Promoting robotic design and entrepreneurship experiences among students and teachers

Lesson 9: Drive Mechanism

CONTENTS

- Types of motion
- Rectangular \& polar coordinate systems
- Different types of wheels
- Different types of driving mechanisms
- Theoretical concepts of differential drive
- TASK/ACTIVITY: Programming tasks for maneuvering the VEX Claw bot
- Linear motion: uniform and non-uniform
- Oscillatory motion
- Periodic motion
- Random motion

Linear motion

Equilibrium
Periodic motion

Random Motion

LINEAR MOTION

- Motion along a straight line

- Examples:
- Ball thrown straight up and falling back straight down
- Line following robot on a straight ,etc.
- Athlete running 100m along a straight track

UNIFORM LINEAR MOTION

- Linear motion in which specific distance is covered in a particular time, is called a uniform
 linear motion (speed is constant)
- Examples:
- Robot moving on a straight line with constant speed

- Soldier's marching in a parade at constant speed, i.e., same number of steps per time interval

NON-UNIFORM LINEAR MOTION

- Linear motion that continuously changes its speed is called nonuniform linear motion

Robot accelerating at $1 \mathrm{~m} / \mathrm{s}^{2}$

Time (s)	0	1	2	3
Velocity (m/s)	2	3	4	5

- The motion which is back and forth and repetitive is known as oscillatory motion (object repeats the same movement over and over)
- Examples: See-saw, Piston in an engine, mass-spring system, the wings of birds, pendulum, etc.

Piston

- Force

Position
MOM

Mass-spring system

PERIODIC MOTION

- The motion of moving object that passes through certain point at regular interval of times is called periodic motion
- Examples: Hands of clock, pendulum, orbits of celestial bodies

Source

Source

RANDOM MOTION

- Motion with continuous changes in direction is called random motion
- Examples: a Roomba cleaning a room, motion of butterfly, honeybees, etc.

Roomba 690 Navigation

- Kinematics is the science of describing the motion of objects using words, diagrams, numbers, graphs, and equations
- Motion takes place over time and depends on a frame of reference
- Frame of reference - a coordinate system for specifying the precise location of objects in space
- The choice of a reference point is arbitrary, but once chosen, the same point must be used throughout the problem

COORDINATE SYSTEM

Cartesian coordinate system

Polar coordinate system

Hưvu POLAR COORDINATES TO RECTANGULAR COORDINATES

Given polar coordinates (r, θ)

- Change to rectangular

By trigonometry

- $x=r \cos \theta$
$y=r \sin \theta$

NOTE: In Arduino IDE, trigonometric functions take angle input in radians

CONVERTING POLAR COORDINATES TO RECTANGULAR COORDINATES

Problem

If the location of a robot is $\left(4,300^{\circ}\right)$ in Polar coordinate, what is the location of the robot in Cartesian coordinate?

$$
\begin{aligned}
& x=r \cos \theta \\
& y=r \sin \theta
\end{aligned}
$$

SOLUTION

Problem

If the location of a robot is $\left(4,300^{\circ}\right)$ in Polar coordinate, what is the location of the robot in Cartesian coordinate?

Solution

Given, polar coordinates: $\left(4,300^{\circ}\right)$
Cartesian coordinates:

$$
\begin{aligned}
& x=4^{*} \cos \left(300^{\circ}\right)=2 \\
& y=4^{*} \sin \left(300^{\circ}\right)=-3.46
\end{aligned}
$$

龺 nYu RECTANGULAR COORDINATES TO POLAR COORDINATES

Given a point (x, y)

- Convert to ($r, \boldsymbol{\theta}$)

By Pythagorean theorem

$$
r^{2}=x^{2}+y^{2}
$$

By trigonometry

$$
\theta=\tan ^{-1}\left(\frac{y}{x}\right)
$$

M NYU
 CONVERTING RECTANGULAR COORDINATES TO POLAR COORDINATES

Problem

If the location of a robot is $(3,4)$ in Cartesian coordinate, what is the location of the robot in Polar coordinate?

$$
\begin{array}{r}
r^{2}=x^{2}+y^{2} \\
\theta=\tan ^{-1}\left(\frac{y}{x}\right)
\end{array}
$$

SOLUTION

Problem

If the location of a robot is $(3,4)$ in Cartesian coordinate, what is the location of the robot in Polar coordinate?

Solution

Given, cartesian coordinates: $(3,4)$

REFRESHER: ARDUINO

Connect the USB cable
Line number where the cursor is

Console

Arduino IDE
Board \& Serial Port Selections

PROGRAMMING

Serial.begin(rate)

- Opens serial port and sets the baud rate for serial data transmission
- Typical baud rate for communicating with PC is $\underline{9600}$ although other speeds are supported
- When using serial communication, digital pins $0(R X)$ and 1 (TX) cannot be used at the same time

Serial.print()

- Prints data to the serial port as human-readable ASCII text.

String()

- Constructs a string from the input data (usually of type int/float), which results in a string that contains the ASCII representation of that data

Write a program to display Polar coordinates of robot if Cartesian coordinates of robot location are $(5,6)$

ACTIVITY 1 - SOLUTION

Write a program to display Polar coordinates of robot if Cartesian coordinates of robot location are $(5,6)$

```
float x = 5;
float y = 6;
float r;
float theta;
float pi = 3.14159;
void setup() {
    delay(200);
    Serial.begin(9600);
    /* begin serial communication }
    at 9600 baud rate */
    Serial.flush();
    /* Waits for the transmission of
    outgoing serial data to complete */
    r = sqrt(sq(x)+sq(y));
    // 'r' calculation
    theta = atan(y/x);
```

 // 'theta' calculation
 Program

- A robot's drive train consists of all the components used to make the robot move
- Motors
- Wheels
- Transmission

$\mathrm{X}=$ number of wheels connected to motors (powered)

- Two-wheel drive: two wheels are powered
- Four-wheel drive: four wheels are powered
- How many motors the robot has doesn't matter
- For example, the square bot has only two motors, but it
 is an example of four-wheel drive since all four wheels are connected to motors

CHASSIS

The most common robot chassis are 3 wheeled and 4 wheeled as shown

WHEELS

Fixed wheel can rotate about the axis that goes through the center of the wheel and is orthogonal to the wheel plane

Steerable wheel has two axes of rotation -- the first is same as the fixed wheel, the second is vertical and goes through the center of the wheel

Source

Castor wheel has two axes of rotation, vertical axis does not pass through the center of wheel, from which it is displaced by constant offset

- Such an arrangement causes the wheel to swivel automatically, rapidly aligning with the direction of the motion of the chassis
- This type of wheel is introduced to

Castor Wheel

 provide a supporting point for static balance without affecting the mobility of base
WHEELS

Omni-directional wheel or Swedish wheel is similar to a normal wheel but has a number of passive rollers around its circumference and their rotational axes lie in the plane of the wheel

Source

For a Mecanum wheel, the axis of rotation of each roller is typically inclined by 45° with respect to the plane of the wheel

Mecanum Wheel

Two motors at each corner

SWERVE/CRAB DRIVE IN ACTION

A VEX robot with a swerve drive

MECANUM DRIVE

Mecanum drive is an omnidirectional drive system where Mecanum wheels are setup in a traditional four-wheel drive system

DIFFERENTIAL DRIVE KINEMATICS

DIFFERENTIAL DRIVE KINEMATICS

MAJOR CONSTRAINT

The robot cannot move to the right or left without the wheels slipping

Parallel parking requires series of maneuvers

[^0]
L298N MOTOR DRIVER

Source

- The L298N is a high current, high voltage dual fullbridge driver motor driver IC
- It can control two DC motors simultaneously and independently
- It can provide 2A per channel at a supply voltage range of 4.5 V to 46 V

NOTE: L298N is used instead of the L293D since the latter has a limit of only 600 mA per channel, and the VEX 393 motor can draw up to 20% of its maximum stall current rating $=0.2$ * $4.8 \mathrm{~A}=0.96 \mathrm{~A}<2 \mathrm{~A}$ (output limit of L298N)

CAUTION: VEX 393 motors draw very high current, do not make circuit changes with the power supply connected, it is dangerous

L298N MOTOR DRIVER - PINS

CAUTION: VEX 393 motors draw very high current, do not make circuit changes with the power supply connected, it is dangerous

Make the robot move forward at a specific speed (refer worksheet: Workseet lesson 8)

ACTIVITY 2 - SOLUTION

NOTE: For the 7.2V DC power supply, a battery pack of six rechargeable 1.2 V batteries can be used

ACTIVITY 2 - SOLUTION

CODE

```
int M1IN1 = 3; // right motor input 1
int M1IN2 = 5; // right motor input 2
int EN1 = 6; // right motor enable pin
int M2IN1 = 9; // left motor input 1
int M2IN2 = 10; // left motor input 2
int EN2 = 11; // left motor enable pin
void setup(){
    pinMode(M1IN1, OUTPUT);
    pinMode(M1IN2, OUTPUT);
    pinMode(EN1, OUTPUT);
    pinMode(M2IN1, OUTPUT);
    pinMode(M2IN2, OUTPUT);
    pinMode(EN2, OUTPUT);
    /* set IN pins and EN pins in OUTPUT mode for both motors */
}
```

void loop() {

```
void loop() {
    analogWrite(EN1,255); // right motor speed
    analogWrite(EN1,255); // right motor speed
    analogWrite(EN2,255); // left motor speed
    analogWrite(EN2,255); // left motor speed
    digitalWrite(M1IN1, HIGH); // right motor CW
    digitalWrite(M1IN1, HIGH); // right motor CW
    digitalWrite(M1IN2, LOW);
    digitalWrite(M1IN2, LOW);
    digitalWrite(M2IN1, LOW); // left motor CCW
    digitalWrite(M2IN1, LOW); // left motor CCW
    digitalWrite(M2IN2, HIGH);
    digitalWrite(M2IN2, HIGH);
    delay(1000);
    delay(1000);
}
```

}

```

\section*{ACTIVITY 2 - DEMO}


\[
\begin{gathered}
\boldsymbol{s}=\boldsymbol{r} \boldsymbol{\theta} \\
\frac{\text { degrees }}{180}=\frac{\text { radians }}{\pi}
\end{gathered}
\]
\(s:\) arc length
\[
\pi=3.14
\]


What is the arc length here?
\(r\) : radius of circle
\(\theta\) : angle produced by the arc, measured in radians

\section*{FINDING ARC LENGTH}

\[
\begin{gathered}
\boldsymbol{s}=\boldsymbol{r} \boldsymbol{\theta} \\
\frac{\text { degrees }}{180}=\frac{\text { radians }}{\pi}
\end{gathered}
\]
\(s\) : arc length
\[
\pi=3.14
\]


What is the arc length here?
\(r\) : radius of circle
\(\theta\) : angle produced by the arc, measured in radians
\[
r=10 \mathrm{in}=10 * 2.54 \mathrm{~cm}=25.4 \mathrm{~cm}
\]
\[
\theta=150^{\circ}=150 *(\pi / 180)=2.62
\]
radians
\[
s=r \theta=25.4^{*} 2.62=66.55 \mathrm{~cm}
\]

We want the robot to turn from an initial attitude to attitude \(\theta\), in time \(t\)
Distance traveled by left (internal) wheel:
\[
S_{L}=\left(R-\frac{d}{2}\right) \theta
\]

Distance traveled by right (external) wheel:
\[
S_{R}=\left(R+\frac{d}{2}\right) \theta
\]


Distance traveled by mid-point of wheel-axis:
\[
S_{M}=R \theta
\]
\(I_{c \Omega}\) is the instantaneous center of curvature about which the robot rotates

\section*{Problem}

What is the distance travelled by the left wheel if robot with base length of 6 inches rotates by 30 degrees, given \(R\) (distance between center of robot and \(I_{\mathrm{Cc}}=30\) inch)?

Distance traveled by left (internal) wheel:
\[
S_{L}=\left(R-\frac{d}{2}\right) \theta
\]


Distance traveled by right (external) wheel:
\[
S_{R}=\left(R+\frac{d}{2}\right) \theta
\]

Distance traveled by mid-point of wheel-axis:
\[
S_{M}=R \theta
\]

\section*{Problem}

What is the distance travelled by the left wheel if robot with base length of 6 inches rotates by 30 degrees, given \(R\) (distance between center of robot and \(I_{\mathrm{cc}}=30\) inch)?

\section*{Solution}

Distance traveled by left (internal) wheel:
\[
S_{L}=\left(R-\frac{d}{2}\right) \theta
\]

\(=\left(30-\frac{6}{2}\right)\left(30 * \frac{\pi}{180}\right)=27 * 0.524=14.12\) inches

We want the robot to turn from an initial attitude to attitude \(\theta\), in time \(t\)
Distance traveled by left (internal) wheel:
\[
S_{L}=\left(R-\frac{d}{2}\right) \theta
\]

Distance traveled by right (external) wheel:
\[
S_{R}=\left(R+\frac{d}{2}\right) \theta
\]


Distance traveled by mid-point of wheel-axis:
\[
S_{M}=R \theta
\]
\(I_{c \Omega}\) is the instantaneous center of curvature about which the robot rotates

We want the robot to turn from an initial attitude to attitude \(\theta\), in time \(t\)

Constant turning rate, \(\omega=\frac{\theta}{t}\)
Wheel velocities (magnitudes):
\[
\begin{aligned}
& V_{L}=\frac{S_{R}}{t}=\left(R-\frac{d}{2}\right) \frac{\theta}{t}=\left(R-\frac{d}{2}\right) \omega \\
& V_{R}=\frac{S_{L}}{t}=\left(R+\frac{d}{2}\right) \frac{\theta}{t}=\left(R+\frac{d}{2}\right) \omega \\
& V_{M}=\frac{S_{M}}{t}=R\left(\frac{\theta}{t}\right)=R \omega
\end{aligned}
\]

\(V_{L} \& V_{R}\) can be calculated if the angle, time to complete the run, \(R\) and \(d\) are known

Assumptions: Inertia, friction, etc., are negligible \(V_{L} \& V_{R}\) achieved instantaneously, i.e., no need to worry about accelerating to \(V_{L} \& V_{R}\)

\section*{KINEMATIC EQUATIONS FOR MOBILE ROBOT (DIFFERENTIAL DRIVE)}
\[
\begin{aligned}
& V_{R}=\left(R+\frac{d}{2}\right) \omega \text { and } V_{L}=\left(R-\frac{d}{2}\right) \omega \\
& V_{R}+V_{L}=\left(R+\frac{d}{2}+R-\frac{d}{2}\right) \omega=(2 R) \omega
\end{aligned}
\]

\[
\begin{aligned}
V_{R}-V_{L}=\left(R+\frac{d}{2}-R+\frac{d}{2}\right) \omega=d \omega & \Rightarrow \omega=\frac{V_{R}-V_{L}}{d} \\
& \frac{V_{R}+V_{L}}{V_{R}-V_{L}}=\frac{2 R \omega}{d}=\frac{2 R}{d} \Rightarrow R=\frac{d\left(V_{R}+V_{L}\right)}{2\left(V_{R}-V_{L}\right)}
\end{aligned}
\]

\begin{tabular}{|c|c|c|c|c|}
\hline & Straight & Turn Left & Turn Right & Spin \\
\hline\(R\) & \(\infty\) & \begin{tabular}{c}
\(d / 2\) \\
\(\left(\right.\) when \(\left.V_{L}=0\right)\)
\end{tabular} & \begin{tabular}{c}
\(d / 2\) \\
\(\left(\right.\) when \(\left.V_{R}=0\right)\)
\end{tabular} & 0 \\
\hline\(\omega\) & \begin{tabular}{c}
0 \\
\(\left(V_{R}=\mathrm{V}_{\mathrm{L}}\right)\)
\end{tabular} & \(>0\) & \(<0\) & \begin{tabular}{c}
0 \\
\(\left(V_{R}=-V_{L}\right)\)
\end{tabular} \\
\hline
\end{tabular}
\[
\begin{gathered}
\omega=\frac{V_{R}-V_{L}}{d} \\
R=\frac{d\left(V_{R}+V_{L}\right)}{2\left(V_{R}-V_{L}\right)}
\end{gathered}
\]

\section*{ACTIVITY 3}

\section*{Make the robot take a 90-degree turn (refer worksheet: Workseet lesson 8)}

\section*{ACTIVITY 3}
```

// right motor
int M1IN1 = 3; // motor 1 input 1
int M1IN2 = 5; // motor 1 input 2
int EN1 = 6; // motor 1 enable pin
// left motor
int M2IN1 = 9; // motor 2 input 1
int M2IN2 = 10; // motor 2input 2
void setup(){
pinMode(M1IN1, OUTPUT);
pinMode(M1IN2, OUTPUT);
pinMode(EN1, OUTPUT);
pinMode(M2IN1, OUTPUT);
pinMode(M2IN2, OUTPUT);
pinMode(EN2, OUTPUT);
// set both IN pins and EN pins in OUTPUT mode for both motors
// set enable pins on L298N HIGH
analogWrite(EN1,0); // right motor speed
analogWrite(EN2,255); // left motor speed
delay(2000); // delay before the bot starts to move

```
Program
int M1IN1 = 3; // motor 1 input 1
int M1IN2 = 5; // motor 1 input 2
int \(\mathrm{EN} 1=6\); // motor 1 enable pin
// left motor
int M2IN1 = 9; // motor 2 input 1
```

int EN2 = 11; // motor 2 enable pin

```
```

int EN2 = 11; // motor 2 enable pin

```
void loop()\{
\}
```

 digitalWrite(M1IN1, HIGH); // right motor CW
 digitalWrite(M1IN2, LOW);
 digitalWrite(M2IN1, LOW); // left motor CCW
 digitalWrite(M2IN2, HIGH);
 delay(1600); /* delay value for 90degrees by trial & error */
 analogWrite(EN2,0); // left motor speed
 }

```

\section*{CODE}

\section*{ACTIVITY 3 - DEMO}

Note: Circuit same as activity-2


\section*{90-degree turn}

\section*{Task / Activity: Programming tasks}
- Experiments with differential drive mechanisms
- Moving forward, backward, turning left or right (for turning changing speed/velocity and direction)

\section*{Thank You!}

\section*{Questions and Feedback?}```


[^0]:    Source

