Promoting robotic design and entrepreneurship

 experiences among students and teachers
Lesson 7: Motion and Dynamics

CONTENTS

- Review of basic physics concepts
- Basic physics quantities (scalars and vectors)
- Basic kinematics (displacement, velocity, and acceleration)
- Basic dynamics (force and torque)
- Work, power, energy, mechanical advantage
- Gear and transmission
- TASK/ACTIVITY: Gearbox assembly task

BASIC PHYSICS QUANTITIES

- Scalar - quantity with magnitude only
- Vector - quantity with both magnitude (size) and direction

Scalars:

- Distance (100 meters)
- Speed (10 m/sec)
- Time (5 sec)
- Mass (1 kg)
- Energy (100 Joules)

Vectors:

- Displacement (100 meters North)
- Velocity ($10 \mathrm{~m} / \mathrm{sec}, \mathrm{NW}$)
- Acceleration (20 m/ sec^{2} South)
- Momentum (10 kg•m/s Forward)
- Force (10 N Forward)

DISPLACEMENT

- Displacement (Δx) - the difference between an object's final position and its starting position

$$
\Delta x=X_{\text {final }}-X_{\text {initial }}
$$

- What is the displacement when an athlete
 makes a complete round on the track shown?

LINEAR VS. ROTATIONAL MOTION

Linear Motion Definitions

- Distance: Δx in meters
- Average speed
$\bar{v}=\frac{\Delta x}{\Delta t}$ in meters/sec
- Average acceleration:
$\bar{a}=\frac{\Delta v}{\Delta t}$ in meters $/ \sec ^{2}$

$$
\Delta x=x_{1}+x_{2}
$$

Rotational Motion Definitions

$\Delta \theta$ in radians

- Average angular speed:
$\bar{\omega}=\frac{\Delta \theta}{\Delta t}$ in radians/sec
- Average angular acceleration:
$\bar{\alpha}=\frac{\Delta \omega}{\Delta t}$ in radians $/ \sec ^{2}$

WYU
 LINEAR VS. ROTATIONAL MOTION

- A car drives 400 m in 20 seconds:

Find the average speed

$$
\bar{v}=\frac{\Delta x}{\Delta t}=\frac{400 \mathrm{~m}}{20 \mathrm{~s}}=20 \mathrm{~m} / \mathrm{s}
$$

 $x_{i} \quad x_{f}$

- A wheel spins through an angle of 400π radians in 20 seconds:

Find the average angular speed

$$
\begin{aligned}
\bar{\omega} & =\frac{\Delta \theta}{\Delta t}=\frac{400 \pi \text { radians }}{20 \mathrm{~s}} \\
\bar{\omega} & =20 \pi \mathrm{rad} / \mathrm{sec} \\
& =10 \mathrm{rev} / \mathrm{sec} \\
& =600 \mathrm{rev} / \mathrm{min}
\end{aligned}
$$

quvu
 LINEAR VS. ROTATIONAL MOTION

- Net force acting on a body produces a linear acceleration
- Linear velocity changes

$$
a \propto F_{n e t}
$$

[^0]- Net torque acting on a body produces angular acceleration
- Angular velocity changes (Rate of spin changes)

$$
\alpha \propto \tau_{n e t}
$$

Source

WORK

- Work is equal to the product of applied force and the amount of displacement along the line of action of that force
- To calculate work done on an object, we compute:

$$
\text { Work }=\text { Force } \times \text { Displacement }
$$

The work done by F is 0

The work done by gravity is: $m g \times \Delta x$

Energy (E) is defined as the capacity to do work (scalar)

- Many forms of energy exist
- Not created, only converted
- Chemical, mechanical etc.

Kinetic Energy (KE):

- Energy due to motion

Potential Energy (PE):

- Energy due to position or deformation
- Unit - Joules (Nm)

Conversion of PE to KE

MYU
 WORK-ENERGY RELATIONSHIP

- The work done by a net force acting on an object causes a change in the mechanical energy of the object

$$
\begin{aligned}
& F \times d=\Delta \text { Energy } \\
& F \times d=\Delta \mathrm{KE}+\Delta \mathrm{PE}
\end{aligned}
$$

POWER

- Power is the rate of doing work
- Work $=$ Force \times displacement $=F \times d$

$$
\text { Power }=F \times\left(\frac{d}{t}\right)=F \times \bar{v}
$$

- Units: $\mathrm{J} / \mathrm{s}=$ watt, 1 Horsepower (HP) $=745.7$ watt

甲 nvu WHAT IS MECHANICAL ADVANTAGE (MA)?

- MA is the ratio of the force produced by a machine to the force applied to an object

$$
\mathrm{MA}=\frac{\mathrm{F}_{1}}{\mathrm{~F}_{2}}
$$

F_{1} : The force produced by a machine
F_{2} : The force applied to the object

Source

$$
\mathrm{MA}=\frac{\mathrm{F}_{1}}{\mathrm{~F}_{2}}=\frac{100}{50}=2
$$

- What is the mechanical advantage if the weight of an object is W ?

$$
\mathrm{MA}=\frac{\mathrm{F}_{1}}{\mathrm{~F}_{2}}
$$

F_{1} : The force produced by a machine F_{2} : The force applied to the object

ACTIVITY - 1 SOLUTION

- What is the mechanical advantage if the weight of an object is W ?

$$
\mathrm{MA}=\frac{\mathrm{F}_{1}}{\mathrm{~F}_{2}}
$$

F_{1} : The force produced by a machine F_{2} : The force applied to the object

$$
\mathrm{MA}=\frac{\mathrm{F}_{1}}{\mathrm{~F}_{2}}=\frac{\mathrm{W}}{\mathrm{~W} / 4}=4
$$

Source

GEAR AND TRANSMISSION

- Gears - what are they?
- Gears are the wheels with teeth
- Gears mesh and run the machines
- Gears are used to transfer motion or power from one moving part to another

Source

GEARS - PURPOSE

Gears are generally used for one of four different reasons:

- To reverse the direction of rotation
- To increase or decrease the speed of rotation
- To move a rotational motion to a different axis
- To keep the rotation of two axes synchronized

Spur gears

NEED FOR GEARS

Going downhill:

- Load is low with the help of gravity
- Use gear ratio with the increased speed at low output torque

Going uphill:

- Load is high
- Use gear ratio with increased torque at low speed

Source

SPUR GEARS

- Spur gears are gears in the same plane that move opposite of each other
- Gear A: driver gear
- Gear B: driven gear

Source

GEAR SYSTEMS

- This is a good example of a gear train
- A gear train is usually made of two or more gears
- The driver in this example is gear \mathbf{A}
- Suppose a motor turns gear A in an anticlockwise direction,
- Which direction does gear B turn?
- Which direction does gear \mathbf{C} turn?
- Does gear \mathbf{C} revolve faster or slower than gear \mathbf{A} ?

GEAR SYSTEMS

Source

- This is a good example of a gear train
- A gear train is usually made of two or more gears
- The driver in this example is gear \mathbf{A}
- Suppose a motor turns gear A in an anticlockwise direction,
- Which direction does gear B turn? Clockwise
- Which direction does gear C turn? Counter-clockwise
- Does gear \mathbf{C} revolve faster or slower than gear \mathbf{A} ? Gear \mathbf{C} revolves slower than Gear A

GEAR SYSTEMS

- Idler gear: a gear placed between a driving and a driven gear to transfer motion without change of direction and gear ratio
- Here gear B is an idler gear

Source

GEAR RATIO (SPEED RATIO)

- The gear ratio is determined by the number of teeth on each gear wheel

$$
\text { Gear Ratio }=\frac{\text { The number of teeth of driven gear }}{\text { The number of teeth of driver gear }}=\frac{n_{\mathrm{B}}}{n_{\mathrm{A}}}
$$

$\frac{\text { The number of teeth of driven gear }}{\text { The number of teeth of driver gear }}=\frac{30}{60}=1: 2$

- What does this mean?

It means that the driven gear \mathbf{B} makes two rotations for every one rotation of the driving gear \mathbf{A}

$\frac{\text { The number of teeth of driven gear }}{\text { The number of teeth of driver gear }}=\frac{75}{25}=3: 1$

Source

- What does this mean?

It means that the driven gear \mathbf{B} makes one rotation for every 3 rotations of driving gear \mathbf{A}

quvu WORKING OUT ROTATIONS PER MINUTE

Gear A	Gear B
60 teeth	30 teeth
120 rpm	$?$

Source

$$
\begin{aligned}
& \text { Gear Ratio }=\frac{\text { The angular velocity of driver gear }}{\text { The angular veloctiy of driven gear }}=\frac{\omega_{\mathrm{A}}}{\omega_{\mathrm{B}}}=\frac{n_{\mathrm{B}}}{n_{\mathrm{A}}} \\
& \frac{\omega_{\mathrm{B}}}{\omega_{\mathrm{A}}}=\frac{n_{\mathrm{A}}}{n_{\mathrm{B}}}=\frac{60}{30}=\frac{\omega_{\mathrm{B}}}{120} \quad \omega_{\mathrm{B}}=240 \mathrm{rpm}
\end{aligned}
$$

ACTIVITY - 2

- Calculate the angular velocity of gear B

Gear \mathbf{A}	Gear B
25 teeth	75 teeth
60 rpm	$?$

Source

- Calculate the angular velocity of gear B

Gear A	Gear B
25 teeth	75 teeth
60 rpm	$?$

Source

$$
\frac{\omega_{\mathrm{B}}}{\omega_{\mathrm{A}}}=\frac{n_{\mathrm{A}}}{n_{\mathrm{B}}}=\frac{25}{75}=\frac{\omega_{\mathrm{B}}}{60} \quad \omega_{\mathrm{B}}=20 \mathrm{rpm}
$$

GEAR RATIOS

- When faced with three gears the question can be broken down into two parts
- First work on gears A and B
- Second work on gears B and C

Source

- The diagram shows a gear train composed of three gears
- Gear A revolves at 60 revolutions per minute in a clockwise direction,
- What is the output in revolutions per minute of gear C ?
- In what direction does gear C revolve?

GEAR RATIOS

START

Gear A	Gear B	Gear C
20 teeth	60 teeth	10 teeth
60 rpm	$?$	$?$

Source

$$
\begin{aligned}
& \frac{\omega_{\mathrm{B}}}{\omega_{\mathrm{A}}}=\frac{n_{\mathrm{A}}}{n_{\mathrm{B}}}=\frac{20}{60}=\frac{\omega_{\mathrm{B}}}{60} \\
& \omega_{\mathrm{B}}=20 \mathrm{rpm}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\omega_{\mathrm{C}}}{\omega_{\mathrm{B}}}=\frac{n_{\mathrm{B}}}{n_{\mathrm{C}}}=\frac{60}{10}=\frac{\omega_{\mathrm{C}}}{20} \\
& \omega_{\mathrm{C}}=120 \mathrm{rpm}
\end{aligned}
$$

- Gear C rotates at 120 rpm in a clockwise direction
- A compound gear is several gears fixed on the same shaft
- Consequently, they rotate at the same speed
- The gears that make up a compound gear usually differ in size and have a different number of teeth
- Consider the compound gear shown below
- Split the compound gear into two parts
- First treat gear A and gear B
- Next, treat gear C and gear D

- What is the output in revs $/ \mathrm{min}$ at D ?
- What is the direction of rotation of gear D, if gear A rotates in a clockwise direction at 30 revs/min?

COMPOUND GEAR RATIOS

Gear \mathbf{A}	Gear B	Gear C	Gear D
120	40	80	20
teeth	teeth	teeth	teeth
30 rpm	$?$	$?$	$?$

$$
\begin{array}{ll}
\frac{\omega_{\mathrm{B}}}{\omega_{\mathrm{A}}}=\frac{n_{\mathrm{A}}}{n_{\mathrm{B}}}=\frac{120}{40}=\frac{\omega_{\mathrm{B}}}{30} & \omega_{\mathrm{C}}=\omega_{\mathrm{B}}=90 \mathrm{rpm} \\
\frac{\omega_{\mathrm{D}}}{\omega_{\mathrm{C}}}=\frac{n_{\mathrm{C}}}{n_{\mathrm{D}}}=\frac{80}{20}=\frac{\omega_{\mathrm{D}}}{90} & \omega_{\mathrm{D}}=360 \mathrm{rpm}
\end{array}
$$

HOW DIFFERENTIAL WORKS

- Making a gearbox
- Taking readings and comparing the result with the empirical formula
- Changing internal gearing and finding a new speed

Document

Thank You!

Questions and Feedback?

[^0]: Source

