Promoting robotic design and entrepreneurship experiences among students and teachers

Lesson 6:
Introduction to Motors
• DC motors (brushed and brushless)
• Pulse width modulation (PWM)
• Servo motors
• Motor control commands

• **TASK/ACTIVITY**: Motor control
ACTUATOR

- An actuator is a component that is responsible for moving and controlling a mechanism or system.
- Examples of systems that use actuators:

 - Valve actuators
 - Electric motors
 - Pneumatic actuator
TYPES OF ACTUATORS

- DC motors
- Servo motors
- Stepper motor
- Hydraulics
- Pneumatic actuator
An electric **motor** is an electrical machine that converts **electrical** energy into **mechanical** energy.

An electric **generator** operates in the reverse direction, converting **mechanical** energy into **electrical** energy.
Interaction between a **magnetic field** and a **current carrying conductor** produces a **force** (called “*Lorentz force*”)
WORKING OF A DC MOTOR

www.LearnEngineering.org

Video
BRUSHED V/S BRUSHLESS DC MOTORS

Brushed DC motor

- Permanent magnets for outer stator
- Rotating coils for inner rotor
- Commutator with metal contact brushes to reverse the polarity of the rotor
- May cause sparking due to wear of brushes

Brushless DC Motor, How it works? - Lesics

- Permanent magnets for outer rotor
- Rotating coils for inner stator
- No brushes
- No sparking, less noisy, longer life
• An **H bridge** is an electronic circuit that enables a voltage to be applied across a motor in the opposite directions

• To explain the H bridge, we begin with the consideration of a **half bridge**

• Consider the circuit below with 2 voltage sources, 2 switches and a DC motor:
HALF-BRIDGE CIRCUIT (using switches)

- When **SW1 is closed**, **B1** is connected to the motor, current flows from left to right, motor turns in **one direction**
- When **SW2 is closed**, **B2** is connected to the motor, current flows from right to left, motor turns in the **opposite direction**
- **SW1 and SW2 cannot be closed simultaneously**, as this leads to **B1** and **B2** being in short-circuit

What electronic component can be used instead of a mechanical switch?
HALF-BRIDGE CIRCUIT (using transistors)

- Consider the circuit below with switches replaced by two NPN transistors for electrical switching:

 ➢ CASE 1: IN1 is high, Q1 conducts → motor turns in forward direction by B1
 ➢ CASE 2: IN2 is high, Q2 conducts → motor turns in reverse direction by B2
 - IN1 and IN2 cannot be driven high simultaneously, as this leads to B1 and B2 being in short-circuit

The main disadvantage of a half bridge DC motor drive circuit is that it requires a dual power supply

NOTE: These circuit diagrams are for conceptual understanding only, diodes will be required in the half-bridge circuit for control of a DC motor in real life
A full-bridge circuit is called a **H-bridge** (the shape of the circuit resembles the letter “H”)

Consider the circuit shown, which consists of 4 switches, 1 voltage source, and a DC motor:

- **CASE 1**: SW1 and SW4 are closed (SW2 and SW3 open) \(\rightarrow V_{CC}\) drives motor in **forward** direction
- **CASE 2**: SW2 and SW3 are closed (SW1 and SW4 open) \(\rightarrow V_{CC}\) drives motor in **reverse** direction

NOTE: These circuit diagrams are for conceptual understanding only, diodes will be required in the H-bridge circuit for control of a DC motor in real-life.
H-BRIDGE CIRCUIT (using switches)

NOTE: These circuit diagrams are for conceptual understanding only, diodes will be required in the H-bridge circuit for control of a DC motor in real life.
NOTE: These circuit diagrams are for conceptual understanding only, diodes will be required in the H-bridge circuit for control of a DC motor in real life.
Diodes are used to prevent damage to switching elements from inductive kickback.

To control a DC motor in real-life, the full-fledged H-Bridge circuit in figure (1) can be used.
WHY IS DIODE REQUIRED IN A H-BRIDGE?

- In the prohibited case, i.e., turning ON switching elements on same side of the bridge simultaneously, creates a short circuit.

- While in other cases, when current is instantaneously cut off in a H-bridge (when switching from forward to reverse or vice-versa), the stored magnetic energy results in a high spike in voltage across the motor (inductor):

\[V = L \frac{di}{dt}, \]

where \(V \) increases as the \(\frac{di}{dt} \) term increases, expressing a high flyback voltage, which damages the transistors.

- In either case, the diodes provide a path for the current during the switching periods, dissipating the energy as heat, to protect the switching elements.
Motor driver ICs are **integrated circuit chips** that **simplify** control of motors.

- The L293D is a 16-pin Motor Driver IC which can control two DC motors simultaneously and independently.
- It can provide **600mA** per channel at a supply voltage range of **4.5V to 36V**.
- It has an **internally embedded diode** so there is no need of external diodes for interfacing the DC motor.
ACTIVITY -1 (DC MOTOR: DIRECTION)

Wiring Arduino with L293D and DC Motor

Promoting Robotic Design and Entrepreneurship Experiences Among Students and Teachers
Innovative Technology Experiences for Students and Teachers (ITEST), Professional Development Program, NYU Tandon School of Engineering, July 2017-19
int IN1 = 11; // input 1
int IN2 = 10; // input 2
int EN1 = 9; // enable pin

void setup() {
 pinMode(IN1, OUTPUT);
 pinMode(IN2, OUTPUT);
 pinMode(EN1, OUTPUT);
 // set IN1, IN2 and EN1 pins in OUTPUT mode
 digitalWrite(EN1, HIGH);
 // set enable pin on L293D HIGH
}

void loop() {
 digitalWrite(IN1, LOW);
 // set pin 2 on L293D LOW
 digitalWrite(IN2, HIGH); // CW
 // set pin 7 on L293D HIGH, turn CW
 delay(3000);
 // for 3 seconds

 digitalWrite(IN1, HIGH);
 // set pin 2 on L293D HIGH, turn CCW
 digitalWrite(IN2, LOW);
 // set pin 7 on L293D LOW
 delay(3000);
 // for 3 seconds
}
ACTIVITY -1 (DC MOTOR: DIRECTION)

NOTE: Speed of the DC motor was reduced to clearly show the change in direction in the video.

How to control the speed of a DC motor?
Effective voltage

DC motor speed can be controlled using PWM

Source
DUTY CYCLE

\[
duty \ cycle = \frac{t_{ON}}{t_{ON} + t_{OFF}}
\]

- \(t_{ON} \) = ON time
- \(t_{OFF} \) = OFF time
- \(t_{ON} + t_{OFF} \) = Time period
NOTE: Arduino pins with "~" sign next to the pin number are PWM pins, used to control actuators using PWM (here, pins 10 & 11 is used to control a DC motor)
ACTIVITY - 2 (DC MOTOR: SPEED)

DC Motor Speed Control Code

```c
#define E1 9 // Enable Pin
#define IN1 11 // Control pin 1 for motor -- CW
#define IN2 10 // Control pin 2 for motor -- CCW

void loop()
{
    digitalWrite(IN1, HIGH);
    digitalWrite(IN2, LOW);
    analogWrite(E1, 200);
    // value between 0-255 Enable pin controls PWM
    // 200 --> 3.9V (duty cycle = 200/255 ~ 78%)
    delay(4000);
    analogWrite(E1, 110);
    // reduce the speed by about half (2.15V)
    delay(4000);
    analogWrite(E1, 85);
    // reduce the speed further (1.67V)
    delay(4000);
}
```

Program
ACTIVITY - 2 (DC MOTOR: SPEED)

Video
• **Servo motor** is a type of actuator used for **angular positioning**
• **Standard servo** typically has a movement **range of 180 degrees**
• **Continuous servo** has a freedom to complete **one full rotation**
Standard servo only turns over a range (usually 0°-180°), with precise feedback control over its angular position.

Continuous rotation servo turns continuously, with control over its speed and direction.

Standard servo example: Robotic arm

Continuous servo example: Mobile Robot
Servo motors are constructed out of basic DC motors, by adding

- **Gear** reduction
- **Position sensor** for the motor shaft
- **Electronic circuit** that controls the motor’s operation
SERVO CONNECTOR

Servo Connector:
Black – ground
Red – power
White – signal
NOTE: Always power the Arduino after making the connections.

NOTE: Pins with "~" sign next to the pin number are PWM pins used to control actuators using PWM (here, pin 9 is used to control the servo).
ACTIVITY - 3 (SERVO 0° TO 180°)

void loop(){
 for(pos=0; pos<=180; pos+=1){
 // goes from 0 to 180° in steps of 1°
 myservo.write(pos);
 // tell servo to go to position in variable 'pos'
 delay(15);
 // waits 15ms for the servo to reach the position
 }

 for(pos=180; pos>=0; pos-=1){
 // goes from 180° to 0°
 myservo.write(pos);
 // tell servo to go to position in variable 'pos'
 delay(15);
 // waits 15ms for the servo to reach the position
 }
}

/*Code to rotate servo from 0 to 180°
and back to 0° in steps */

#include <Servo.h>
Servo myservo;
//create servo object to control a servo
int pos=0;
// variable to store the servo position

void setup(){
 myservo.attach(9);
 // attaches the servo on pin 9 to the servo object
}
ACTIVITY - 3 (SERVO 0° TO 180°)

Video
CONTINUOUS SERVO

Pulse length changes to control servo direction

Clockwise:
1300 μs (1.3 ms)

Stopped:
1500 μs (1.5 ms)

Counter-clockwise:
1700 μs (1.7 ms)

• Each pulse is from 1300 to 1700 μs (microseconds) in duration

• The pulses repeat about 50 times each second---once every 20 milliseconds
MOTOR CONSIDERATIONS: SPEED

- More speed requires more voltage

<table>
<thead>
<tr>
<th>High speed motor</th>
<th>Ordinary motor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltage requirement: 6 - 8 VDC</td>
<td>Voltage requirement: 4 - 6 VDC</td>
</tr>
<tr>
<td>Speed: up to 180 RPM</td>
<td>Speed: up to 50 RPM</td>
</tr>
</tbody>
</table>

Speed: (For same power input)

![High speed servo v/s Ordinary servo](image)

Video: High speed servo v/s Ordinary servo
MOTOR CONSIDERATIONS: TORQUE

- More torque requires more current

<table>
<thead>
<tr>
<th>High speed motor</th>
<th>Ordinary motor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current requirement: 15 - 180 mA</td>
<td>Current requirement: 15 - 200 mA</td>
</tr>
<tr>
<td>Torque: 1.6 +/- 0.8 kg-cm @ 7.4 V</td>
<td>Torque: 2.74 kg-cm @ 6 V</td>
</tr>
</tbody>
</table>

Torque: (For same power input)

High Speed Servo v/s Ordinary Servo (Higher Torque)

Torque \[\rightarrow\] Current

Promoting Robotic Design and Entrepreneurship Experiences Among Students and Teachers
Innovative Technology Experiences for Students and Teachers (ITEST), Professional Development Program, NYU Tandon School of Engineering, July 2017-19

36
CHALLENGE ACTIVITY

Control servo motor using potentiometer and 3 LEDs to glow at 0, 90 and 180 degrees.
CHALLENGE ACTIVITY - SOLUTION

Video
CHALLENGE ACTIVITY - CIRCUIT
```c
#include <Servo.h>
Servo myservo;
// create servo object to control a servo
int pot_pin = 0;
// analog pin for the potentiometer
int val;
// variable to read the value from the analog pin
int red_led = 5;
int green_led = 6;
int blue_led = 7;
// variable declarations for LED pins

void setup() {
    myservo.attach(9);
    // attaches the servo on pin 9 to the servo object
    pinMode(red_led, OUTPUT);
    pinMode(green_led, OUTPUT);
    pinMode(blue_led, OUTPUT);
    // sets all LED pins to output mode
}
```
CHALLENGE ACTIVITY - CODE

```c
void loop() {
  digitalWrite(red_led, LOW);
  digitalWrite(green_led, LOW);
  digitalWrite(blue_led, LOW);
  delay(1);
  // delay in between readings for stability

  val = analogRead(pot_pin);
  // reads potentiometer value (value between 0 and 1023)
  val = map(val, 0, 1023, 0, 180);
  // maps analog value --> servo angle (value between 0 and 180)

  myservo.write(val);
  // sets the servo position according to the scaled value
  delay(15);
  // waits for the servo to get there

  if(val < 5){
    digitalWrite(red_led, HIGH);
    // turn the red LED on
    delay(1);
    // delay for LED to stay on (avoid visible flickering)
  }
  if (val > 165){
    digitalWrite(blue_led, HIGH);
    delay(1);
  }
  if (val > 80 && val < 110){
    digitalWrite(green_led, HIGH);
    delay(1);
  }
}
```

Program
TASK / ACTIVITY

• Find duty cycle and power, when PWM on time is given
• DC motor direction control for two motors
• DC motor speed control for two motors
• DC motor speed and direction control for two motors
• Servo motor angle control (user input)
• Rotational servo motor Calibration
• Rotational servo speed control
• Rotational servo motor direction control
Thank You!

Questions and Feedback?