

Promoting robotic design and entrepreneurship experiences among students and teachers

Lesson 6: Introduction to Motors

Innovative Technology Experiences for Students and Teachers (ITEST), Professional Development Program, July 2017-19 Mechatronics, Controls, and Robotics Laboratory, Department of Mechanical and Aerospace Engineering, NYU Tandon School of Engineering 🌾 NYU

CONTENTS

- DC motors (brushed and brushless)
- Pulse width modulation (PWM)
- Servo motors
- Motor control commands

TASK/ACTIVITY: Motor control

ACTUATOR

- An actuator is a component that is responsible for moving and controlling a mechanism or system
- Examples of systems that use actuators:

Electric motors

Pneumatic actuator

Promoting Robotic Design and Entrepreneurship Experiences Among Students and Teachers

TYPES OF ACTUATORS

- DC motors
- Servo motors
- Stepper motor
- Hydraulics
- Pneumatic actuator

DC motor

Servo motor

Stepper motor

Pneumatic cylinder

Promoting Robotic Design and Entrepreneurship Experiences Among Students and Teachers

ELECTRIC MOTOR

 An electric motor is an electrical machine that converts electrical energy into mechanical energy

Circuit symbol:

 An electric generator operates in the reverse direction, converting mechanical energy into electrical energy

Promoting Robotic Design and Entrepreneurship Experiences Among Students and Teachers

ELECTRIC MOTOR - WORKING PRINCIPLE

 Interaction between a magnetic field and a current carrying conductor produces a force (called "Lorentz force")

Source

Source

Promoting Robotic Design and Entrepreneurship Experiences Among Students and Teachers

WORKING OF A DC MOTOR

www.LearnEngineering.org

<u>Video</u>

Promoting Robotic Design and Entrepreneurship Experiences Among Students and Teachers Innovative Technology Experiences for Students and Teachers (ITEST), Professional Development Program, NYU Tandon School of Engineering, July 2017-19

BRUSHED V/S BRUSHLESS DC MOTORS WYU

Brushed DC motor

- Permanent magnets for outer stator
- Rotating coils for inner rotor
- Commutator with metal contact brushes to reverse the polarity of the rotor
- May cause sparking due to wear of brushes

Brushless DC Motor, How it works ? - Lesics

- Permanent magnets for outer rotor
- Rotating coils for inner stator
- No brushes
 - No sparking, less noisy, longer life

DC MOTOR DIRECTION CONTROL (Half-bridge)

- An H bridge is an electronic circuit that <u>enables a voltage to be applied across a</u> motor in the opposite directions
- To explain the H bridge, we begin with the consideration of a half bridge
- Consider the circuit below with 2 voltage sources, 2 switches and a DC motor:

Promoting Robotic Design and Entrepreneurship Experiences Among Students and Teachers

HALF-BRIDGE CIRCUIT (using switches)

- When **SW1 is closed**, <u>B1 is connected to the motor</u>, current flows from left to right, motor turns in **one direction**
- When **SW2 is closed**, <u>B2 is connected to the motor</u>, current flows from right to left, motor turns in the **opposite direction**
- SW1 and SW2 cannot be closed simultaneously, as this leads to B1 and B2 being in short-circuit

HALF-BRIDGE CIRCUIT (using transistors)

 Consider the circuit below with <u>switches replaced by two NPN transistors</u> for electrical switching:

- ➤ CASE 1: IN1 is high, Q1 conducts → motor turns in forward direction by B1
- > CASE 2: IN2 is high, Q2 conducts \rightarrow motor turns in reverse direction by B2
- IN1 and IN2 cannot be driven high simultaneously, as this leads to B1 and B2 being in short-circuit

The main disadvantage of a half bridge DC motor drive circuit is that it requires a dual power supply

NOTE: These circuit diagrams are for conceptual understanding only, diodes will be required in the halfbridge circuit for control of a DC motor in real life

DC MOTOR DIRECTION CONTROL (Full-bridge)

- A full-bridge circuit is called a **H-bridge** (the shape of the circuit resembles the letter "H")
- Consider the circuit show, which consists of 4 switches, 1 voltage source, and a DC motor:
- ➤ CASE 1: SW1 and SW4 are closed (SW2 and SW3 open) → V_{CC} drives motor in forward direction
- ➤ CASE 2: SW2 and SW3 are closed (SW1 and SW4 open) → V_{CC} drives motor in reverse direction

NOTE: These circuit diagrams are for conceptual understanding only, diodes will be required in the H-bridge circuit for control of a DC motor in real-life

H-BRIDGE CIRCUIT (using switches)

NOTE: These circuit diagrams are for conceptual understanding only, diodes will be required in the H-bridge circuit for control of a DC motor in real life

H-BRIDGE CIRCUIT (using transistors)

WYU

NOTE: These circuit diagrams are for conceptual understanding only, diodes will be required in the H-bridge circuit for control of a DC motor in real life

DC MOTOR DIRECTION CONTROL (H-bridge)

To control a DC motor in real-life, the full-fledged H-Bridge circuit in figure (1) can be used

WHY IS DIODE REQUIRED IN A H-BRIDGE?

- In the prohibited case, i.e., turning ON <u>switching</u> <u>elements on same side</u> of the bridge simultaneously, creates a **short circuit**
- While in other cases, <u>when current is</u> <u>instantaneously cut off</u> in a H-bridge (when switching from forward to reverse or vice-versa), the stored magnetic energy results in a high spike in voltage across the motor (inductor):

$$V = L \frac{di}{dt}$$
, V increases as the $\frac{di}{dt}$ term increases,
expressing a high **flyback voltage**, which
damages the transistors

 In either case, the diodes provide a path for the current during the switching periods, dissipating the energy as <u>heat</u>, to protect the switching elements.

DC MOTOR DIRECTION CONTROL (L293D IC)

- Motor driver ICs are integrated circuit chips that simplify control of motors
- The L293D is a 16-pin Motor Driver IC which can control two DC motors simultaneously and independently
- It can provide 600mA per channel at a supply voltage range of 4.5V to 36V
- It has an internally embedded diode so there is no need of external diodes for interfacing the DC motor

ACTIVITY -1 (DC MOTOR: DIRECTION)

Wiring Arduino with L293D and DC Motor

Promoting Robotic Design and Entrepreneurship Experiences Among Students and Teachers

🌾 NYU

ACTIVITY -1 (DC MOTOR: DIRECTION)

CODE

```
int IN1 = 11; // input 1
int IN2 = 10; // input 2
int EN1 = 9; // enable pin
void setup() {
    pinMode(IN1, OUTPUT);
```

// set enable pin on L293D HIGH

// set IN1, IN2 and EN1 pins in OUTPUT mode

pinMode(IN2, OUTPUT);

pinMode(EN1, OUTPUT);

digitalWrite(EN1, HIGH);

void loop() {

```
digitalWrite(IN1, LOW);
// set pin 2 on L293D LOW
digitalWrite(IN2, HIGH); //CW
// set pin 7 on L293D HIGH, turn CW
delay(3000);
// for 3 seconds
```

```
digitalWrite(IN1, HIGH);
// set pin 2 on L293D HIGH, turn CCW
digitalWrite(IN2, LOW);
// set pin 7 on L293D LOW
delay(3000);
// for 3 seconds
```


Source

Promoting Robotic Design and Entrepreneurship Experiences Among Students and Teachers

ACTIVITY -1 (DC MOTOR: DIRECTION)

NOTE: Speed of the DC motor was reduced to clearly show the change in direction in the video

<u>Video</u>

How to control the speed of a DC motor?

PULSE WIDTH MODULATION

DC motor speed can be controlled using PWM

Promoting Robotic Design and Entrepreneurship Experiences Among Students and Teachers

DUTY CYCLE

🌾 NYU

Promoting Robotic Design and Entrepreneurship Experiences Among Students and Teachers

ACTIVITY - 2 (DC MOTOR: SPEED)

NOTE: <u>Arduino pins with "~" sign next to the pin number are **PWM pins**, used to control actuators using PWM (here, pins 10 & 11 is used to control a DC motor)</u>

Promoting Robotic Design and Entrepreneurship Experiences Among Students and Teachers Innovative Technology Experiences for Students and Teachers (ITEST), Professional Development Program, NYU Tandon School of Engineering, July 2017-19

ACTIVITY - 2 (DC MOTOR: SPEED)

DC Motor Speed Control Code

```
#define E1 9 // Enable Pin
                                                  void loop()
#define IN1 11 // Control pin 1 for motor -- CW
#define IN2 10 // Control pin 2 for motor -- CCW
                                                    digitalWrite(IN1, HIGH);
                                                    digitalWrite(IN2, LOW);
void setup()
                                                    analogWrite(E1, 200);
                                                    // value between 0-255 Enable pin controls PWM
  pinMode(E1, OUTPUT);
                                                    // 200 --> 3.9V (duty cycle = 200/255 ~ 78%)
  pinMode(IN1, OUTPUT);
                                                    delay(4000);
  pinMode(IN2, OUTPUT);
                                                    analogWrite(E1, 110);
                                                    // reduce the speed by about half (2.15V)
                                                    delay(4000);
                                                    analogWrite(E1, 85);
                                                    // reduce the seed further (1.67V)
                                                    delay(4000);
```

Program

Promoting Robotic Design and Entrepreneurship Experiences Among Students and Teachers

ACTIVITY - 2 (DC MOTOR: SPEED)

Video

Promoting Robotic Design and Entrepreneurship Experiences Among Students and Teachers

SERVO

- Servo motor is a type of actuator used for angular positioning
- Standard servo typically has a movement range of 180 degrees
- Continuous servo has a freedom to complete one full rotation

Standard Servo motor

Continuous Servo Motor

Promoting Robotic Design and Entrepreneurship Experiences Among Students and Teachers

STANDARD V/S CONTINUOUS SERVO

Standard servo only turns over a <u>range</u> (usually 0°-180°), with precise <u>feedback</u> <u>control</u> over its angular **position**

<u>Source</u>

Standard servo example: Robotic arm

Continuous rotation servo turns continuously, with control over its speed and direction

Source

Continuous servo example: Mobile Robot

Promoting Robotic Design and Entrepreneurship Experiences Among Students and Teachers

SERVO: SECTIONAL & EXPLODED VIEW

Sectional View

Exploded View

Promoting Robotic Design and Entrepreneurship Experiences Among Students and Teachers

SERVO PARTS

Servo motors are constructed out of basic **DC motors**, by adding

- Gear reduction
- **Position sensor** for the motor shaft
- Electronic circuit that controls the motor's operation

Promoting Robotic Design and Entrepreneurship Experiences Among Students and Teachers

SERVO CONNECTOR

Promoting Robotic Design and Entrepreneurship Experiences Among Students and Teachers

INTERFACING ARDUINO WITH SERVO

NOTE: <u>Pins with "~" sign</u> next to the pin number are **PWM pins** used to control actuators using PWM (here, pin 9 is used to control the servo)

ACTIVITY - 3 (SERVO 0° TO 180°)

```
/*Code to rotate servo from 0 to 180° and back to 0° in steps */
```

#include <Servo.h>
Servo myservo;
//create servo object to control a servo
int pos=0;
// variable to store the servo position

```
void setup(){
  myservo.attach(9);
  // attaches the servo on pin 9 to the servo object
}
```

```
void loop(){
  for(pos=0; pos<=180; pos+=1){</pre>
    // goes from 0 to 180° in steps of 1°
    myservo.write(pos);
    // tell servo to go to position in variable 'pos'
    delay(15);
    // waits 15ms for the servo to reach the position
  }
  for(pos=180; pos>=0; pos-=1){
    // goes from 180° to 0°
    myservo.write(pos);
    // tell servo to go to position in variable 'pos'
    delay(15);
    // waits 15ms for the servo to reach the position
```

Program

Promoting Robotic Design and Entrepreneurship Experiences Among Students and Teachers

ACTIVITY - 3 (SERVO 0° TO 180°)

<u>Video</u>

Promoting Robotic Design and Entrepreneurship Experiences Among Students and Teachers

CONTINUOUS SERVO

• Each pulse is from <u>1300 to</u> <u>1700</u> µs (microseconds) in **duration**

• The pulses **repeat** about 50 times each second---once every 20 milliseconds

Promoting Robotic Design and Entrepreneurship Experiences Among Students and Teachers

MOTOR CONSIDERATIONS: SPEED

More speed requires more voltage

High speed motor	Ordinary motor
Voltage requirement: 6 - 8 VDC	Voltage requirement: 4 - 6 VDC
Speed: up to 180 RPM	Speed: up to 50 RPM

Speed: (For same power input)

Video High speed servo v/s Ordrinary servo

Promoting Robotic Design and Entrepreneurship Experiences Among Students and Teachers

MOTOR CONSIDERATIONS: TORQUE

More torque requires more current

High speed motor	Ordinary motor
Current requirement: 15	Current requirement:
- 180 mA	15 - 200 mA
Torque: 1.6 +/- 0.8 kg-	Torque: <mark>2.74 kg-cm</mark> @
cm @ <u>7.4 V</u>	<u>6 V</u>

Torque: (For same power input)

High Speed Servo v/s Ordinary Servo (Higher Torque)

Video

Video

Promoting Robotic Design and Entrepreneurship Experiences Among Students and Teachers

CHALLENGE ACTIVITY

Control servo motor using potentiometer and 3 LEDs to glow at 0, 90 and 180

Promoting Robotic Design and Entrepreneurship Experiences Among Students and Teachers

CHALLENGE ACTIVITY - SOLUTION

<u>Video</u>

Promoting Robotic Design and Entrepreneurship Experiences Among Students and Teachers

CHALLENGE ACTIVITY - CIRCUIT

CIRCUIT

Promoting Robotic Design and Entrepreneurship Experiences Among Students and Teachers

CHALLENGE ACTIVITY - CODE

CODE

#include <Servo.h>
Servo myservo;
// create servo object to control a servo
int pot_pin = 0;
// analog pin for the potentiometer
int val;
// variable to read the value from the analog pin
int red_led = 5;
int green_led = 6;
int blue_led = 7;
// variable declarations for LED pins

void setup() {
myservo.attach(9);
// attaches the servo on pin 9 to the servo object
pinMode(red_led, OUTPUT);
pinMode(green_led, OUTPUT);
pinMode(blue_led, OUTPUT);
//sets all LED pins to output mode
}

<u>Program</u>

(Contd.)

40

Promoting Robotic Design and Entrepreneurship Experiences Among Students and Teachers

CHALLENGE ACTIVITY - CODE

CODE

```
void loop() {
digitalWrite(red_led, LOW);
digitalWrite(green_led, LOW);
digitalWrite(blue_led, LOW);
delay(1);
// delay in between readings for stability
val = analogRead(pot_pin);
// reads potentiometer value (value between 0 and 1023)
val = map(val, 0, 1023, 0, 180);
// maps analog value --> servo angle (value between 0 and 180)
                                                                 ł
myservo.write(val);
// sets the servo position according to the scaled value
delay(15);
// waits for the servo to get there
```

```
if(val < 5)
digitalWrite(red_led, HIGH);
// turn the red LED on
delay(1);
// delay for LED to stay on (avoid visible flickering)
if (val > 165){
digitalWrite(blue_led, HIGH);
delay(1);
if (val > 80 && val < 110){
digitalWrite(green_led, HIGH);
delay(1);
```

```
Program
```


TASK / ACTIVITY

- Find duty cycle and power, when PWM on time is given
- DC motor direction control for two motors
- DC motor speed control for two motors
- DC motor speed and direction control for two motors
- Servo motor angle control (user input)
- Rotational servo motor Calibration
- Rotational servo speed control
- Rotational servo motor direction control

Thank You! Questions and Feedback?

Innovative Technology Experiences for Students and Teachers (ITEST), Professional Development Program, July 2017-19 Mechatronics, Controls, and Robotics Laboratory, Department of Mechanical and Aerospace Engineering, NYU Tandon School of Engineering