Promoting robotic design and entrepreneurship experiences among students and teachers

Lesson 16: Links and Joints of a Robotic Arm
CONTENTS

- Introduction to robotic arm
- Degrees of freedom (DOF)
- Joints and links

TASK/ACTIVITY: DOF for VEX Clawbot activities
What is a robotic arm?

- A **robotic arm**, which is usually **re-programmable**, is a type of mechanical arm which functions similar to a human arm.

- It is a system made of **links** and **joints** with multiple degrees of freedom (DOF) with a **manipulator** at the end to perform various dexterous tasks like **gripping**, **picking** and **placing** objects, etc.
PARTS OF ROBOTIC ARMS

• Basic skeleton of an arm contains **upper arm, lower arm** and the **end-effector** (gripper)

• **End-effector**: It is the attached at the end of lower arm which will **perform tasks** like gripping, digging, etc.

Source
A FEW APPLICATIONS OF ROBOT ARMS

• Medical Robots

Robotic Arms

Source

Robotic Arm

Source
A FEW APPLICATIONS OF ROBOT ARMS

- Military robots
A FEW APPLICATIONS OF ROBOT ARMS

- Automobile Industry
A FEW APPLICATIONS OF ROBOT ARMS

- Domestic Robots

Video

Source
A FEW APPLICATIONS OF ROBOT ARMS

• Space and exploration industry
APPLICATIONS OF ROBOT ARMS
• **Joints**, also called **axes**, are the movable components of the robotic arm that result in relative motion between adjacent links
• The numbering of the joints start from 1 to n
- **Links**, also called as **arms**, are the rigid structures connecting the joints.
- The ground/base is also called the base link and considered as link 0.
- The no. of links will be 0 to n-1 where n = no. of joints.
TYPES OF JOINTS

Prismatic joints:

- They are also called as linear or translational joints
- The type of motion between the links is linear along the prismatic axis of the joint
- One degree of **translational** freedom (DOF) along a prismatic axis
• **Revolute joints:**

 o They are also called as hinge joints which allow rotation along a single axis

 o Driven by electric motors and chain/belt/gear transmissions, or by hydraulic cylinders

 o One degree of **rotational** freedom (DOF) about a revolute axis
• Helical joints:
 o They are also called as screw joints
 o Its motion is similar to a screw motion which rotates freely but cannot translate freely restricting its translational motion
 o One degree of rotational freedom (DOF) along the axis
• **Cylindrical joints:**

 o Its motion is similar to a revolute joint in series with a prismatic joint

 o Two degrees of freedom (DOF) with one being rotational and the other translational along the same axis

Source: Translation and rotation along the direction of the arrow
• Spherical joints:
 o They are also called as ball and socket joints
 o Three revolute joints intersecting at a point called the pivot with rotation in 3 directions
 o Three degrees of **rotational** freedom (DOF) about the pivot point
• **Universal joints:**

 o They are also universal coupling or Hooke joints

 o Two hinges joining at a point at 90° to each other with their axes inclined to each other

 o Two degrees of **rotational** freedom (DOF) about the intersecting joint

Source
DEGREES OF FREEDOM (DOF)

• **Degrees of Freedom (DOF):** It is generally used to define the motion capabilities of a system.

• It is the total number of independent motions a joint can perform.

• In most manipulators, containing rotational and linear joints only, DOF is usually the number of joints, performing rotational and linear movements.

• \(\text{DOF} = \text{number of independently driven joints} \)

As DOF ↑, Computational complexity ↑, Cost ↑, Flexibility ↑
In general, a free body in space has 6 DOF:

- Three translation degrees of freedom along X, Y and Z axes
- Three orientational/rotational degrees of freedom called roll, pitch, and yaw

NOTE: Any free object in 3D space (e.g., the hand, a fingertip, a car, a plane, etc.) can have at most 6 DOF
ACTIVITY 1

REMEMBER!

- **Degrees of freedom**: Number of ways (rotation, translation about axes) in which the motion of the system can be actuated (motors, linear actuators)

How many degrees of freedom are there in human arm?
ACTIVITY 1 - SOLUTION

• A human arm has 7 DOF, of which:
 o 3 rotations are in the shoulder
 o 1 rotation is in the elbow
 o 3 rotations are in the wrist
• All the degrees of freedom can be controlled
• How to calculate degrees of freedom for a robot?

\[
DOF = m(N - 1) - \sum_{i=1}^{J} c_i
\]

- \(m\) is number of degrees of freedom of a rigid body (\(m = 3\) for planar mechanisms and \(m = 6\) for spatial mechanisms)
- \(N\) is number of links in a mechanism, including the base link
- \(c_i\) is the number of constraints provided by joint \(i\), for example, the constraints for a spatial rotation joint is 5, since there is only one degree of freedom for this joint
CONSTRAINTS ON JOINTS

• **Joint constraints**: They are used to restrict the relative motion between the two components at a joint

 o They result in the decrease of the degrees of freedom (DOF) of rigid body system

• **Types of Constraints**:

 1. **Planar**: Motion constraint placed by one body on another in 2 - dimensional space

 1. **Spatial**: Motion constraint placed by one body on another in 3 - dimensional space
CONSTRAINTS ON JOINTS

<table>
<thead>
<tr>
<th>Joint type</th>
<th>DOF</th>
<th>Planar Constraints</th>
<th>Spatial Constraints</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prismatic</td>
<td>1</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>Revolute</td>
<td>1</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>Helical</td>
<td>1</td>
<td>-</td>
<td>5</td>
</tr>
<tr>
<td>Cylindrical</td>
<td>2</td>
<td>-</td>
<td>4</td>
</tr>
<tr>
<td>Universal</td>
<td>2</td>
<td>-</td>
<td>4</td>
</tr>
<tr>
<td>Spherical</td>
<td>3</td>
<td>-</td>
<td>3</td>
</tr>
</tbody>
</table>
ACTIVITY - 2

How many degrees of freedoms are there for mechanical arm in Clawbot?

Use:

$$DOF = m(N - 1) - \sum_{i=1}^{J} c_i$$
ACTIVITY 2 - SOLUTION

How many degrees of freedom for mechanical arm in Clawbot?

Using:

\[DOF = m(N - 1) - \sum_{i=1}^{J} c_i \]

• We have on revolute joint:
 - \(m = 3 \)
 - \(N = 3 \)
 - \(c = 5 \) (spatial constraints)
 - \(i = 1 \)

• \(DOF = 3 \times (3-1) - 5 = 1 \)

Revolute joint

Source
Thank You!

Questions and Feedback?