle.

Introduction

In real world, automatic delivery bot should be design to work in different environment without
requiring users to set up specific lines for the robot to follow, and the bot should be “smart
enough” to do obstacle avoidance. With the knowledges the team learned so far, they found that
utilizing OpenCV and object detection together would bring the robot to move as close as
possible to the objective behavior. However, due to the calculation power limit of the GPU
Raspberry Pi, the object detection would be relatively slow with respect to the car motion.
Hereby, in this project, the team utilized face detection and color detection with OpenCV, and
the human face represented the objective, and certain color represented obstacles. The delivery
bot would first detect objective, and once the objective was detected, it would return the distance
to go for the robot, and then trigger the bot to move. On the robot’s way to the objective location,
colored box would manually place to the workspace, and if it was detected within center range of
the view, the robot would stop moving. Once the colored box was taken away, the robot would

restart its motion.

Figure 2. Ideal Work space

2.1 Control Policy

Real-time
\ input
—

Raspberry Pi

Distance & Direction

—

Pose

Figure 3. Control Policy

Arduino1

Arduino2

Development

4.1 Phase I -- Arduino

For the first phase, the team built a car with Arduino as a microcontroller. Since the objective
was to deliver, the team chose Ackermann Steering which prevents slipping. The forward
kinematics was done and then Proportional gain controller was applied to make the robot reach
the objective. Encoder was used as the inly sensor in this phase, which detected rotation of each
rear wheel and then a mean velocity was calculated. Through Euler integration, the current
position was estimated and then the distance to the goal position was re-calculated. The gain for

the steering angle and DC motor speed was adjusted based on trial and error.

4.2 Phase II -- Propeller

In the second phase, the team integrated rotary encoder and parallax accelerometer to improve
the localization of the car. The team implemented Extended Kalman Filter to improve the results
obtained by both the sensors. Accelerometer was used in the prediction step and values from the

rotary encoder was used in the update step.

Prediction step:
> e = pe—q1 + 6t f(Ue—1,ue, 0)
3 =Fp B g Y + Ve Qa V

Measurement model:
> Zy = Cp x¢ + v
> v, ~N(O,R,)

Update:
> py = e + Ke(2zp — Ce i)

N e oo b ~1
s) = B,0F (6.3 6 +Ry)

4.3 Phase III -- Raspberry Pi

4.3.1 OpenCV & Camera

OpenCV, the library created for real-time computer vision, was used in this project for visual
detection, and the team initially planned to incorporate OpenCV and TensorFlow on Raspberry
Pi for object detection. However, based on the limited calculation strength of the Raspberry Pi
GPU, the speed of returning information of detected object to the processor would be relatively
slow - comparing with the speed of signal communication for controlling the wheel motors.
Thus, in order for the car to detect target position as well as unwanted object, the team tried four
other methods: face detection, distance detection, color detection and April tag. Eventually, face
detection, color detection and distance detection were integrated and utilized together.

In addition, because the team targeted on real-time detection, PiCamera was not the option
because it was not a USB camera and the OpenCV library has no function for detecting and
reading from the camera directly. To use it, the team tried to save picture every shot time, but

such method slowed done the information calculation, as well as occupied unnecessary memory.
a. Real-time Face detection
OpenCV was already with build-in trainers and detectors, and for face detection, Haar

feature-based cascade classifiers was used, which is a machine learning based approach where a

cascade function is trained from a lot of positive and negative images, and then used to detect

objects in other images. [1] The pre-trained Haar cascade classifiers was stored in the XML file,

and then with following python code[1], it could be load for the use of face detection.

import numpy as np
import cv2 as cv
face cascade = cv.CascadeClassifier ('haarcascade frontalface default.xml')

After loading the classifier, following code was utilized to setup the camera start video stream.
Because the USB camera was used for real-time video capturing, instead of using img =

cv.imread ('sachin.jpg") for reading an image, following command was utilized:

cap = cv2.VideoCapture(@)
cap.set(3,640)

cap.set(4,480)

Once the video was captured, it was converted into grayscale with following code:

ret, img = cap.read()
gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)

After that, it was load into the classifier, and wherever a face was detected, a rectangle would be
drawn around with following code. In addition, the screen would return “found a face” as a
output signal, which could be used as a trigger and sent to Arduino for wheel motor control.

faces - faceCascade.detectMultiScale(
gray,
scaleFactor 1.3,
minNeighbors = 3,
minSize = (15,15)
)

(x,y,w,h) faces:
cv2.rectangle(img, (x,y), (x+w,y+h), (255,255,255),2)

3
print('found a face!')

Eventually, with following code, a video stream window would be showing on the screen.

cv2.imshow('video',img)

https://docs.opencv.org/3.4.1/d1/de5/classcv_1_1CascadeClassifier.html
https://docs.opencv.org/3.4.1/d1/de5/classcv_1_1CascadeClassifier.html
https://docs.opencv.org/3.4.1/d4/da8/group__imgcodecs.html#ga288b8b3da0892bd651fce07b3bbd3a56
https://docs.opencv.org/3.4.1/d4/da8/group__imgcodecs.html#ga288b8b3da0892bd651fce07b3bbd3a56

In Figure 3. below, there’s one face of real human being detected, and in Figure 4. there was the
other face detected, which was a picture instead of real person in front of the camera. That

indicate the success of real-time face detection.

Figure 4. Single Face Detected Figure 5. Multiple different format of face detected

b. Distance detection

For distance measurement, the Triangle Similarity[2] method demonstrated in Figure 5 was
utilized. To use this method, a picture with known width (W) and known distance (D) to the
camera was taken at first. Then get the pixels (P) of the known width, and calculate the focal

length (F) of the camera using Equation 1 on next page.

Figure 6. Triangle Similarity

10

F=P*D)/W (Equation 1)
After that, the image could be moved closer to the camera, which brought the distance change,
and the newer distance would be D’, which could be calculated using Equation 2 below.

D’ =(F*W)/P (Equation 2)
In this project, the camera was calibrated based on a human face (W*H ~18cm*13cm) printed on
paper, which was ~7cm*5cm. When doing the calculation and coding, the team read similar
project online, and studied from code shared[3]. Eventually, as shown in Figure 6 below, the
camera captured human face in real-time and returned the distance from that face to the camera.

Relative code was attached in Appendix.

ret, img = cap.read(
frame = Cv2.resize(i

e from camercjillldetected face ™™ "

Figure 7. Camera with OpenCV detecting moving face and returning distance.

As shown in Figure 8(a) and Figure 8(b) on next page, when the face picture was moving, the
real-time distance was detected, and when it stayed somewhere 30cm far from the camera, the

team measured the distance with ruler, and the results matched.

11

gray = chcvtCoIor{f
aces = faceCascade.d

c. Color Detection

The video capture process of color detection was the same as face and distance detection. After
capturing videos, the next step was to turn video captured from RGB colored profile into HSV
profile, and then create a mask based on the HSV range. Because the camera and environment
difference, the HSV threshold could be different, and HSV for standard color might not be
utilized specifically for this project. Thus, the first step was to run following code find the HSV

range for color used in this project.

cv2 .namedWindow('colorTest')

Lower range colour sliders.

cv2.createTrackbar('lowHue', 'colorTest', icol[@], 255, nothing)
cv2.createTrackbar('lowSat', 'colorTest', icol[1], 255, nothing)
cv2.createTrackbar('lowVal', 'colorTest', icol[2], 255, nothing)
Higher range colour sliders.

cv2.createTrackbar('highHue', 'colorTest', icol[3], 255, nothing)
cv2.createTrackbar('highSat', 'colorTest', icol[4], 255, nothing)
cv2.createTrackbar('highval', 'colorTest', icol[5], 255, nothing)

Figure 9(a) Test code for setting HSV trackbar

frame = ch.imréad(‘coloﬁr—circles—test.jpg')

while True:

Get HSV values from the GUI sliders.

lowHue = cv2.getTrackbarPos('lowHue', 'colorTest')
lowSat = cv2.getTrackbarPos('lowSat', 'colorTest')
lowVal = cv2.getTrackbarPos('lowval', 'colorTest')
highHue = cv2.getTrackbarPos('highHue', 'colorTest')
highSat = cv2.getTrackbarPos('highSat', 'colorTest')
highVal = cv2.getTrackbarPos('highVal', 'colorTest')

Figure 9(b). Test code for finding HSV threshold

[|

nnn

12

The purpose of this HSV mask was to filter the video, and made it easier for contour finding.
With such a mask, the contour of objective color could be found and returned in array list.
However, while there would be both noise and more than one object with target color, so a set of
additional command was added to find the biggest contour. There’s one more thing needs to be
pointed out: the online tutorials the team found for color detection was detection color from
single image, of which there’s always objective color, but it ignore the condition whenever
there’s no objective color detected, in which the command for find maximum contour would

crash. To fix that, try-except structure was implemented as shown below in Figure 9.

biggest_contour = max(contour_sizes, key-lambda x: x[@])[1]

x,¥,W,h = cv2.boundingRect(biggest_contour)
cv2.rectangle(frame, (x,y), (x+w,y+h), (0,255,0),2)
cv2.drawContours(frame, contours, -1, (0,255,255), 3)

cv2.drawContours(frame, contours, -1, (@,255,255), 3_)|

cv2.imshow('colorTest', frame)

Figure 10. Finding the Biggest Contour
With running above code, a series of window would show up, including a colorTest window
with trackbar for manually adjusting HSV range, a mask-plain window, original frame window
and a result window with contours in yellow color and biggest contour in green. As shown in
Figure 10(a) and Figure 10(b), the grayscale mask-plain window would be representing the

color captured while the threshold parameters were adjusted.

13

o

JowHue File Edit Tabs Help

lowHue

lowSat lowSat

lowVal lowval

highHue highHue

highSat highSat

highval highval

ame = 4
i a7 Al
e E= & ol

i

Figure 11(b). Threshold adjustment

o x W Load Run

testpy ¥ | distance_testpy

contour_sizes :

try:
biggest _col

X, y,w,h =
cv2.rectan
cvZ.drawCol

X
1

Figure 12. Threshold parameters found

As shown in above Figure 11, after adjusting the HSV range, the [16,140,116,207,255,255]

parameters gave color detection ideal enough.

4.3.2 Communication between R-Pi and Arduino

In order to communicate Raspberry Pi with Arduino, connect those two through USB first.

14

Therefore, sensors, motors, and actuators which connected to Arduino can send values to and
from the Raspberry Pi. This way, computing intensive tasks can be separated. For Raspberry Pi

program, pyserial package need to be installed first. Then import serial and create serial object.

import serial

arduino = serial .Serial("/dev/ttvACM1", 9600)

In Raspberry Pi interface, be sure to enable Serial and I2C in PiConfig.

Interfaces

to verify the port number of Arduino.

pPlEraspberry: LS

/dev/tty
/dev/tty0
/dev/tiy1
/dev/tty10
/dev/tty11
/dev/tty12

/dev/tty13
/dev/tty14
/dev/tty15
/dev/tty16
/dev/tty17
/dev/tty18

/dev/tty19

/dev/tty2

fdev/tty20
/dev/tty21
/dev/tty22
/dev/tty23
fdev/tty24
/dev/tty25
/dev/tty26
/dev/tty27
/dev/tty28
/dev/tty29

Performance | Localisation

Figure 13. PiConfig

/dev/tty3

/dev/tty30
fdev/tty31
/dev/tty32
fdev/tty33
/fdev/tty34
fdev/tty3s
/dev/tty36
fdev/tty37
/dev/tty38
fdev/tty39
/dev/tty4

/dev/tty40
/dev/tty4dl
fdev/tty42
/dev/tty43
/dev/ttyd4
/dev/ttyds
/dev/tty46
/dev/ttyd7
/dev/tty48
/dev/tty49
/dev/ttys

/dev/ttys50

/dev/tty51
/dev/tty52
fdev/tty53
/dev/tty54
/dev/ttys55
/dev/ttysS6
/dev/ttys7
/dev/tty58
/dev/tty59
/dev/tty6

/dev/tty60
/dev/tty61

Figure 14. Verify Arduino port number

For Arduino part, make sure write and upload the program. Before run the program, execute “Is/dev/tty*”

/dev/tty62
/dev/tty63
fdev/tty7
/dev/tty8
/dev/tty9
/dev/ttyAM1
/dev/ttyAMAD
/dev/ttyprintk

15

Conclusion and Result

At current stage, the direction control was not implemented yet. However, real-time face
detection, distance detection and color detection can be done by using Picamera. Through the
camera, value can be returned to raspberry pi and send it to arduino. At the same time, value can
obtained from sensors which connected to Arduino by using Raspberry Pi. The problem is, how
to make them work simultaneously and when datas are huge, how to guarantee obtain them

accurately.

Future Works

For future work, additional calculation and programming could be added to get the off-center
angel of the objective detected. As shown below in Figure 15, with x,y distance measured, the
off-center angle could be calculated. Similarly, for current stage, as long as there’s objective item
captured by the camera, no matter the object was just on the border or at the center. For future
stage, since the x pixel position could be detected, a range could be defined and only when the

location of detected object was in that range, the R-Pi would taking the detected item as

objective.
x-axis - - : -
Figure 15. Off-center angle Figure 16. Narrow the edge

16

Reference

[1] Face Haar Cascade:
https://docs.opencv.org/3.4.1/d7/d8b/tutorial py face detection.html

[2] Distance measurement:
https://www.pyimagesearch.com/2015/01/19/find-distance-camera-objectmarker-using-python-o

pencv/

[3] Face detection & distance:
https://www.youtube.com/watch?v=xfSw3mC35qU

[4] Color detection:
https://www.bluetin.io/opencv/object-detection-tracking-opencv-python/

[5] TensorFlow:
https://github.com/EdjeElectronics/TensorFlow-Object-Detection-on-the-Raspberry-Pi

17

https://docs.opencv.org/3.4.1/d7/d8b/tutorial_py_face_detection.html
https://www.pyimagesearch.com/2015/01/19/find-distance-camera-objectmarker-using-python-opencv/
https://www.pyimagesearch.com/2015/01/19/find-distance-camera-objectmarker-using-python-opencv/
https://www.youtube.com/watch?v=xfSw3mC35qU
https://www.bluetin.io/opencv/object-detection-tracking-opencv-python/
https://github.com/EdjeElectronics/TensorFlow-Object-Detection-on-the-Raspberry-Pi

Appendix[Done]

- Raspberry pi 3B

https://www.raspberrypi.org/products/raspberry-pi-3-model-b/

e (Quad Core 1.2GHz Broadcom BCM2837 64bit CPU
e 1GBRAM
e BCM43438 wireless LAN and Bluetooth Low Energy (BLE) on board

18

https://www.raspberrypi.org/products/raspberry-pi-3-model-b/

100 Base Ethernet

40-pin extended GPIO

4 USB 2 ports

4 Pole stereo output and composite video port

Full size HDMI

CSI camera port for connecting a Raspberry Pi camera

DSI display port for connecting a Raspberry Pi touchscreen display
Micro SD port for loading your operating system and storing data

Upgraded switched Micro USB power source up to 2.5A

Arduino Uno

https://store.arduino.cc/usa/arduino-uno-rev3

Microcontroller ATmega328

Operating Voltage 5V

Input Voltage

(recommended) 7-12V

Input Voltage (limit) 6-20V

Digital I/0O Pins 14 (of which 6 provide PWM output)
PWM Digital I/O Pins 6

Analog Input Pins 6

DC Current per I/0 Pin 20 mA

19

https://store.arduino.cc/usa/arduino-uno-rev3

DC Current for 3.3V Pin

50 mA

Flash Memory 32 KB (ATmega328P) of which 0.5 KB used by bootloader
SRAM 2 KB (ATmega328P)

EEPROM 1 KB (ATmega328P)

Clock Speed 16 MHz

LED BUILTIN 13

Length 68.6 mm

Width 53.4 mm

Weight 25¢g

- ELP High Speed 120fps PCB USB2.0 Webcam

Board 2 Mega Pixels 1080P OV2710 CMOS Camera Module With
2.1lmm Lens ELP-USBFHDOIM-L21

http://www.webcamerausb.com/elp-high-speed-120fps-pcb-usb20-webcam-board-2-mega-pixels-

1080p-0v2710-cmos-camera-module-with-2 1mm-lens-elpusbfhd01ml21-p-78.html

Model ELP-USBFHD01M-L21
Sensor OV2710

Sensor Size 1/2.7 inch

Pixel Size 3um x 3um

image area 5856 um x 3276 pum

Max. Resolution FULL HD 1920(H)X1080(V)
Compression format MIJPEG /YUV2 (YUYV)

20

http://www.webcamerausb.com/elp-high-speed-120fps-pcb-usb20-webcam-board-2-mega-pixels-1080p-ov2710-cmos-camera-module-with-21mm-lens-elpusbfhd01ml21-p-78.html
http://www.webcamerausb.com/elp-high-speed-120fps-pcb-usb20-webcam-board-2-mega-pixels-1080p-ov2710-cmos-camera-module-with-21mm-lens-elpusbfhd01ml21-p-78.html

Resolution & frame

Special function
Mini illumination
Shutter Type

USB protocol
Connecting Port type
OTG protocol

Free Drive Protocol
AEC

AEB

AGC

Adjustable parameters

Lens Parameter

Night vision

LED board power
connector

Power supply

Power supply
Operating Voltage
Working current
Working temperature
Board size /Weight
Cable

Operating system request

320X240 QVGA MIJPEG @120fps/ 352X288 CIF MJPEG @120fps
640X480 VGA MJIPEG@]120fps/ 800X600 SVGA MIPEG@60fps
1024X768 XGA MIJPEG@30fps/ 1280X720 HD MIPEG@601fps
1280X1024 SXGA MJPEG@30fps/ 1920X1080 FHD MIPEG@30fps

Lens correction/ Defective pixel correction/ Black sun cancellation
0. 05lux

Electronic rolling shutter / Frame exposure

USB2.0 HS/FS

USB2.0 High Speed

USB2.0 OTG

USB Video Class (UVC)

Support

Support

Support

Brightness, Contrast, Saturation, Hue, Sharpness, Gamma,
White balance, Backlight Contrast, Exposure

Standard 2.1 mm, optional/2.5/2.8/3.6/6mm/FOV(D)187 Degree/170
Degree

Support, need to equipped IR sensor 850nm or 940nm lens and IR LED
Board

Support 2P-2.0mm socket

USB BUS POWER 4P-2.0mm socket

DC5V

120mA~220mA

0~60°C

-20~75°C

38X38mm (Compatible 32X32mm) / about 30g
Standard 1M / optional 2M,3M,5M

WinXP/Vista/Win7/Win8

Linux with UVC (above linux-2.6.26)
MAC-0OS X 10.4.8 or later

Wince with UVC

Android 4.0 or above with UVC

21

L298N H-bridge Motor Controller

https://www.amazon.com/H-bridge-Controller-DROK-Stepper-Regulator/dp/BO7TMR2S1YX
Parameter:

Chip: L298N

Logic voltage: 5V

Logic current OmA-36mA

Storage Temperature: -20 °C to °C to +135
Operating mode: H-bridge driver (dual)
Drive voltage: 5V-35V

Drive current: 2A (MAX single bridge)
Maximum power: 25W

Dimensions: 43x43x27mm

22

https://www.amazon.com/H-bridge-Controller-DROK-Stepper-Regulator/dp/B07MR2S1YX

Step-down DC-DC Converter Module for Raspberry Pi

https://www.sunfounder.com/step-down-dc-dc-converter-module-for-raspberry-pi.html

With a USB port; 4 pins for output voltage
With power indicator light

Input voltage: 5V — 40V

Output voltage: DC 5V; output current: 2A
PCB size: 4.4 x 2.7 cm

Rotary Encoder & Wheel Set

#F
hl-

807,

]
%ﬂ"‘“ %

@

L

(i)

b

https://tinkersphere.com/parts-components/1472-rotary-encoder-wheel-set.html

Number of notches per wheel: 20

Input Voltage(VCC): 4.5V to 5.5V DC
Input Current: 25mA

Measurement Frequency: 100 kHz

Signal Output: Square Wave (GND to VCC)
Encoder Size: 24mm

Pinout:

o 5V:Power
o GND: Ground

23

https://www.sunfounder.com/step-down-dc-dc-converter-module-for-raspberry-pi.html
https://tinkersphere.com/parts-components/1472-rotary-encoder-wheel-set.html

o OUT: Signal (to your Arduino or other microcontroller)

- DC3V -6V Dual Axis Gear Motor

https://usa.banggood.com/DC-3V-6V-Dual-Axis-Gear-Motor-2-Axis-T T-Motor-Reducer-Motor-p-
916210.htmiI?gmcCountry=US¤cy=USD&createTmp=1&utm_source=googleshopping&ut
m_medium=cpc_bgcs&utm_content=garman&utm_campaign=pla-usg-ele-diy1-pc&gclid=CjwK
CAjw8e7mBRBsEIWAPVxxiO_DKQviUrFcuuWQGQx8k92F2M30XK_S1KEEdW2Gd5qJC2XZ7z
kSwxoCMdIQAvD_BwE&cur_warehouse=CN

® Strong magnetic with anti-interference

Double axis gear motor

Reduction ratio: 1:48

Working voltage: 3V ~ 6V

Unloads current: <200mA @ 6V, <150mA @ 3V

Unloads speed: 200 = 10%RPM @ 6V, 90 + 10%RPM @ 3V

24

https://usa.banggood.com/DC-3V-6V-Dual-Axis-Gear-Motor-2-Axis-TT-Motor-Reducer-Motor-p-916210.html?gmcCountry=US¤cy=USD&createTmp=1&utm_source=googleshopping&utm_medium=cpc_bgcs&utm_content=garman&utm_campaign=pla-usg-ele-diy1-pc&gclid=CjwKCAjw8e7mBRBsEiwAPVxxiO_DKQviUrFcuuWQGQx8k92F2M30XK_S1KEEdW2Gd5qJC2XZ7zkSwxoCMdIQAvD_BwE&cur_warehouse=CN
https://usa.banggood.com/DC-3V-6V-Dual-Axis-Gear-Motor-2-Axis-TT-Motor-Reducer-Motor-p-916210.html?gmcCountry=US¤cy=USD&createTmp=1&utm_source=googleshopping&utm_medium=cpc_bgcs&utm_content=garman&utm_campaign=pla-usg-ele-diy1-pc&gclid=CjwKCAjw8e7mBRBsEiwAPVxxiO_DKQviUrFcuuWQGQx8k92F2M30XK_S1KEEdW2Gd5qJC2XZ7zkSwxoCMdIQAvD_BwE&cur_warehouse=CN
https://usa.banggood.com/DC-3V-6V-Dual-Axis-Gear-Motor-2-Axis-TT-Motor-Reducer-Motor-p-916210.html?gmcCountry=US¤cy=USD&createTmp=1&utm_source=googleshopping&utm_medium=cpc_bgcs&utm_content=garman&utm_campaign=pla-usg-ele-diy1-pc&gclid=CjwKCAjw8e7mBRBsEiwAPVxxiO_DKQviUrFcuuWQGQx8k92F2M30XK_S1KEEdW2Gd5qJC2XZ7zkSwxoCMdIQAvD_BwE&cur_warehouse=CN
https://usa.banggood.com/DC-3V-6V-Dual-Axis-Gear-Motor-2-Axis-TT-Motor-Reducer-Motor-p-916210.html?gmcCountry=US¤cy=USD&createTmp=1&utm_source=googleshopping&utm_medium=cpc_bgcs&utm_content=garman&utm_campaign=pla-usg-ele-diy1-pc&gclid=CjwKCAjw8e7mBRBsEiwAPVxxiO_DKQviUrFcuuWQGQx8k92F2M30XK_S1KEEdW2Gd5qJC2XZ7zkSwxoCMdIQAvD_BwE&cur_warehouse=CN
https://usa.banggood.com/DC-3V-6V-Dual-Axis-Gear-Motor-2-Axis-TT-Motor-Reducer-Motor-p-916210.html?gmcCountry=US¤cy=USD&createTmp=1&utm_source=googleshopping&utm_medium=cpc_bgcs&utm_content=garman&utm_campaign=pla-usg-ele-diy1-pc&gclid=CjwKCAjw8e7mBRBsEiwAPVxxiO_DKQviUrFcuuWQGQx8k92F2M30XK_S1KEEdW2Gd5qJC2XZ7zkSwxoCMdIQAvD_BwE&cur_warehouse=CN

