

Promoting robotic design and entrepreneurship experiences among students and teachers

Lesson 13: Advanced Arduino Programming - II

Innovative Technology Experiences for Students and Teachers (ITEST), Professional Development Program, July 2017 - 19 Mechatronics, Controls, and Robotics Laboratory, Department of Mechanical and Aerospace Engineering, NYU Tandon School of Engineering 🌾 NYU

CONTENTS

- Arrays
- Functions
- **TASK/ACTIVITY:** Advanced programming with motors and functions

ARRAYS

- An **array** is a collection of one type of variables that are accessed with an index number
- Declaring an array:
 - o Syntax: data_type array_name[size] = value;
 - Value and size may/may not be given at declaration
- Examples:
 - 1. int myNums[6];
 - 2. int myInts[] = {2, 4, 6};
 - 3. char message[6] = "hello";

ARRAYS

- Arrays in Arduino are zero indexed, i.e., array elements numbering starts from "0"
- Array elements can be accessed with index as follows:

• Value of c is 6

• We can assign a value to an array as follows:

• myNums[3] = 8;

- 1. Write a program to create an array and display all elements on the serial monitor
- Create an array of size 6 with integers and display elements at index 2 and
 4

ARRAYS – SOLUTION FOR 1St

ARRAYS – SOLUTION FOR 2nd

ARRAYS – SOLUTION FOR 2nd

OUTPUT:

The value of the 2nd indexed element is: 30 The value of the 4th indexed element is: 50

FUNCTIONS

What is a **function**?

• A function is a block of code either built-in or written by the user that allows structuring the code into one or more segments to perform individual tasks

Types of functions:

- 1. Predefined functions: Built-in functions available in Arduino environment such as println(), pinMode(), analogRead()
- 2. User-defined functions: Functions written by the programmers to run a specific task

- return_type: The data type of the value being returned by the function; If there is no return value, "void" can be used
- **function_name:** The name of the function; It is user-defined; It should not start with a digit but can contain letter, number or an underscore; Pre-defined function names cannot be used
- parameters: The values being passed to the function; These are used inside the code
- declarations: Declaring the variables for the function
- **statements:** The code written for a specific task to be performed

STRUCTURE OF A FUNCTION: EXAMPLE

Example:

```
int my_add_func(int a, int b)
```

```
{ int sum; //declaration
```

```
sum = a + b; //statements
```

return sum;

- return_type: int
- function_name: my_add_func
- parameters: int a, int b
- declarations: int sum
- statements: sum = a + b; return sum;

FUNCTION WITH NO PARAMETER

Funtion_NoParameter | Arduino 1.8.19

<u>File Edit Sketch Tools Help</u>

Funtion_NoParameter

boolean condition=0;

```
void setup() {
   Serial.begin(9600);
```

```
void loop() {
  delay(100);
  while(condition == 0) {
    hello();
    Serial.print("Hello again from main loop.\n");
    delay(100);
    condition++;
}
```

void hello() {
 Serial.print("Hello from function!\n");
 delay(2000);

OUTPUT: Hello from function! Hello again from main loop.

FUNCTION WITH ONE PARAMETER

File Edit Sketch Tools Help

Funtion_OneParameter §

```
boolean condition=0;
```

```
void setup() {
   Serial.begin(9600);
```

```
}
```

```
void loop() {
  delay(100);
  while(condition == 0){
    hello(4);
    Serial.print("Hello again from main loop.\n");
    delay(100);
    condition++;
}
```

```
void hello(int repeat){
  for(int i=1;; i<=repeat; i++){
    Serial.print("Hello from function!\n");
    delay(500);
}</pre>
```

OUTPUT:

Hello from function!Hello from function!Hello from function!Hello from function!Hello again from main loop.

FUNCTION WITH ONE PARAMETER

ACTIVITY 2

• Write a program to display all even numbers from 1 to n where n is the parameter to be sent, i.e., n = 100

ACTIVITY 2 - SOLUTION

FUNCTION WITH TWO PARAMETERS

Funtion TwoParameters | Arduino 1.8.19 File Edit Sketch Tools Help Funtion TwoParameters § boolean condition=0: void setup() { Serial.begin(9600); void loop() { delay(100); while (condition == 0) { hello(5,2000); Serial.print("Hello again from main loop.\n"); delay(100); condition++;

```
void hello(int repeat, int dlyTim){
  for(int i=1;; i<=repeat; i++){
   Serial.print("Hello from function!\n");
  delay(dlyTim);
</pre>
```

OUTPUT:

Hello from function!Hello from function!Hello from function!Hello from function!Hello again from main loop.

FUNCTION WITH RETURN PARAMETER


```
int adder(int aa, int bb){
    int cc = aa + bb;
    return cc;
}
```

}

OUTPUT: 50

FUNCTION WITH NO RETURN PARAMETERS


```
void loop() {
  pick some random numbers
 x = random(10);
 v = random(10);
  Serial.print("Values of x and y before swapping: ");
  Serial.print(x);
  Serial.print(',');
 Serial.println(y);
  swap();
  Serial.print("\nValues of x and y after swapping: ");
  Serial.print(x);
 Serial.print(',');
  Serial.println(y);
 delay(1000);
```

Promoting Robotic Design and Entrepreneurship Experiences Among Students and Teachers

Innovative Technology Experiences for Students and Teachers (ITEST), Professional Development Program, NYU Tandon School of Engineering, July 2017

FUNCTION WITH NO RETURN PARAMETERS

```
void swap() {
    int temp;
    temp = x;
    x = y;
    y = temp;
}
```

OUTPUT:

Values of x and y before swap 7,9 Values of x and y after swap 9,7

Task / Activity: Advanced Programming

Innovative Technology Experiences for Students and Teachers (ITEST), Professional Development Program, July 2017 Mechatronics and Robotics Laboratory, Department of Mechanical and Aerospace Engineering, NYU Tandon School of Engineering

ACTIVITY 3

Motor Direction Control using Functions

Write a program to make the robot's wheels rotate clockwise and rotate anticlockwise using functions

- 1. Which rotation makes the robot move forward?
- 1. Which rotation makes the robot move backward?

Connect a DC motor with L293D IC (like you have previously done)
 <u>Setup function</u>

```
MotorControl_using_Functions | Arduino 1.8.19
File Edit Sketch Tools Help
  MotorControl_using_Functions §
int motor1Pin1 = 3; // pin 2 on L293D
int motor1Pin2 = 4; // pin 7 on L293D
int enablePin = 9; // pin 1 on L293D
void setup() {
  pinMode (motor1Pin1, OUTPUT);
  pinMode (motor1Pin2, OUTPUT);
  pinMode(enablePin, OUTPUT);
  digitalWrite(enablePin, HIGH);
```


Loop function

```
void loop() {
  clockwise_rotate();
  delay(2000);
  anticlockwise_rotate();
  delay(2000);
}
```


Function definition

```
void clockwise_rotate(){
   digitalWrite(motor1Pin1, LOW); // set pin 2 on L293D LOW
   digitalWrite(motor1Pin2, HIGH); // set pin 7 on L293D HIGH
}
void anticlockwise_rotate(){
   digitalWrite(motor1Pin2, LOW); // set pin 7 on L293D LOW
   digitalWrite(motor1Pin1, HIGH); // set pin 2 on L293D HIGH
}
```


Video: Forward movement

Video: Backward movement

VEX CLAWBOT

VEX CLAWBOT

Video

Thank You! Questions and Feedback?

Innovative Technology Experiences for Students and Teachers (ITEST), Professional Development Program, July 2017 - 19 Mechatronics, Controls, and Robotics Laboratory, Department of Mechanical and Aerospace Engineering, NYU Tandon School of Engineering