Promoting robotic design and entrepreneurship experiences among students and teachers

Lesson 5:
Introduction to Arduino
CONTENTS

• Microcontrollers and microprocessors
• Introduction to Arduino
• Types of Arduino boards
• Programming basics: Structure of a code

• TASK/ACTIVITY:
 ➢ Blink on-board LED
 ➢ Blink LED(s)
 ➢ Change brightness of LEDs
WHAT IS A MICROCONTROLLER?

- A **compact integrated circuit** on a **single chip** containing a **processor**, **memory**, and **input/output** as its main components.
- Typically, it is "**embedded**" inside a device that is controlling.
- A microcontroller is often small and of low cost.
The key difference: Microprocessor consists of only a Central Processing Unit, whereas the microcontroller contains a CPU, memory, I/O all integrated into one chip.
MORE ABOUT THE DEVICES

What is the difference between a **computer**, a **microprocessor** and a **microcontroller**?

- **Microprocessor** is a full computation engine fabricated on a single chip; It acts as the central processing unit (CPU) of a microcomputer.

- A **Computer** is a microprocessor packaged on a single circuit board with many interfaces and memory chips; General purpose computers, i.e., PCs, are designed explicitly to interface with humans.

- **Microcontrollers** are designed to interface, interact, and communicate with:
 - Electrical/electronic devices
 - Sensor/actuators
 - High-tech gadgets, etc.
COMPONENTS OF A ROBOT

• As discussed earlier:
WHAT IS ARDUINO???

• Arduino is an open-source electronic platform for easy use of hardware and software

• It can sense the environment by receiving input from variety of sensors and make decision and then give the output

• It can be used to develop stand-alone interactive objects or can be connected to software on your computer
WHAT DOES IT DO???

- **Working**: The microcontroller (computer) is programmed (code) to receive information (input) from the sensors and the output is given through computer (IDE) or other peripherals.
ACTIVITY 1

- What is the circuit doing?
- What elements do you see on the circuit?
- Is there any input?
- If yes, what is the input?
- Is there any output?
- If yes, what is the output?
ACTIVITY 1 - SOLUTION

- What is the circuit doing?
 Light up the on-board LED on button press

- What elements do you see on the circuit?
 Button, resistor, wires

- Is there any input? Yes
 - If yes, what is the input? Button

- Is there any output? Yes
 - If yes, what is the output? LED
The word Arduino can mean 3 things:

- **Hardware**
- **An interface**
- **A community**
DIFFERENT TYPES OF ARDUINO

- Arduino NANO
- Arduino Micro
- Arduino LilyPad
DIFFERENT TYPES OF ARDUINO

Arduino UNO R3

Arduino Leonardo
DIFFERENT TYPES OF ARDUINO

Arduino MEGA 2560 R3

Arduino IOT board

Arduino MKR ZERO
PROJECTS BASED ON ARDUINO

Rubik's cube solver

LED cube powered by Arduino

Line following Turtlebot

Spider bot with Arduino

App controlled trainable arm with Arduino
• An example of a human-following cooler called, “Follow me”
• Human-following luggage with Arduino:
• Jarvis – Voice assistant with Arduino:
ARDUINO UNO DEVELOPMENT BOARD

Digital Ground
Analog Reference Pin
Digital I/O Pins (2-13)
Serial Out (TX)
Serial In (RX)
Reset Button
In-Circuit Serial Programmer
ATmega328 Microcontroller
External Power Supply
USB Plug
Reset Pin
3.3 Volt Power Pin
5 Volt Power Pin
Voltage In
Ground Pins
Analog In Pins (0-5)

Source
Arduino Hardware Summary

<table>
<thead>
<tr>
<th>Feature</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microcontroller</td>
<td>ATmega328</td>
</tr>
<tr>
<td>Operating Voltage</td>
<td>5V</td>
</tr>
<tr>
<td>Input Voltage (recommended)</td>
<td>7-12V</td>
</tr>
<tr>
<td>Input Voltage (limits)</td>
<td>6-20V</td>
</tr>
<tr>
<td>Digital I/O Pins</td>
<td>14 (of which 6 provide PWM output)</td>
</tr>
<tr>
<td>Analog Input Pins</td>
<td>6</td>
</tr>
<tr>
<td>DC Current per I/O Pin</td>
<td>40 mA</td>
</tr>
<tr>
<td>DC Current for 3.3V Pin</td>
<td>50 mA</td>
</tr>
<tr>
<td>Flash Memory</td>
<td>32 KB (ATmega328) of which 0.5 KB used by bootloader</td>
</tr>
<tr>
<td>SRAM</td>
<td>2 KB (ATmega328)</td>
</tr>
<tr>
<td>EEPROM</td>
<td>1 KB (ATmega328)</td>
</tr>
<tr>
<td>Clock Speed</td>
<td>16 MHz</td>
</tr>
</tbody>
</table>

1. Download and install the Arduino environment (IDE) according to your system (Mac or Windows)
2. Connect the board to your computer via the USB cable
3. If needed, install the drivers
4. Launch the Arduino IDE
POWERING UP THE ARDUINO WITH USB

- Connecting via **USB cable** to load the **code** and provide **power** at the same time
• Select the board **Arduino UNO** and the port showing in the **Serial Port** section.
Program to **blink** the on-board LED

1. Select your board
2. Select your serial port
3. Open the blink example
4. Upload the program
ACTIVITY 3 - SOLUTION

- Go to File > Examples > Digital > Blink

```c
/*
 Blink

 https://www.arduino.cc/en/Tutorial/BuiltInExamples/Blink
*/

// the setup function runs once when you press reset or power the board
void setup() {
  // initialize digital pin LED_BUILTIN as an output.
  pinMode(LED_BUILTIN, OUTPUT);
}

// the loop function runs over and over again forever
void loop() {
  digitalWrite(LED_BUILTIN, HIGH);  // turn the LED on (HIGH is the voltage level)
  delay(1000);                      // wait for a second
  digitalWrite(LED_BUILTIN, LOW);   // turn the LED off by making the voltage LOW
  delay(1000);                      // wait for a second
}
```

Source
Sketch: Arduino code is referred to as sketch and consists of:

```c
void setup() {
  • Instructions between the two curly brackets will be run only once when the Arduino program first runs and used for the purpose of setup
  • Initialize I/O pins (directions), initialize serial communication, etc.
}

void loop() {
  • This function is run after setup has finished
  • It runs in a continuous loop until power is removed
}
```

A LITTLE BIT ABOUT THE CODE

Promoting Robotic Design and Entrepreneurship Experiences Among Students and Teachers
Innovative Technology Experiences for Students and Teachers (ITEST), Professional Development Program, NYU Tandon School of Engineering, July 2017-19
Basic rules of programming Arduino:

- // Single line comment
- /* Multi line comment, or block-comment */
- {} Curly braces to indicate starting and ending of a block of code unbalanced curly braces will cause compile-time errors
- ; Each line of code must end with a semicolon

NOTE: Semicolon should not be used after #include, #define and for “if, else statements, for, while loops” if code is inside the curly braces
pinMode(pin, mode)

- **pin** refers to digital I/O pin number and **mode** argument refers to **INPUT** or **OUTPUT**
- Can use digital I/O pin 2 to 13 (0 and 1 used for RX and TX)
- Digital I/O pins have **default mode** as **INPUT**, no need to explicitly declare as inputs

Connection: Connect an OUTPUT pin to an external device in series with a 470Ω or 1KΩ resistor
• Select your board **Arduino UNO**
• Select your **port** from **tools**
• **Upload** the code to the Arduino as shown
• Check for **errors**
• Check if the code is **compiled** successfully
BLINK AN EXTERNAL LED

Things to remember:
1. Longer leg (Anode) of the LED goes to one end of the resistor in series and the other end of resistor goes to pin (3) here.
2. Shorter leg (Cathode) goes to ground (GND).

Source
• Write a program to blink one external LED using Arduino
Connections:
Pins: 6, GND
ACTIVITY 4 - SOLUTION

➢ Code:

```c
Blink_oneExternalLED | Arduino 1.8.19

void setup() {
  pinMode(6, OUTPUT); // initialize digital pin 6 as an output
}

void loop() {
  digitalWrite(6, HIGH); // turn the LED on (HIGH is the voltage level)
  delay(1000); // wait for a second
  digitalWrite(6, LOW); // turn the LED off by making the voltage LOW
  delay(1000); // wait for a second
}
```
• Digital I/O pins:
digitalRead(pin)

- **Reads** the value from a specified digital pin with the result being 1 (HIGH) or 0 (LOW)
- Pin can be specified as a variable or constant (0-13)

➤ **Syntax:** value = digitalRead(pin); //sets 'value' equal to the state of the input pin

digitalWrite(pin, value)

- Pin refers to a digital pin, can be a variable or a constant (0-13)
- Value is either logic level HIGH/LOW, TRUE/FALSE, 1/0
- **Outputs** either logic level HIGH or LOW at a specified digital pin

➤ **Syntax:** digitalWrite(pin, value); //sets 'value’ as the state of the input pin
analogRead(pin)
• Reads the value from a specified analog pin with a 10-bit resolution
• Pin argument can be specified as a variable or constant (0-5)
• Resulting integer values range from 0 to 1023 and must be scaled to appropriate units

➢ Syntax: value = analogRead(pin); //sets 'value' equal to analog reading on 'pin'

analogWrite(pin, value)
• Outputs a PWM signal to the specified output pin
• This function works on pins 3, 5, 6, 9, 10, and 11
• Value can be specified as a variable or constant with range 0-255

➢ Syntax: analogWrite(pin, value); //writes 'value' to 'pin'
• Attach 2 LEDs to your Arduino, each to a separate pin, blink one LED only once and the other repeatedly.
ACTIVITY 5 - SOLUTION

➢ Connections:
 Pins: 10, 11, GND
Code:

```cpp
void loop()
{
  // Blink LED on pin 10 forever
  digitalWrite(10, HIGH);
  delay(1000);
  digitalWrite(10, LOW);
  delay(1000);
}
```

Promoting Robotic Design and Entrepreneurship Experiences Among Students and Teachers
Innovative Technology Experiences for Students and Teachers (ITEST), Professional Development Program, NYU Tandon School of Engineering, July 2017-19
Serial.begin(rate)

- Opens serial port and sets the baud rate for serial data transmission
- Typical baud rate for communicating with PC is 9600 although other speeds are supported
- When using serial communication, digital pins 0 (RX) and 1 (TX) cannot be used at the same time

delay(ms)

- Pauses the program for time as specified in milliseconds, with 1000 being equal to 1 second
Pulse width modulation (PWM): Converts a digital value to analog output
Pulse width modulation (PWM) allows Arduino to generate a series of pulses
When a pin is output high, the apparent voltage at that pin will be close to 5 V
When the pin is made output low it is close to 0 V
PWM BASIC CONCEPTS

- **Duty cycle**: Higher the duty cycle, higher is the voltage
- **Duty** specifies the analog output level as a fraction of 256ths of 5 V ranging from 0 to 4.98 V

\[
\text{duty cycle} = \frac{t_{\text{ON}}}{t_{\text{ON}} + t_{\text{OFF}}}\]

\[
\begin{align*}
 t_{\text{ON}} &= \text{ON time} \\
 t_{\text{OFF}} &= \text{OFF time} \\
 t_{\text{ON}} + t_{\text{OFF}} &= \text{Time period}
\end{align*}
\]

Source
ACTIVITY 6

• Attach one LED to your Arduino and write a program to change its brightness
Connections:
Pins: 6, GND
ACTIVITY 6 - SOLUTION

Code:

```c
void setup() {
  pinMode(6, OUTPUT); // initialize digital pin 6 as an output
}

void loop() {
  analogWrite(6, 255); // turn the LED on to highest brightness value
  delay(200); // wait for 200 milliseconds
  analogWrite(6, 100); // turn the LED on to a medium brightness value
  delay(200); // wait for 200 milliseconds
  analogWrite(6, 0); // turn the LED on to lowest brightness value/turn OFF
  delay(200); // wait for 200 milliseconds
}
```
Promoting Robotic Design and Entrepreneurship Experiences Among Students and Teachers
Innovative Technology Experiences for Students and Teachers (ITEST), Professional Development Program, NYU Tandon School of Engineering, July 2017-19

Successful upload:

Wrong port selected:

Serial port 'COM3' not found. Did you select the right one from the Tools > Serial Port menu?

at processing.app.Sketch.exportApplet(Sketch.java:1599)
at processing.app.Editor#DefaultExportHandler.run(Editor.java:2380)
at java.lang.Thread.run(Thread.java:619)

Error in compiling:

Wrong board selected:

Sketch uses 3560 bytes (10%) of program storage space. Maximum is 32304 bytes.
Global variables use 884 bytes (4%) of dynamic memory, leaving 1154 bytes for local variables. Maximum is 2048 bytes.

Error compiling for board Arduino/Genuino Uno.

90
ACTIVITY 7

- Attach at least 5 LEDs to your Arduino, each to a separate pin. Blink them together
Connections:
Pins: 3, 6, 9, 10, 11, GND
ACTIVITY 7 - SOLUTION

Code:

```cpp
void setup()
{
  pinMode(11, OUTPUT);  // initialize digital pin 11 as an output
  pinMode(10, OUTPUT);  // initialize digital pin 10 as an output
  pinMode(9, OUTPUT);   // initialize digital pin 9 as an output
  pinMode(6, OUTPUT);   // initialize digital pin 6 as an output
  pinMode(3, OUTPUT);   // initialize digital pin 3 as an output
}
```
`void loop()
{
 // make pins 3, 6, 9, 10, 11 HIGH
 digitalWrite(11, HIGH);
digitalWrite(10, HIGH);
digitalWrite(9, HIGH);
digitalWrite(6, HIGH);
digitalWrite(3, HIGH);

 // Delay for a second
 delay(1000);
}

// make pins 3, 6, 9, 10, 11 LOW

digitalWrite(11, LOW);
digitalWrite(10, LOW);
digitalWrite(9, LOW);
digitalWrite(6, LOW);
digitalWrite(3, LOW);

// Delay for a second
delay(1000);`
A variable is a place to store a piece of data
It has a name, a value, a type and size accordingly

Syntax: variable_type variable_name = value;

<table>
<thead>
<tr>
<th>Type</th>
<th>Bytes(size)</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>boolean</td>
<td>1</td>
<td>boolean led_on=True;</td>
</tr>
<tr>
<td>char</td>
<td>1</td>
<td>char char_1 = ‘a’;</td>
</tr>
<tr>
<td>int</td>
<td>2</td>
<td>int temp = 48;</td>
</tr>
<tr>
<td>float</td>
<td>4</td>
<td>float height = 2.5;</td>
</tr>
<tr>
<td>long</td>
<td>4</td>
<td>long time = 5;</td>
</tr>
</tbody>
</table>
VARIABLES

- Save the results in different variable types:

<table>
<thead>
<tr>
<th>Data Type</th>
<th>Example Code</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>int</code></td>
<td><code>int a = 50; int b = 30; int c = 0; c = a / b;</code></td>
<td><code>Output: 1</code></td>
</tr>
<tr>
<td><code>int</code></td>
<td><code>int a = 50; int b = 30; int c = 0; c = a / b;</code></td>
<td><code>Output: 1.00</code></td>
</tr>
<tr>
<td><code>float</code></td>
<td><code>float a = 50; float b = 30; float c = 0; c = a / b;</code></td>
<td><code>Output: 1.66</code></td>
</tr>
<tr>
<td><code>int</code></td>
<td><code>float a = 50; float b = 30; int c = 0; c = a / b;</code></td>
<td><code>Output: 1</code></td>
</tr>
</tbody>
</table>
• Divide 5 by 2 and store the value as int and as float
ACTIVITY 8 - SOLUTION

```
int a = 5;
int b = 2;
int c = 0;
c = a / b;

Output: 2
```

```
int a = 5;
int b = 2;
float c = 0;
c = a / b;

Output: 2.00
```
Thank You!

Questions and Feedback?