
WEARHOUSE DISTRIBUTION

Final Project Report

Tarun Thathvik, Smrithi Thudi, Vedant Desai

I. INTRODUCTION

With the advent of e-commerce, the demand for products has increased and the companies need

large inventory and require handling large volumes on a daily basis. This includes a lot of labor-

intensive tasks like storing, moving, scanning, inspecting, delivering, and many more. For better

efficiency, increasing number of warehouse and distribution centers are moving towards

automation in varying degrees, from semi-autonomous to completely autonomous systems, based

on the demand.

Robotic handling systems are increasingly used in warehouses and distribution centers as they

provide flexibility in managing varying demand requirements and can work 24/7.

In this project, a robotic arm is used to transfer packages from a conveyor and load it onto a inhouse

transportation bot for stocking.

II. WORKING

This is an automated pickup and transport system, where the 2 DOF robotic arm (shown in Figure

2) can rotate about the z-axis & the x-axis and has a gripper. The transportation bot (shown in

Figure 1. Transportation Bot

Wearhouse Distribution: Final Project Report 2

Figure 1) has an ultrasonic sensor mounted on it to detect, its distance from, the docking station.

Once it is near the station, the vehicle turns 180 degrees while sending a notification to the arm

informing the arrival. At reception, the arm initially aligned with the z-axis, rotates 90 degrees

towards the conveyor, to pick up the cargo from it with the help of a gripper. Once it picks the

cargo, the arm rotates -90 degrees aligning itself back with the z-axis (gripper pointing upwards).

The arm then starts rotating about the z-axis as it searches for the transportation vehicle, using

OpenCV and PiCamera. Once it discovers the transportation bot that is stationed opposite the

conveyor, the arm further rotates the arm -90 degrees, towards the bot, about the x placing the

gripper on top of the pickup bot. Later, the gripper opens to place the cargo on the bot, and then

gives a (Bluetooth) signal to the same indicating the loading, as it moves back to the initial position.

Once the transportation vehicle receives this notification, it starts moving away from the docking

station towards the desired stocking location.

III. LOW PASS FILTER

We used a Low Pass Butterworth filter to filter out the high-frequency changes in the camera read

x-y-z data. We are creating a vector out x-y-z values and applying this filter to it. After applying

the filter, we are taking the average values of the last 20 elements of the vector so as to reduce the

noise and smooth the graph, therefore getting a more accurate position of the ball from the PiCam.

Figure 2. Robotic Arm

3 Advance Mechatronics - Professor Vikram Kapila

In the Figure 3, the orange line is raw data (which is very noisy and fluctuating a lot) and the blue

line is filtered bata which is smooth.

IV. ELECTRONICS

Servo: a total of 5 servo motors are used in the project. 2 for driving the transportation vehicle

(differential drive). 3 are used to control the joints of the robotic arm.

Ultrasonic Sensor: An ultrasonic sensor measures the distance to an object using ultrasonic

waves. The transmitter in the sensor emits short, high-frequency sound pulses at regular intervals

which propagate in the air and are reflected back as echo signals to the receiver when they strike

an object. The distance is computed by measuring the time span between emitting the signal and

receiving the echo (called Time of flight). It is mounted on the mobile robot and used for path

planning and detection

Figure 3: Filtered vs Raw Data (x position)

Wearhouse Distribution: Final Project Report 4

Bluetooth: HC06 mounted on Arduino is used to communicate serially with the inbuilt Bluetooth

module of the Raspberry pi.

Pi-Camera: A camera mounted on one of the joints of the robotic arm is used to track the

transportation vehicle stationed somewhere in the docking station.

V. CIRCUIT

Figure 4. Circuit Diagram

As we can see in the Figure 4 we have used three servos in the raspberry pi.

Raspberry pi only has two PWM pins, so we have written our own PWM servo code to make three

servos run,

Pi cam is attached to the raspberry pi as shown above. The camera finds the ball using OpenCV

and locks the position of the arm.

Arduino has a total of four components attached to it as shown in the figure above. Two servos,

one ultrasonic sensor, and one HC-06 Bluetooth module. Which is used to run the cargo bot?

5 Advance Mechatronics - Professor Vikram Kapila

VI. CODE

VI.I. Arduino Code:

#include <Servo.h>

Servo left;
Servo right;

const int GNND = 4;
const int GNDD = 35;
const int echo = 37;
const int trig = 39;
const int VCCC = 41;

float invcmCosnt = (2*1000000)/(100*344.8); //cmDist=rawTime/invcmCosnt

void setup() {
 Serial.begin(9600);
 Serial3.begin(9600);
 left.attach(3); // attaches the servo on pin 9 to the servo object
 right.attach(5);
 pinMode(trig, OUTPUT);
 pinMode(echo, INPUT);
 pinMode(GNND, OUTPUT);
 pinMode(GNDD, OUTPUT);
 pinMode(VCCC, OUTPUT);
 digitalWrite(VCCC, HIGH);
 digitalWrite(GNND, LOW);
 digitalWrite(GNDD, LOW);
 pinMode(LED_BUILTIN, OUTPUT);
 left.write(114);
 right.write(74);

}

void loop() {
 float rawTime, cmDist;
 digitalWrite(trig, LOW);
 delayMicroseconds(2);
 digitalWrite(trig, HIGH);
 delayMicroseconds(5);
 digitalWrite(trig, LOW);
 rawTime = pulseIn(echo, HIGH);
 cmDist = 100;
 while(cmDist > 4){
 digitalWrite(trig, LOW);
 delayMicroseconds(2);
 digitalWrite(trig, HIGH);
 delayMicroseconds(5);
 digitalWrite(trig, LOW);
 rawTime = pulseIn(echo, HIGH);
 cmDist = rawTime/invcmCosnt;
 Serial.println(cmDist);

Wearhouse Distribution: Final Project Report 6

 }
 Serial.println("Out");
 Serial3.println("s");
 left.write(94);
 right.write(94);
 delay(1000);
 left.write(114);
 right.write(114);
 delay(1700);
 Serial.println("Turned");
 left.write(94);
 right.write(94);
 Serial.println("Stopped");
 while(1){
 if(Serial3.read()=='f'){
 break;
 }
 }
 left.write(114);
 right.write(74);
 delay(2500);
 left.write(94);
 right.write(94);
 while(1){
 }
}

VI.II. Raspberry

At the Raspberry end, one needs to connect the Raspberry Pi to the HC-06 Bluetooth Module

using the following commands to first find,

$ hcitool scan # Can be skipped if the MAC ID of the Bluetooth is known and is available

And then connect to the required Bluetooth using the right MAC ID:

$ sudo rfcomm connect hci0 xx:xx:xx:xx:xx:xx

If this executes successfully, then the Bluetooth is connected.

import the necessary packages
from collections import deque
from imutils.video import VideoStream
import numpy as np
import argparse
import cv2
import imutils
import time
import timeit
from scipy import signal
import matplotlib.pyplot as plt

import RPi.GPIO as GPIO

7 Advance Mechatronics - Professor Vikram Kapila

import serial

GPIO.setmode(GPIO.BCM)
GPIO.setup(12, GPIO.OUT) # Gripper
GPIO.setup(13, GPIO.OUT) # Rot_x
GPIO.setup(16, GPIO.OUT) # Rot_z

rotz = 16
rotx = GPIO.PWM(13, 50)
gr = GPIO.PWM(12, 50)

blue = serial.Serial("/dev/rfcomm0", baudrate=9600)
print("Bluetooth connected")

def duty(angle):
 return angle * 5 / 90 + 2.5

def search(angle=90, add=1):
 servo_pwm(rotz, duty(angle), 50)
 ap = argparse.ArgumentParser()
 ap.add_argument("-v", "--video",
 help="path to the (optional) video file")
 ap.add_argument("-b", "--buffer", type=int, default=64,
 help="max buffer size")
 args = vars(ap.parse_args())
 xn = np.zeros([500])
 xm = np.zeros([1])
 greenLower = (20, 20, 53)
 greenUpper = (64, 255, 255)
 pts = deque(maxlen=args["buffer"])
 # if a video path was not supplied, grab the reference
 # to the webcam
 if not args.get("video", False):
 vs = VideoStream(src=0).start()
 # otherwise, grab a reference to the video file
 else:
 vs = cv2.VideoCapture(args["video"])
 # allow the camera or video file to warm up
 time.sleep(2.0)

 while True:
 if angle == 125:
 add = -5
 elif angle == 35:
 add = 5
 angle += add
 servo_pwm(rotz, duty(angle), 10)
 time.sleep(0.01)
 # grab the current frame
 frame = vs.read()
 # handle the frame from VideoCapture or VideoStream
 frame = frame[1] if args.get("video", False) else frame

Wearhouse Distribution: Final Project Report 8

 # if we are viewing a video and we did not grab a frame,
 # then we have reached the end of the video
 if frame is None:
 break
 # resize the frame, blur it, and convert it to the HSV
 # color space
 frame = imutils.resize(frame, width=600)
 blurred = cv2.GaussianBlur(frame, (11, 11), 0)
 hsv = cv2.cvtColor(blurred, cv2.COLOR_BGR2HSV)
 # construct a mask for the color "green", then perform
 # a series of dilations and erosions to remove any small
 # blobs left in the mask
 mask = cv2.inRange(hsv, greenLower, greenUpper)
 mask = cv2.erode(mask, None, iterations=2)
 mask = cv2.dilate(mask, None, iterations=2)

 # find contours in the mask and initialize the current
 # (x, y) center of the ball
 cnts = cv2.findContours(mask.copy(), cv2.RETR_EXTERNAL,
 cv2.CHAIN_APPROX_SIMPLE)
 cnts = imutils.grab_contours(cnts)
 center = None
 # only proceed if at least one contour was found
 if len(cnts) > 0:
 # find the largest contour in the mask, then use
 # it to compute the minimum enclosing circle and
 # centroid
 c = max(cnts, key=cv2.contourArea)
 ((x, y), radius) = cv2.minEnclosingCircle(c)
 M = cv2.moments(c)
 center = (int(M["m10"] / M["m00"]), int(M["m01"] / M["m00"]))
 # only proceed if the radius meets a minimum size
 if radius > 10:
 # draw the circle and centroid on the frame,
 # then update the list of tracked points
 cv2.circle(frame, (int(x), int(y)), int(radius),
 (0, 255, 255), 2)
 cv2.circle(frame, center, 5, (0, 0, 255), -1)

 xn = np.delete(xn, 0)
 xn = np.append(xn, x)
 fs = 300
 fc = 1
 x_old = x
 w = fc / (fs / 2)
 b, a = signal.butter(5, w, 'low')
 output = signal.filtfilt(b, a, xn)
 x = np.average(xn[480:500])
 print(x, x_old)
 xm = np.append(xm, x)
 if abs(x - 300) < 20:
 break
 # update the points queue
 pts.appendleft(center)
 # loop over the set of tracked points

9 Advance Mechatronics - Professor Vikram Kapila

 for i in range(1, len(pts)):
 # if either of the tracked points are None, ignore
 # them
 if pts[i - 1] is None or pts[i] is None:
 continue
 # otherwise, compute the thickness of the line and
 # draw the connecting lines
 thickness = int(np.sqrt(args["buffer"] / float(i + 1)) * 2.5)
 cv2.line(frame, pts[i - 1], pts[i], (0, 0, 255), thickness)
 # show the frame to our screen
 cv2.imshow("Frame", frame)
 key = cv2.waitKey(1) & 0xFF
 # if the 'q' key is pressed, stop the loop
 if key == ord("q"):
 print(xn)
 print(xn.shape)
 plt.plot(xm, label='x')
 plt.show()
 break

 if not args.get("video", False):
 vs.stop()
 # otherwise, release the camera
 else:
 vs.release()
 # close all windows
 cv2.destroyAllWindows()
 return x, add

def servo_pwm(pin, duty, pulse):
 on = 20 * duty / 100000
 off = -on + 20 / 1000
 for i in range(pulse):
 GPIO.output(pin, GPIO.HIGH)
 time.sleep(on)
 GPIO.output(pin, GPIO.LOW)
 time.sleep(off)

def grip(angle=90):
 servo_pwm(rotz, duty(angle), 100)
 rotx.start(duty(90))
 gr.start(duty(100))
 time.sleep(1)
 rotx.ChangeDutyCycle(duty(0))
 time.sleep(1)
 gr.ChangeDutyCycle(duty(180))
 time.sleep(0.5)
 rotx.ChangeDutyCycle(duty(90))
 time.sleep(0.5)

def drop():
 rotx.ChangeDutyCycle(duty(180))

Wearhouse Distribution: Final Project Report 10

 time.sleep(1)
 gr.ChangeDutyCycle(duty(100))
 time.sleep(1)
 rotx.ChangeDutyCycle(duty(90))
 time.sleep(0.5)

def done():
 done = "f"
 done = done.encode()
 blue.write(done)

try:
 while True:
 data = blue.readline()
 # data = data.decode()
 # print(type(data), data)
 # if data != "s":
 # print("didn't")
 # continue
 # else:
 print("found s")
 grip(80)
 x, add = search(80, 5)
 drop()
 done()

except KeyboardInterrupt:
 GPIO.cleanup()
 print("Quit")

VII. CONCLUSION

In this project, we implemented a cargo handling system for warehouse automation. A Robotic

arm picks up items from a conveyor belt, searches for the transportation vehicle using a camera

mounted on it, loads the order onto the vehicle after which the transportation vehicle then takes

the goods to the required location for further processing. Warehouse automation is becoming more

and more common in both big and small companies due to the growing demands of customers and

growth in e-commerce. The Goods to People (GTP) is a newer emerging trend where goods are

moved to the workers, rather than workers to items. According to Nathan Busch, associate

consulting engineer at Bastian Solutions Inc., “The throughput rates of GTP systems are typically

quite a bit higher than traditional manual operations. This allows companies to reduce their overall

operating and order fulfillment costs while improving throughputs and service levels.” Mobile

robotics has now become a crucial part of this as the items are searched for, picked up, and then

taken to their respective processing sites. Future scope of this project was broadly considered for

a fully autonomous warehouse system, where the items that are to be stocked can be separated by

another system and the above presented system can transfer the goods from the conveyor to the

stocking bot, that further finds an optimal path to the desired stocking location and stocks the

11 Advance Mechatronics - Professor Vikram Kapila

goods. This demonstration presents that the mentioned system can be implemented in parts for the

benefit of smaller businesses; therefore, combining the manual and robotic operation for an

increased throughput and improved performance.

