Promoting robotic design and entrepreneurship experiences among students and teachers

Lesson 12: Advanced Arduino Programming - I

CONTENTS

- Decimal - binary system
- Math operators
- TASK/ACTIVITY: Do it yourself - example problems
- Decimal system: A numeral system whose numbers are represented with digits 0-9
- The number is expressed as a base-10 reference system
- Examples: $2_{10}, 5_{10}, 10_{10}, 100_{10}$, etc.
- Binary system: A numeral system whose numbers are represented with digits $\mathbf{0}$ and $\mathbf{1}$ only
- The number is expressed as a base-2 reference system
- Examples: $00_{2}, 10_{2}$ (10 is not 'number ten' but equals to 'number two' in the base 2 system), $01_{2}, 010_{2}$ etc.
- The process of converting a decimal number to binary number is called successive division
- Process:

1. Divide the decimal number by 2
2. The remainder is the Least Significant Bit (LSB) of binary number
3. The division is continued until the quotient is zero, then the conversion is complete
4. The new remainder is the next Most Significant Bit (MSB) of the binary number in every successive division step

YnYu DECIMAL TO BINARY CONVERSION

- Example 1: Convert decimal number 6 (base 10) to binary number (base 2)
$2 \longdiv { \frac { 3 } { 6 } }$ Remainder $=0 \rightarrow$ LSB
$2 \longdiv { \frac { 1 } { 3 } }$ Remainder $=1 \rightarrow$ next MSB

2) $\frac{0}{1}$ Remainder $=1 \rightarrow$ MSB

$$
\therefore 6_{10}=110_{2}
$$

DEC \rightarrow BINARY: ACTIVITY

Problem 1: Do it yourself!

Convert the decimal number 26_{10} into its binary equivalent

Problem 1: Convert the decimal number 26_{10} into its binary equivalent Solution:
$2 \longdiv { \frac { 1 3 } { 2 6 } }$ Remainder $=\mathbf{0} \rightarrow$ LSB
$2 \longdiv { \frac { 6 } { 1 3 } }$ Remainder $=1 \rightarrow$ next MSB
$2 \longdiv { 3 } \quad$ Remainder $=0$
$2) \frac{1}{3} \quad$ Remainder $=1$
2) $\frac{0}{1} \quad$ Remainder $=1 \rightarrow$ MSB

$$
\therefore 26_{10}=11010_{2}
$$

DEC \rightarrow BINARY: ACTIVITY

Problem 2: Do it yourself!

Convert the decimal number 41_{10} into its binary equivalent

DEC \rightarrow BINARY: SOLUTION

Problem 2: Convert the decimal number 41_{10} into its binary equivalent
Solution:
$2 \longdiv { 2 0 } \quad$ Remainder $=1 \longrightarrow$ LSB
$2 \longdiv { \frac { 1 0 } { 2 0 } }$ Remainder $=0 \longrightarrow$ next MSB
$2) \quad \frac{5}{10} \quad$ Remainder $=0$

$$
\therefore 41_{10}=101001_{2}
$$

$2 \frac{2}{5} \quad$ Remainder $=1$
$2 \longdiv { 1 } \quad$ Remainder $=0$
$2 \longdiv { 0 } \quad$ Remainder $=1 \longrightarrow$ MSB

ACTIVITY

a) $13_{10}=$?
b) $22_{10}=$?
c) $43_{10}=$?
d) $158_{10}=$?
a) $13_{10}=$? 1101_{2}
b) $22_{10}=? 10110_{2}$
c) $43_{10}=? 101011_{2}$
d) $158_{10}=? 10011110_{2}$

BINARY TO DECIMAL CONVERSION

- The process of converting a binary number to decimal number is called weighted multiplication
- Process:

1. The decimal number will be equal to the sum of each binary digit starting from the left-most digit times their power of $2\left(2^{n}\right), n=0,1,2, . .,(n-1)$ which is called the bit-weighting factor, where \mathbf{n} is the no. of digits in the binary number
2. Example: Bit $0 \rightarrow 2^{0}=1$, Bit $1 \rightarrow 2^{1}=2$, Bit $2 \rightarrow 2^{2}=4$, etc.

甲 nvu BINARY TO DECIMAL CONVERSION

Example:

Convert the decimal number 0110_{2} into its decimal equivalent where $\mathrm{n}=4$

BINARY \rightarrow DEC: ACTIVITY

Problem 1: Do it yourself!
Convert the binary number 10010_{2} into its decimal equivalent where $\mathrm{n}=6$

BINARY \rightarrow DEC: SOLUTION

Problem 1: Convert the binary number 10010 into its decimal equivalent where $\mathrm{n}=5$

Solution:

Bit 5		Bit 4		Bit 3		Bit 2		Bit 1		
1		0		0		1		0		
X		X		X		X		X		
$2^{4}=16$		$2^{3}=8$		$2^{2}=4$		$2^{1}=2$		$2^{0}=1$		
II		11		II		II		II		
16	+	0	+	0	+	2	+	0	$=$	18_{10}

$$
\therefore 10010_{2}=18_{10}
$$

a) $0110_{2}=$?
b) $11010_{2}=$?
c) $0110101_{2}=$?
d) $11010011_{2}=$?
a) $0110_{2}=? \quad 6_{10}$
b) $11010_{2}=? 26_{10}$
c) $0110101_{2}=$? 53_{10}
d) $11010011_{2}=? \quad 211_{10}$

DECIMAL AND BINARY - REVIEW

Base $_{10}$ DECIMAL

Successive
 Division

Base $_{2}$ BINARY

a) Divide the decimal number by 2 , remainder $=$ LSB of binary number
b) If the quotient = zero, the conversion is complete; else repeat step (a) using the quotient $=$ decimal number and new remainder $=$ next MSB of the binary number

Base_{2} BINARY

Base $_{10}$ DECIMAL
a) Multiply each bit of the binary number by it corresponding bit-weighting factor (i.e., Bit $-0 \rightarrow 2^{0}=1$, Bit $-1 \rightarrow 2^{1}=2$, etc.)
b) Sum up all the products in step (a) to get the decimal number

MATH OPERATORS

- $\mathbf{a b s}(\mathbf{x})$: absolute value of x (applicable if $x=$ int and long)
- fabs(\mathbf{x}): absolute value of x (applicable if $x=$ float)
- $\min (\mathbf{x}, \mathbf{y})$ and $\max (\mathbf{x}, \mathbf{y})$: minimum and maximum of two arguments x and y
- $\operatorname{pow}(x, y): x^{\wedge} y$
- $\mathbf{s q}(x): x^{\wedge} 2$
- Trigonometric functions: $\boldsymbol{\operatorname { s i n }}(\mathbf{x}), \boldsymbol{\operatorname { c o s }}(\mathrm{x}), \mathrm{x}$ has to be in radians
- random(max): generates a random number between 0 and max
- random(min, max): generates a random number between min and max

MATH OPERATOR

ACTIVITY

1. Write a program to display minimum of the absolute values of 40 and -30
2. Write a program to find the value of $\sin (x)+(\cos (x))^{2}$ at $x=1.5$ radians

Minimum_value §
OUTPUT:
The minimum value of the array is: -40

MATH OPERATOR - SOLUTION FOR 2nd

```
Equation_with_angles | Arduino 1.8.19
File Edit Sketch Tools Help
0-|+|
Equation_with_angles §
int angle=1.5; // in radians
int val;
void setup() {
// put your setup code here, to run once:
Serial.begin(9600);
val = sin(angle) + sq(cos(angle));
Serial.print("The value of the equation at 1.5 radians is: ");
Serial.println(val);
}
void loop() {}
```


PROGRAMMING: OTHERS

delay()

delay in milliseconds
delayMicroseconds

delay in microseconds

Time in milliseconds since the Arduino board began running the current program

Time in microseconds since the Arduino board began running the current program

MILLIS FUNCTION EXAPMLE

```
* Millis_functionExample | Arduino 1.8.19
File Edit Sketch Tools Help
```

```
v@口**
```

v@口**
Millis_functionExample §
Millis_functionExample §
const int ledPin = 3; // the LED pin number connected
const int ledPin = 3; // the LED pin number connected
int ledstate = LOW; // set the LED state initially LOW
int ledstate = LOW; // set the LED state initially LOW
unsigned long previousMillis = 0; //will store last time LED was blinked
unsigned long previousMillis = 0; //will store last time LED was blinked
const long period = 1000; // period at which to blink in ms
const long period = 1000; // period at which to blink in ms
void setup() {
void setup() {
pinMode(ledPin, OUTPUT); // set ledpin as output
pinMode(ledPin, OUTPUT); // set ledpin as output
}
}
void loop() {
void loop() {
unsigned long currentMillis = millis(); // store the current time
unsigned long currentMillis = millis(); // store the current time
if (currentMillis - previousMillis >= period) { // check if loo0ms passed
if (currentMillis - previousMillis >= period) { // check if loo0ms passed
previousMillis = currentMillis; // save the last time you blinked the LED
previousMillis = currentMillis; // save the last time you blinked the LED
if (ledstate == LOW) { // if the LED is off turn it on and vice-versa
if (ledstate == LOW) { // if the LED is off turn it on and vice-versa
ledstate = HIGH;
ledstate = HIGH;
} else {
} else {
ledstate = LOW; }
ledstate = LOW; }
digitalWrite(ledPin, ledState);//set LED with ledState to blink again
digitalWrite(ledPin, ledState);//set LED with ledState to blink again
}
}
}

```
}
```


Thank You!

Questions and Feedback?

